WEAKLY 7. REGULAR RINGS AND GROUP RINGS
VISHNU GUPTA

1. Introduction. The well-known notion of von Neumann regularity
in the theory of rings has given rise to a number of generalizations. In
this paper we further generalize these generalizations ; we define the
notion of (right, left) weak m-regularity. The system of weakly mregular
rings is a wide class of rings which strictly includes n-regular rings,
weakly regular rings and hence locally artinian rings (see [5]) and
perfect rings. In § 2 we give the definition and an example. In §3 we
study the elementary properties of weakly mregular rings generalizing
some results in [8], [11]. We also try to establish the relation between
weakly m-regular rings and artinian rings. In §4 we study the correspond-
ing problem in group rings for weakly w-regular rings. We prove that the
group algebra KG over a field K satisfying a nontrivial polynomial
identity is right (resp. left) weakly n-regular if and only if G is locally
finite.

2, Definition. Throughout this paper all rings are assumed to be
associative with identity but not necessarily commutative. The Jacobson
radical of a ring A will be denoted by J(A4), and the right (resp. left)
singular ideal of A by Z.(A) (resp. Z,(A4)).

A ring A is called a wregular ring if for every a = A we have
a" € ¢"Ae” for some natural number n = n(¢). While, A is called a
right (resp. left) w-regular ring if for every a € A we have a* = o' A4
(resp. @" € Aa™") for some natural number # = n(a). Recently, F.
Dischinger [4] has proved that every one-sided w-regular ring is strongly
n-regular, namely, right and left mregular. Following [11], A is called
a right (resp. left) weakly regular ring if for each a= A we have a=(aA)?
(resp. @ € (4a)?). A is a weakly regular ring if it is right and left
weakly regular. Now, we introduce the following definition.

Definition 2.1. A ring A is said to be right (resp. left) weakly =-
regular if for every a € A there exists a natural number # = n(a) such
that ¢" € (a"A4)* (resp. a" € (Aa")?), i.e.,, a" = a"x (resp. a" = xa") with
some x in the (two-sided) ideal (¢") generated by a". A ring is weakly
w-regular if it is right and left weakly m-regular.

Obviously, every wregular ring and every weakly regular ring are
weakly m-regular. First, we state the following easy proposition, which
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will be used freely in the subsequent study.

Proposition 2.2. Let I be an ideal of ¢ ring A. If A is right
weakly m-regular then so ave both A/l and I On the other hand, if A}l
is right weakly wregular and I is right weakly regular then A is right
weakly m-regular.

Example 2.3. Let A; be a weakly regular ring which is not strongly
w-regular ([3]). Let A, be a wregular ring which is neither right weakly
regular nor left weakly regular ([6, Example 1] and [9, Example 1, p. 641).
Then, A, @ A, is a weakly n-regular ring which is neither =-regular nor
strongly w-regular, right weakly regular or left weakly regular.

3. Weakly z-regular rings.

Proposition 3.1. If I isa proper ideal of a right weakly w-regular
ring A, then every element of I is a left zero divisor in A. Especially,
every right weakly m-regular ring without non-zero left zevo divisors is simple.

Proof. Let a= I, and &" = g"x for some natural number » and
some x & (a"). If a is not a left zero divisor (right regular element) then
a"(1 — x) = 0 implies a contradiction 1 =x (@") C L

In general the right weak m-regularity does not coincide with the left
one. But we have the following

Proposition 3.2. Let A be a reduced ring.

(1) A is right weakly m-regular if and only if it is left weakly
T-regular.

(2) A isa prime weakly wregular ring if and only if it is simple.

Proof. (1) is obvious by the fact that in a reduced ring xy = 0 is
equivalent with yx = 0. (2) is only a combination éf Proposition 3. 1 and
the fact that every prime reduced ring has no non-zero zero divisors.

Proposition 3.3, Let A be a right weakly m-regular ring.
(1) The center of A is a m-regular ring.

(2) J(A) isa nil ideal.

(3) Z(A) isanilideal.

Proof. (1) This is obvious by [1, Lemma 1].
(2) Let @ € J(A), and a" = a"x with x € (¢"). Since x is in J(A4),
1 — x has the inverse #. Hence, &¢* =a¢"(1 — x)u = 0.
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(3) Let ae Z(A4), and ¢" = a'x with x € (¢*). Since the left
annihilator /(x) of x € Z(A) is an essential left ideal of A and /(x) N
Aa® =0, it follows Ac" =0, i.e, a" = 0.

