SOME APPLICATIONS OF THE CHARACTER
ANALOGUE OF THE POISSON
SUMMATION FORMULA

TAKESHI KANO

Suppose that f{x) is a function defined and of bounded variation on
the interval [@, #]. Then there holds the well-known Poisson summation
formula

(1) —Z’ {f(n+0)+f(n—0)} S (x)dx+2LS f(x) cos(27znx) dx

where, and in what follows analogously, the prime ’indicates that if ¢ is
an integer then the first term of the sum is (1/2) f (¢+0), and if 5 is an
integer then the last term is (1/2) f(6—0). This formula has many impor-
tant applications in number theory and there are known some variants or
genealizations of it. B.C. Berndt [1, 2; cf. also 3] has recently obtained
the following ‘‘character analogue”” of (1) as a particular case of his
result,

Theorem A. Let f(x) be of bounded variation throughout [a, b],
and x(n) be a primitive, non-principal Dirichlet character (mod k). Then
if x iseven, i.e. x(—1)=1,

(2) 3+ 3 X+ 0+ -0} = 2600 & ;z(mg £ cos 2% gy

and if x isodd, i.e. x(—1)= —1,

(3) %agﬂx(n) {(f(n-=-0)+f(n—0)) = —21 =2i 50 Y‘ x(n)g () smz"””d

where

P

') l

Glx) =2 x(n)e*

t_

n

]

The main purpose of the present paper is to give some applications of
Theorem A, which are related to our former result [6].

1. Let us put

1) Tt should be noticed that similar results have been obtained by A.P.Guinand (cf. e. g. [4]).
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Q(x) = 17 sin % (x> 0).

Then S. L. Segal [7] has obtained the Bessel-series expression

1 = S
(1) [ewar=2y- L (%) Sni f2vEmm).”
He pointed out that if both sides of (4) could be diffesentiated term-by-term,
then we would have the formula

(5) Q) =% + 7 3 Jo 2V Zmz)

However, the present author has shown that the right-hand side of (5)
diverges for all positive x, and hence the formula (5) is invalid. ¥

We shall show in this paper that this kind of phenomenon is an excep-
tional case 1n the sense that if x is non-principal and primitive, then

(6) 5 2 gy

n=1
converges for all positive x and the Bessel-series expression like (5) for
(6) can be obtained. In fact we can prove the following theorem.

Theorem 1. Let x be a primitive, non-principal character (mod k).
If x is even, then

(1) 5 Xsin (£) = 2 660 570 Jo (21 ZmaxT )

(8) 2 Xcos( L) =2 Gix) 32 700 (ku(2V Zmax] D) — 5 Y2V ZET )

(9) 3 Xsin(£) = =26 ) 370 K2V Zenx D)+ 5 Vo2V 2z D)

10y £ X8 oos(2) — =T o) 32 7)o 21/ ZenaT B

Before proving this theorem, we shall state the following result due
to Berndt [1].

2) About notations and definitions of Bessel functions we follow [9].
3) This notwithstanding, the series of the righthand side of (5) is summable (C, 1) for all
positive x,
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Theorem B. Let x be a primitive, non-principal character (mod k).
If x 1is even, then

an  2Exmsint (£) = 660 5 7 (nx)zlf1(4l/7rnx/k)

and if x is odd, then

NI.—

12) @)% xmsin(Z) = 660 £ 1 (E2) 12V zmasTp.

We remark that there are two ways to obtain (7). The first one is to
differenciate the both sides of (11) term-by-term and then replace 2x by x.
This formal procedure will be assured if the right-hand side of (11) is
compact uniformly convergent in x > 0. This is what we shall prove in
this section. The other way to obtain (7) will be explained in section 2.

From the Hankel asymptotic expansion for J,(x), we know that it
will suffice to prove

13) X0 # LS @r vV )

being convergent compact uniformly in x >0 when 7 is non-principal,
primitive and even. This fact is a particular case of the following more
general result,

Theorem 2. Let X be a primitive, non-principal character (mod k).
If x is even, then for any fixed 0 >0 the series

(14) L(s, x, )= %’,’—)ez“‘“ﬁ (s =0+ it a>0)
n=1

converges compact uniformly in o (and t).

Proof. Let us put

Swla) = Z x(n) S5 (2ma v/ ),

sin

Sia) = Z' x(n) % @2may/ 7).

sin

Then obviously
S*x(a) = Sx(a) + OQ1),

where the constant implied by the O is absolute. We shall estimate this
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S*y(a) in the sequel.
Let us put in the formula (3)

Fl) = O (2ay/ 7).
Then we have
s*ue) =2 660 2 %)\, & 2may/ ) cos (2rn—k;) du.
We set

15) L@ = f 2 cos (2may/ ) cos ( 2mn %) du

ny

= S?’{cos27r (a1/7+ lk“_) + cos 27 (al/ — T)} du
=h+7

and similarly

(16) Iy (@) = S 2 sin 2ra v/ u ) cos (2'm —k-) du

nu

S sm2:r(av’7+£:—)+sin27r(a1/ ——k—)}du

=]1 +fz-

First we consider the integral J,. If we write « = 5, then we have

vF
an = S " 2t cos 2n(at -z tz) dt
1

k

e

751 Z cos 2r| at kt dt

. SV" cos 2n(at —ﬂtz) dt
n Nh k
vE

= — -k—g ‘(sinZn(at——ﬁt’)) dt + @_zg cosz't(at——-tz) dt

2 ) k 1

- & fonan (8 o) e (2 )
+ 2’& S cos 27 (at — —I’:—iz) dt.
1

Also we have
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= _k i (nN —) S n )
(18) Ji Sm {sm 2r -+ ayN) — sin 27 (—k +a }
_ak Svy cos 27 (at + 2 tz> dt.
n n k

Now we need to estimate the integrals

VN

Iy = 5 cos 27 (ati %tz)dt.

