TWO THEOREMS ON LEFT s-UNITAL RINGS

Dedicated to Professor Eiji Inaba on his 65th birthday

YASUYUKI HIRANO and HISAO TOMINAGA

Throughout R will represent a ring, and N the set of all nilpotent elements of R. Following [7], R is called a *left s-unital ring* if for each $x \in R$ there exists an element e with ex = x. The purpose of this note is to present two theorems concerning left s-unital rings which include [2, Satz] and [5, Theorem 2.1] respectively.

As was shown in [7, Theorem 1], if x_1, \dots, x_n are arbitrary elements of a left s-unital ring R then there exists $e \in R$ such that $ex_i = x_i$ for all x_i . As an application of this fact, we can simplify the formulation of [2, Satz] as follows:

Theorem 1 (cf. [8, Theorem]). Let A be an ideal of R such that R/A is left s-unital, and B a subgroup of the additive group of R. If R=A+B and AB=BA=0, then $R=A \oplus B'$ with some ideal B' of R.

Proof. Since $B^2R = B \cdot BR \subseteq B(A+B) = B^2$ and $RB^2 \subseteq B^2$, $B' = B^2$ is an ideal of R. Now, let r = a + b be an arbitrary element of R ($a \in A$, $b \in B$), and choose an element $e \in B$ with $b - eb = a^* \in A$. Then $r = (a + a^*) + eb \in A + B'$. Next, let $a' = b_1c_1 + \cdots + b_1c_n$ be an arbitrary element of $A \cap B'$ (b_i , $c_i \in B$). Then there exists some $e' \in B$ such that $b_i - e'b_i \in A$ for all i, and so $a' = (b_1 - e'b_1)c_1 + \cdots + (b_n - e'b_n)c_n + e'a' = 0$. Thus, we have proved $R = A \oplus B'$.

Next, we consider the following conditions:

- 1) For each $x \in R$ there exists a positive integer n such that $x^{n+1} x \in N$.
- 2') $x y \in N$ implies that $x^2 = y^2$ or both x and y are contained in the centralizer $V_R(N)$ of N in R.
 - 3) $xR \subseteq N$ (or equivalently $Rx \subseteq N$) for each $x \subseteq N$.

Recently, in their paper [5], S. Ligh and J. Luh proved that if R contains a left identity and the conditions 1), 2') and 3) hold then R is commutative. However, as they noted there, the last is not true in general for rings without identity. In our second theorem we shall show that the last is still true for left s-unital rings and the condition 3) is dispensable. In advance of proving the theorem, we consider further the following conditions:

- 1') For each $x \in R$ there exist positive integers m, n such that $x^{n+m} x^m \in N$.
 - 2) $x y \in N$ and $y z \in N$ imply that $x^2 = z^2$ or xy = yx.
 - 2*) $x y \in N$ implies that $x^2 = y^2$ or xy = yx.

Needless to say, 2^*) is a consequence of 2) or 2'). Moreover, we have the following:

- **Lemma 1.** (1) If 2^*) is satisfied, then $x^2 \in V_R(N)$ for each $x \in R$, especially every idempotent of R is central, and N is an ideal of R.
 - (2) If N is an ideal of R then 1) and 1') are equivalent.
- *Proof.* (1) Let $x \in R$, and $y \in N$ with $y^m = 0$. If $xy \neq yx$ then $(x+y)^2 = x^2$ and $0 = (x+y)(x+y)^2 (x+y)^2(x+y) = (x+y)x^2 x^2(x+y) = yx^2 x^2y$, proving the first assertion. Since $(xy)^2$ is in $V_R(N)$, one will easily see that $(xy)^{2m} = (xyx)^m y^m = 0$, and similarly $(yx)^{2m} = 0$. We have therefore seen that $Ry \subseteq N$ and $yR \subseteq N$. Now, we assume further that $x^m = 0$. Then, noting that $(xy)^{2m} = (yx)^{2m} = 0$, it is easy to see that $(x+y)^{4m} = 0$. Thus, N is an ideal of R.
- (2) It suffices to show that 1') implies 1). Since R/N is a reduced periodic ring, 1) is an easy consequence of [1, Theorem 4 and Lemma 1].

In virtue of Lemma 1, we see that 2') implies 2) and 1) + 2) is equivalent to 1') + 2).

Lemma 2. Let R be a left s-unital ring. If N is an ideal of R and 1) is satisfied, then for each finite subset F of R there exists a subring S of R with a left identity such that $F \subseteq S$ and (S+N)/N is finite.