Theorem 3.4. Let A be a semiprime right Goldie ring such that
every essential right ideal of A is an ideal. Then, A is right weakly
a-regular if and ond only if A is semisimple artinian.

Proof. 1t suffices to prove the only if part. By [7, Theorem 3. 9],
every essential right ideal of the semiprime right Goldie ring A contains
a regular element. Since every essential right ideal of A is two-sided, it
is whole of A by Proposition 3.1. Now, let I be an arbitrary proper
right ideal of A. Then there exists a right ideal I' of A such that
I+ I'=IPUr is essential, and hence I I'= A, Thus, A is semisimple
artinian,

Corollary 3.5. Let A be a reduced ring with finite right Goldie
dimension such that every essential vight ideal of A is an ideal. Then, A
is a right weakly w-regular ring if and only if it is semisimple artinian.

Proof. If A is right weakly =-regular, then Z,(A)=0 by Proposi-
tion 3.2 (1) and Proposition 3.3 (3). Accordingly, A is a semiprime
right Goldie ring (see [7, p.206], and then A is semisimple artinian by
Theorem 3.4. The converse is trivial.

Corollary 3.6. Let A be a right noetherian ring such that every
essential right ideal of A[J(A) is an ideal. Then, A is right weakly
w-regular if and only if it is right artinian.

Proof. It suffices to prove the only if part. Since A/J(4) is a
semiprime right Goldie ring, it is semisimple artinian by Theorem 3. 4.
Now, noting that J(A) is nilpotent by Proposition 3.3 (2) and Levitzki
theorem (see e.g. [7, Theorem 3. 4]), one will easily see that the right
A-module A has a composition series.

4. Weakly m-regular group rings. If A is a ring and G is a
group, AG will denote the group ring of G over A. The ideal wG of
AG generated by {1—g| g€ G} is called the fundamental ideal of AG.
As is well-known, AG/wG=A. Weset J={g& G| (G: Cig) << oo},
which is a normal subgroup of G. Given «a = 2la,g € AG, we set
supp (o) = {g € G| a,# 0}. For further properties of group rings we
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refere [2] and [10].

Theorem 4.1. If AG is right weakly wregular, then A is right
weakly wregular and G is a torsion group.

Proof. It remains only to prove the latter assertion. Let g G,
and (1 —g)"=(1—g)"x with x=((1 — 2)"). Supose g is not of finite
order. Then 1 — g is regular by [2, Prorosition 6]. Hence, (1 — g)*
(1 — x) = 0 yields a contradiction 1 = x € wG.

Corollary 4.2, Let G be an abelian group. If AG is right weakly
mregular, then A is right weakly mregulayr and G is locally finite.

Theorem 4.3. Let A bearing. If @ isa family of subgroups of
G such that

1) AH is right weakly n-regular for each HE @ ;

2) every finite subset of G 1is contained in some H & D,
then AG is right weakly mregular. In particular, if G is locally finite
and if AH is right weakly mregular for each finite subgroup H of G,
then AG is right weakly m-regular.

Proof. Given a € AG, by 2) we can find some H & © containing
supp (@). Then, by 1) there exists a positive integer » such that
o € (a"AH)? C (" AG).

Corollary 4.4. Let A be a right artinian ring, and G an infinite
locally finite group. Then, AG is not right artinian but right weakly
m-regular,

Proof. By [2, Theorem 1], AG is not right artinian. On the other
hand, AH being right artinian for each finite subgroup H of G, AG is
right weakly 7-regular by Theorem 4. 3.

Now, we shall give our main theorem of this section.

Theorem 4.5. Assume that the group algebra KG over a field K
satisfies a nontrivial polynomial identity. Then, KG is right weakly n-
regular if and only if G is locally finite.

Proof. In virtue of Corollary 4.4, it suffices to prove the only if
part. By Theorem 4.1 and [10, Theorem 5.5], G is a torsion group and
(G: 4)<<oo. Now, let H be a finitely generated subgroup of G. Then
(H: HN 4)<<oo, and by [10, Lemma 6.1] H N 4 is a finitely generated
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subgroup of 4. Since the center Z(H N d) of HN 4 is of finite index by
[10, Lemma 2.2], (H: Z(HN J))<<oo, and Z(H N J4) is a finitely
generated torsion group again by [10, Lemma 6.1]. Hence, Z(H N 4)
is finite, and eventually H is finite.

Finally, we propose the following

Problem. Let KG be right weakly w-regular. Is G necessarily locally
finite ?
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