1

For this purpose we use the following lemma (cf. [8; . 61]).

Lemma 1. Let F(x) be a real function, twice differentiable, and let
F''"(x)=>r>0, or F'"(x)<—r<<0, throughout [a, b]. Then

" ey | < 2
S" "|—1/7~

Thus we know
—ofl. /%
(19) I = O(V/ £ )

Hence from (15), (17), (18), (19) we obtain

(20) Iv(e) = %z {cos (27aV/N) sin (zﬂn}]e\f ) — cos (2m) sin (%) }

3
+ 0 (rx (i) 2).
n
Similarly we obtain

(1) T (@) = {sin (2rar v sin (20 27) — sin (v sin (572}

3
+ofa(£)7)
n
If 2| N, i.e. N=FEM (M < N), then (20) and (21) become

3

Ia) = —% cos (27a) % sin (%) + 0 (a (%)7)

2
T Ltz L (3] 2.

(22)

Consequently in this case we have
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Syt (@)= Su(@) =3 GG %0 {— £ & (2 L sin (52)

ofel

— £60 208 (3§ Wdsin (227) 1 (1 G0 - a5 X

EY)
X(n )I)

k

3
ne

Observing that G(x) = O(v%) and Z x| O(1), we obtain

3
n=} 7

(23) Sur* () = Ger) €08 (27q) Z x(n) (Z;em) + O(ak?).

sin

For a general N, we write N=kM+7r (0<r<k—1). Then from (23),

Sw*(a) = z x(n) 08 (2700 /) = f’ 2+Z}, = Sii (@) + O(Jé'l)

= Sw(a) -+ 0(1’) = Si¥ (a) + O(k) .

Therefore we obtain

7T sin

20 Su@) = — CX 2 (arp) 3 X i (22 1 0(ar?)
+ O(k) + O(1).
Here it is known (cf. [4]) that the series

i‘, Xn) sin (—Zﬁ)

n=1 A k

is convergent when 7 is an even, non-principal primitive character (mod
k). Therefore we finally have the estimate

(25) Sxla) = 0. (1) + oQ) + O (ak?),

where O, (1) denotes the bound depending possibly on % only. This
means that Sy(«a) is uniformly bounded in a € [g, 8] (¢ >0) and N.
Hence by partial summation, we obtain

N 5
3 X s — 0,(M-) + OUN™),

which proves that (14) converges compact uniformly in « (and 7).
We remark that formula (10) can be derived from (12) in the same
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way as above.

2. In this section we shall first prove formula (7) by a method
different from that of the preceding section. Formulae (8), (9) and (10)
can also be obtained by this method without appealing to Theorem B.

We require the following identities (cf. [5] and [9]).

Lemma 2. For any positive x, we have

(a) Smcosz‘-siniﬂ“—=rsirnf-cos—j‘:—£=7r 2V %),
0 t ¢ 0 t i

®) | costcosZ L = K2vE) - 2 V@V 7),

@ [Tsint-sinZ 2 - gy + 2 vy,

@ Tcost-sinZ 2 —— v {Z viev) + K@V

Proof of identity (7). Put in (2)

1 . x
f(u)=[7smz (w=1),
0 0=u<<).,
Then if x is even and 5> 0 is an integer, we have
S=L S +0)+16— ) = 2 Xgin £ 1 xB) £
_ 260 S ? 2rnu x\ du
= 26005 5 | cos (2% ) sin (£) 2.

. By the substitution # = kt/(2nn), we have from identity (a)

2xnd
5§ =260 & sxn gk cost-sin(Z”"x/k) 2tn dt

k 27T a=1 m o t Bt

2
oo k
=260 = )_c(n)g cos ¢ - sin (__Zvrntx / k) —dtt

=ﬁx—,§ X (1) gm— Sm }cost- sin(zszx/k)it—

2mab ¢
k

k {
= %’Q i X(n ){7r Jo2V 2znx[k) — S; cos? - Sin(27rntx/k) %}

k
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Therefore our task is to prove that

(26) lim i S - cost + sin (M) i = Q.
bt =1 Jownd t f
%

This fact is an immediate consequence of the following lemma.

Lemma 3. Let 0<<A<B y>0, y<LA. Then

B
ind 4 _ of L
Lcostsmt : O(Az).
The proof of this lemma is easily carried out by making partial integration
twice. In quite the same way, (10) also follows from (a), and (8) and (9)

from (b) and (c) res-ectively. Moreover, we can derive the following
identity from (d) by the same method.

Theorem 3. Let x be an even, non-principal primitive character
(mod k). Then

e

@) Sxtmsin(£) = - 3600 5 %0 (55)

X {% K, (2V2nnx[k) + Y1 (2 1/27tnx/k)}-

We notice that when x is odd Berndt {1] has obtained the identity
1
S a) ol ] = 2nx\? e
@ Exmsin(Z)= —L660 520 (EZ)" 12y Zmarp.
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