Proof. Let $F = \{x_1, \dots, x_m\}$, and choose an element c such that $cx_i = x_i$ for all i. If T is the subring generated by F and c, then T = (T+N)/N is a finite ring (cf. [6]). As is well known, the identity element of T can be lifted to an idempotent e of T. We write $e = x_1 p_1 + \dots + x_m p_m + c p_{m+1}$, where p_i is a (non-commutative) polynomial in x_1, \dots, x_m , c with integer coefficients. By 1), $c^{n+1} - c \in N$ for some positive integer n. This together with $cx_i = x_i$ proves that $c^n \equiv c^n e = c^n x_1 p_1 + \dots + c^n x_m p_m + c^{n+1} p_{m+1} \equiv e \pmod{N}$, so that $(c^{2n} - c^n)^r = 0$ with some positive integer r. Now, we consider the polynomial $f(X) = \sum_{k=0}^{r-1} {2r \choose k} (1-X)^k X^{2r-k}$. Obviously, $f = f(c^n)$ has a meaning as an element of R, and it is well-known that $f^2 = f \equiv c^n \pmod{N}$. Moreover, one will easily see that $fx_i = c^{2rn}x_i = x_i$. Accordingly, f is a left identity of the subring S of T generated by F and f.

Lemma 3 (cf. [4, Theorem 2]). Let R be a ring with a left identity. If 2) is satisfied and R/N is finite (cf. Lemma 1), then R is commutative.

Proof. First, we claim that R has the identity. In fact, by Lemma 1 (1) every idempotent of R is central, and so any left identity of R is the identity. Next, we shall prove that N is a commutative ring. Suppose there exist x, $y \in N$ such that $xy \neq yx$. Since $x + y \equiv x \equiv 0 \pmod{N}$ and $(x+y)x\neq x(x+y)$, 2) implies $0=(x+y)^2=x^2$, and similarly, $0=(x+y)^2=y^2$. From those it follows xy+yx=0. While, noting that $1+x+y\equiv 1+x\pmod{N}$, 2) implies also $(1+x+y)^2=(1+x)^2$, whence it follows 2(x+y)=2x, namely, 2y=0. This yields a contradiction xy=-yx=yx. Finally, we shall show that N is in the center of R, which will complete the proof by Herstein's theorem (see [3, p. 221]). By [6, Lemma], $R/N=R_1/N\oplus\cdots\oplus R_m/N$ where R_i/N is a finite field. Suppose there exist $r\in R$ and $s\in N$ such that $rs\neq sr$. Then there exists some $r_j\in R_j$ such that $r_js\neq sr_j$. Since $2r_j=(1+r_j)^2-1-r_j\in V_u(N)$ by Lemma 1 (1), there holds $2(r_js-sr_j)=0$. We shall distinguish between the following two cases:

Case 1: $R_j/N = GF(2^k)$. Since $r_j^2 s = sr_j^2$, one will easily see that $0 = (r_j^{2^k} - r_j)s - s(r_j^{2^k} - r_j) = sr_j - r_j s$, which is a contradiction.

Case 2: $R_j/N = GF(p^k)$, $p \neq 2$. Since $p(r_j s - sr_j) = (pr_j)s - s(pr_j) = 0$ and $2(r_j s - sr_j) = 0$, we readily obtain $r_j s - sr_j = 0$, a contradiction.

Now, we are at the position to state our second theorem, whose proof is only a combination of Lemmas 1, 2 and 3.

Theorem 2. Let R be a left s-unital ring. If 1) and 2), or equivalently 1') and 2), are satisfied, then R is commutative.

Remark. In Theorem 2, if 2^*) is assumed instead of 2) then N need not be commutative. However, given x, $y \in N$, we can prove that xy = yx or the subring generated by x, y is nilpotent of index 3.

REFERENCES

- [1] G. AZUMAYA: Strongly π-regular rings, J. Fac. Sci. Hokkaido Univ., Ser. I, 13 (1954), 34-39.
- [2] DINH VAN HUYNH: Über einen Satz von A. Kertész, Acta Math. Acad. Sci. Hungar. 28 (1976), 73-75.
- [3] N. JACOBSON: Structure of Rings, Amer. Math. Soc. Colloq. Publ. 37, Providence, 1964.
- [4] S. LIGH: A generalization of a theorem of Wedderburn, Bull. Austral. Math. Soc. 8 (1973), 181—185.

- [5] S. LIGH and J. LUH: Some commutativity theorems for rings and near rings, Acta Math. Acad. Sci. Hungar. 28 (1976), 19—23.
- [6] T. NAGAHARA and H. TOMINAGA: Elementary proofs of a theorem of Wedderburn and a theorem of Jacobson, Abh. Math. Sem. Univ. Hamburg 41 (1974), 72-74.
- [7] H. TOMINAGA: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.
- [8] H. Tominaga: A generalization of a theorem of A. Kertész, to appear.

OKAYAMA UNIVERSITY

(Received March 1, 1977)