TWO THEOREMS ON LEFT s-UNITAL RINGS
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Throughout R will represent a ring, and N the set of all nilpotent
elements of R. Following [7], R is called a left s-unital ring if for each
x € R there exists an element e with ex=2x. The purpose of this note
is to present two theorems concerning left s-unital rings which include
[2, Satz] and [5, Theorem 2. 1] respectively.

As was shown in [7, Theorem 1], if x,, -+, x, are arbitrary elements
of a left s-unital ring R then there exists ¢ & R such that ex; = x; for all
%. As an application of this fact, we can simplify the formulation of
[2, Satz] as follows:

Theorem 1 (cf. [8, Theorem]). Let A be an ideal of R such that
R/ A is left s-unital, and B a subgroup of the additive group of R. If
R=A+ B and AB=BA=0, then R= AD B’ with some ideal B of R.

Proof. Since B'R=B-BRC B(A+ B)=B® and RB:C R, B =B
is an ideal of R. Now, let r=a-+ b be an arbitrary element of R (¢€ A,
b€ B), and choose an element e = B with b —eb=a* = A. Then
r=(a+a*)+eb= A+ B'. Next, let @' = b,c,+---+b.c, be an arbitrary
element of A N B' (b;, c; € B). Then there exists some ¢' & B such that
b —e'b,= A for all i, and so a'= (b, —e'b)c,+ -+ (b, — e'b,)c,+e'a'=0.
Thus, we have proved R =A@ B,

Next, we consider the following conditions :

1) For each x € R there exists a positive integer # such that
xn+l —x e M

2") x — y € N implies that x> = y® or both x and y are contained
in the centralizer Vz(N) of N in R.

3) xR C N (or equivalently Rx & N) for each x € N.

Recently, in their paper [5], S. Ligh and J. Luh proved that if R
contains a left identity and the conditions 1), 2’) and 3) hold then R is
commutative. However, as they noted there, the last is not true in
general for rings without identity. In our second theorem we shall show
that the last is still true for left s-unital rings and the condition 3) is
dispensable. In advance of proving the theorem, we consider further the
following conditions :
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1) For each x € R there exist positive integers s, »n such that
x**™ — x™ = N.

2) x—y&E N and y — z € N imply that x* = 2° or xy = yx.

2*) x — y € N implies that 2* = y* or xy = yx.

Needless to say, 2*) is a consequence of 2) or 2'). Moreover, we
have the following :

Lemma 1. (1) If 2*) is satisfied, then x* € Viu(N) for each x € R,
especially every idempotent of R is central, and N is an ideal of R.
(2) If N isanideal of R then 1) and 1') are equivalent.

Proof. (1) Let xR, and yeN with "=0. If xyFyx then
(x+9)?=2% and O0=(x+9) (x + )’ —(x+3) (x+y)=(x + )2’ —x*(x+y)=
yx? — x%y, proving the first assertion. Since (xy)* is in Vkz(N), one
will easily see that (xy)™ = (xyx)"y™ =0, and similarly (yx)"* =0. We
have therefore seen that RyE N and yRE N. Now, we assume further
that 2™=0. Then, noting that (xy)"™ = (yx)™ =0, itis easy to see that
(x+ ) =0. Thus, N is anidealof R.

(2) It suffices to show that 1') implies 1). Since R/N is a reduced
periodic ring, 1) is an easy consequence of [1, Theorem 4 and Lemma 1].

In virtue of Lemma 1, we see that 2') implies 2) and 1) + 2) is
equivalent to 1) + 2).

Lemma 2. Let R be a left s-unital ring. If N is an ideal of R
and 1) is satisfied, then for each finite subset F of R there exists a subring
S of R with a left identity such that FS S and (S+ N)/N is finite.

Proof. Llet F={x, -+, x.}, and choose an element ¢ such that
cx, =%, for all 7. If T is the subring generated by F and ¢, then
T = (T+ N)/N is a finite ring (cf. [6]). As is well known, the identity
element of T can be lifted to an idempotent ¢ of T. We write e=x,p,+
oot XmPmt CPms1, Where p; is a (non-commutative) polynomial in xy, -,
%n, ¢ with integer coefficients, By 1), ¢"*' — ¢ € N for some positive
integer n. This together with cx; = x; proves that c¢"=c"e=c"x;p, + -
4+ Xmpm+ € Puii=e (mod N), sothat (c—c") =0 with some positive
integer ». Now, we consider the polynomial f(X)= 2;%(2]:)(1—~X)“X2' -k,
Obviously, f=f(c") has a meaning as an element of R, and it is well-
known that f2=f=c" (mod N). Moreover, one will easily see that
fxi=c"x,=2x. Accordingly, f is a left identity of the subring S of T
generated by F and f.
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Lemma 3 (cf. [4, Theorem 2]). Let R be a ring with a left identity.
If 2) is satisfied and R|N is finite (cf. Lemma 1), then R is commutative.

Proof. First, we claim that R has the identity. In fact, by Lemma
1 (1) every idempotent of R is central, and so any left identity of R is
the identity. Next, we shall prove that N is a commutative ring.
Suppose there exist x, y & N such that xy #~yx. Since x+y=x=0
(mod N) and (x+y)x+~x(x+y), 2) implies 0=(x+y)’=4x% and similarly,
0=(x+ y)®=3’. From those it follows xy+ yx=0. While, noting that
14+x+y=1+x (mod N), 2)implies also (1 + x+ y)’=(1+x)?, whence
it follows 2(x + y) = 2x, namely, 2y = 0. This yields a contradiction
xy = — yx = yx. Finally, we shall show that N is in the center of R,
which will complete the proof by Herstein's theorem (see [3, p. 221]). By
(6, Lemmal, R/N=R,/N@ ---@® R./N where R;/N is a finite field.
Suppose there exist »r € R and s = N such that rss<sr. Then there
exists some 7,E R, such that »,s5sr,. Since 27,=(1+7,)Y —1—r,€ V.(N)
by Lemma 1 (1), there holds 2(r;s — sr,) = 0. We shall distinguish
between the following two cases :

Case 1: R;/N = GF(2*). Since r3s = sr}, one will easily see that
0= (¥ —r)s — s(#i —r,) =sr,— r;s, which is a contradiction.

Case 2: R,/N=GF(p*), p#2. Since p(r;s—sr,)=(pr;)s—s(pr;)=0
and 2(r,s — sr,) = 0, we readily obtain »,s — s¥; = 0, a contradiction.

Now, we are at the position to state our second theorem, whose prooi
is only a combination of Lemmas 1, 2 and 3.

Theorem 2. Let R be a left s-unital ring. If 1) and 2), or equiva-
lently 1') and 2), are satisfied, then R is commutative.

Remark. In Theorem 2, if 2*) is assumed instead of 2) then N need
not be commutative. However, given x, y € N, we can prove that
xy = yx or the subring generated by x, y is nilpotent of index 3.
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