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In [1], K. Kitamura studied free quadratic extensions of commutative
rings and its isomorphism classes. In [4], K. Kishimoto studied some
quadratic extensions of non-commutative rings and its isomorphism classes
which are some partial generalization of [1]. In these studies, the set of
polynomials of degree 2 plays an important role. Indeed, any quadratic
extension (considered in [1] and [4]) is determined by some polynomial
ring and some polynomial of degree 2. The purpose of this note is to
study (separable) polynomials of degree 2 in a skew polynomial ring and is
to present some generalization and sharpening of the result of [4].

Throughout this paper, B will mean a (non-commutative) ring with
identity element 1, and all ring extensions of B will be assumed to have the
the (common) identity element 1. Now, let p be an automorphism of B, and
D a derivation of B, so that D(x+y)=D(x)+ D(y) and D(xy)=D(x)y+
xD(y) (x, y€ B). As in [2]-[4], by B[X; p] (resp. B[X; D]), we
denote the ring of all polynomials X; X'b; (b € B) with an indeterminate
X whose multiplication is defined X = Xp(b) (resp. bX = Xb + D(d)) for
each b= B. For a while, let B[X ; %] be one of B[X; p] and B{X; D].
By B[X;*]w, we denote the subset of B[X; %] of all polynomials
f=X?*—Xa—b with fB[X; %] =BI[X; *]f and Xa=aX. A polynomial
f=X?*—Xa—be B[X; %] is called to be separable (resp. Galois) if the
factor ring B[X; %]/fB[X; %] is a separable (resp. Galois) extension of
B in the sense of [5]. For f=X?’—Xa—b=B[X; *]w, we denote a®+4b
by &6(f), which will be called the discriminant of f. Moreover, for
f, € €EB[X; %], if the factor rings B[X; *]/fB[X; *] and B[X; %]/
gB[X; %] are B-ring isomorphic then we write f~ g. Clearly the rela-
tion ~ is an equivalence relation in B[X; %]q, By B[X; %1%, we denote
the set of equivalence classes of B[X; %], with respect to the relation~.
As is easily seen, quadratic extensions considered in [1] and [4] can be
written as factor rings B[X; *]/fB[X;*] for some B, *, and f &
B[X; *]w. Hence B[X; %], can be regarded as the set of (B-ring)
isomorphism classes of free quadratic extensions with multiplication
defined by *. The details will be given in §2 and §3.

65



66 T. NAGAHARA

In §1, we shall make some remarks on free quadratic (Galois) exten-
sions, which contains preliminary Lemmas.

In §2, we consider B[X; plu and prove that for fEB[X; ple, f
is Galois if and only if #( ) is inversible in B. Moreover, we shall study
the set B[X; 0], and shall prove that if there exists a Galois polynomial
in B[X; plw then B[X; plg, forms an abelian semigroup (under some
composition) such that for g € B[X; plw, g is Galois if and only if the
element C of B[X;pls with C > g is inversible in the semigroup.
This study contains the results of Kishimoto [4, §2].

In §3, we consider B[X ;D] and study the separable (Galois)
polynomials of B[X; D] and the structure of B{X; D]&. In the study,
the discriminants of polynomials in B[X; D], play important rdles.
Indeed, if there exists a separable polynomial in B[X; D] whose dis-
criminant is inversible in B then for g € B[X; D], g is separable if
and only if #(g) is inversible in B. Moreover, we shall present some
conditions that polynomials in B[X ; D], are separable (Galois). Further,
we shall study the sets B[X; D] and B[X; D]l&.={C€ B[X; D]%;
C>3X®—Xa—b (ais fixed)} which form abelian groups under some condi-
tions. The study also contains some generalizations of the results of
Kishimoto [4, Th. 3.5 and its corollary].

1. Preliminary lemmas. For a ring extension A/B and a set & of
automorphisms in A, we shall use the following conventions: J(&, A) =
e A; ola) =a for all e =&}, and J(B, &) ={c = S; ab) =& for
all b € B}. Moreover, a ring extension A/B is called &-Galois if &
is a group of B-ring automorphisms in A, J(®, A) = B, and there are
elements a,, --*, @, @,*, '+, a.,* such that >; a.¢(a:*) = 6., (Kronecker’s
delta) for all ¢ in & (cf. [5]).

First, we shall prove the following

Lemma 1.1. Let A be a ring extension of B with A=xB+ B, and
assume that there is a B-ring automorphism & in A such that x — o(x)
is inversiblein A. Then {x, 1} is a right free B-basis of A, and
J(e, A) = B.

