A NOTE ON MORITA EQUIVALENCE OF POLYNOMIAL RINGS

KATSUO CHIBA

Throughout A and B will represent rings with 1. If A and B are Morita equivalent, namely, if there exist a positive integer n and an idempotent e of the complete matrix ring $(A)_n$ such that B is isomorphic to $e(A)_n e$ and $(A)_n e(A)_n = (A)_n$, then one will easily see that the polynomial rings A[X] and B[X] (in a commutative indeterminate X) are Morita equivalent. Needless to say, in case A and B are commutative, if A and B are Morita equivalent then they are isomorphic. Several authors studied the question: If $A[X] \cong B[X]$, does $A \cong B$ follow? A simple counter-example has been given by M. Hochster [4]. However, D. B. Coleman and E. E. Enochs proved

Proposition (see [3, p. 252]). Assume that the Jacobson radical J(A) of A is locally nilpotent and A/J(A) is Artinian (A is semi-local). If $A[X] \cong B[X]$ then $A \cong B$.

The purpose of this note is to prove the following theorem which is motivated by the last:

Theorem. Let A be a semi-local ring with J(A) locally nilpotent. If $A \lceil X \rceil$ and $B \lceil X \rceil$ are Morita equivalent, then so are A and B.

In advance of proving our theorem, we state an easy lemma, which is contained in [2, Proposition 0. 2. 6].

Lemma. Let D be a division ring, and R = D[X]. If e is an idempotent of $(R)_n$ then there exists a unit u of $(R)_n$ such that ueu⁻¹ = diag $\{1, \dots, 1, 0, \dots, 0\}$.

Proof. As is well known, R is a principal ideal domain, and every submodule of the left free R-module R^n of $1 \times n$ matrices with entries in R has a free R-basis. Regarding $(R)_n$ as the endomorphism ring of the left R-module R^n , we have $R^n = R^n e \oplus R^n$ (1-e). Now, let $\{u_1, \dots, u_r\}$ and $\{u_{r+1}, \dots, u_n\}$ be respective free R-bases of $R^n e$ and $R^n (1-e)$. Then $u = \begin{pmatrix} u_1 \\ \vdots \\ \vdots \end{pmatrix}$ is obviously a unit of $(R)_n$, and $ue = \text{diag } \{1, \dots, 1, 0, \dots, 0\} u$.

122 K. CHIBA

Proof of Theorem. There exist a positive integer n and an idempotent e of $(A)_n[X]$ ($\cong (A[X])_n$) such that $B[X] \cong e(A)_n[X] e$ and $(A)_n[X] \cdot e \cdot (A)_n[X] = (A)_n[X]$. Obviously, $R = (A)_n$ is a semi-local ring with $J(R) = (J(A))_n$ locally nilpotent. Let $\overline{R} = R/J(R) = (D_1)_{n_1} \oplus \cdots \oplus (D_k)_{n_k}$, where D_i 's are division rings. Since J(R[X]) = J(R)[X] by [1, Theorem 1], we have $R[X]/J(R[X]) \cong \overline{R}[X] \cong (D_1)_{n_1}[X] \oplus \cdots \oplus (D_k)_{n_k}[X]$. Now, in virtue of Lemma, we can choose an idempotent \overline{e}' of \overline{R} which is isomorphic to the homomorphic image of e in $\overline{R}[X]$. The lifted idempotent $e' \in R$ is isomorphic to e. Hence, without loss of generality, we may assume from the beginning that e is in R. Then, $B[X] \cong eR[X]e = eRe[X]$ and ReR = R. Since J(eRe) = eJ(R)e is locally nilpotent and eRe/J(eRe) is Artinian, $B \cong eRe$ by Proposition. Thus, B is Morita equivalent to A.

REFERENCES

- [1] S. A. AMITSUR: Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355-361.
- [2] P.M. COHN: Free Rings and Their Relations, Academic Press, London, 1971.
- [3] D.B. COLEMAN and E.E. ENOCHS: Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 245—252.
- [4] M. Hochster: Nonuniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Scc. 34 (1972), 81—82.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY

(Received March 28, 1977)