Proof. Let 0= xb, + b, where b, b, J(o, A). Then 0=(xb,+
bo)—o(xb,+by)=(x—a(x))b,. Since x — o(x) is inversible, we have &, =0,
andso, b,=0. Thus {x, 1} is right J(s, A)free. Since B C J(g, A)
and A = xB + B, it follows that {x, 1} is a right free J(s, A)-basis of
A, and B = J(o, A).
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Lemma 1.2. Let A be ¢ &-Galois extension of B such that A=
2B+ B=Bx+B+#B. Then ® is of order 2, and for o051 in ®, x—o(x)
is inversible in A. Moreover, {x, 1} is a right free B-basis of A and
is also a left free B-basis of A.

Proof. Since A is &-Galois over B, there exist elements #;, --
U, Uy, -+, ¥, in A such that

Siuc(v) =6,. forall € @,

Hence 2 77 (u)v;, = 6, for all 7€ @, thatis,
> (wdvi =46, forall c€ @.

.
’

Now, we set v, =b.x+c, where b, ¢;€B, i=1, ---, n. Then for t=®,
we have

20 uﬂ'(”r) =24 u,r(b;x + Ct) = (24 uzbi)'f(x) + 20w
Let 751 be an arbitrary element of ®&. Then

1=2uv — 2 uﬂ'(”c)
= {(Ziwb)x + 2, wed — {(Caud)r(x) + e
= (20 b)) (x — ©(x)).

This implies that x — =(x) has a left inverse. By a similar method, we
see that ¥ — z(x) has a right inverse. Hence x — z(x) is inversible
in A. Next, let 7}, 7,€® and =71 ({ =1, 2). Then x — 7,(x) =
(3 udi)™' = x — 7,(x), and whence 7;(x)=x — (3, u.b,)~! = 7,(x). Since
A = 2xB + B and the 7; are B-ring automorphisms of A, it follows that
7y = 7,. Hence the order of & is not greater than 2. Noting A s~ B,
we see that @ is of order 2. The other assertions are idrect conse-
quences of Lemma 1. 1.

Lemma 1.3. Let A be a ring extension of B such that A=xB+ B
and xBNB={0}. Let S be a subset of B such that BSB (=3 ,esBsB)* B
and xs=sx for all s&€S. Then ASA=xBSB+ BSB, ASANB =BSB,
and the factor ring A/ ASA is a ring extension of B=(B+ ASA)/ ASA=
B/BSB. If A is separable over B then A/ASA is separable over B.

Proof. We set 2* =xa +b. Then, for each s S, we have
xBsB + BsB C AsA=(xB+ B)s(xB+ B) = (xB+ B) (sxB+sBC xBxsB +
BxsB + xBsB + BsB C x(xB + B)sB + (xB + B)sB + xBsB + BsB C (xa+
b)BsB +xBsB-+ BsB = xBsB+ BsB, and hence AsA = xBsB+ BsB. This
implies that ASA = xBSB+ BSB. Since xBN B= {0}, ASAN B=BSB.
Thus the factor ring A/ASA is a ring extension of B(54 {0}). Now, set
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A= AJ/ASA, u=1u+ ASA for each x € A, and assume that A4 is
separable over B. Then, there exists a (left)B-(right)B-homomorphism
¢: AQ A — A such that ¢(e, Q a,) = a,a, (@, a, € A) and ¢ splits.
Then, the ¢ induces a (left)B-(right)B-homomorphism® : AQ 5 A — A
with ¢(z, Q @)= z.a, (@, @, = A). Clearly, the ¢ splits. Hence A
is separable over B.

Lemma 1.4, Let A be a &-Galois extension of B such that A=
xB+B=Bx+ B+#B and &= {1,0}. Let S be a subset of B such that
BSB* B and sx = xs forall s&€S. Then, ASA = xBSB + BSB =
BSBx + BSB, ASANB=BSB, and the factor ring A/ASA is a Galois
extension of (B+ ASA)/ ASA=B/BSB with Galios group 8= {1, o} (15%9)
where 1 and o are automorphisms of Al ASA induced by 1 and o.

Proof. By Lemma 1.2, {x, 1} is a right free B-basis of A and is
also a left free B-basis of A. Hence by Lemma 1.3, wehave ASA=
xBSB+ BSB=BSBx+ BSB and ASA N B= BSB. Now, weset A=
A/ASA, B=(B+ ASA)/ASA, By=J(G, A) and a=a+ ASA for each
e=A. BylLlemma 1.2, x—a(x) is inversible in A, and sois x — a(x)
in A. Noting BC B, wehave A=xB,+ B, = xB + B. Hence, by
Lemma 1.1, we obtain B=B,. Since A is Galois over B, there exist
elements u,, ---, #,, v, -**, v, in A such that 3, #,c{»;))=24,. for all t=@.
This implies X, #;7(v:)=dj: for all 7€ 8. Therefore, we conclude that
A is a Galois extension of B.

Next, we shall prove the following

Lemma 1.5. Let A be aring extension of B such that A=xB+ B=
Bx+B and (x, 1} is a right free B-basis. Let x**=xa+b=ax+b and
ab=ba. Moreover, write PBx=x3*+8" for each 3E B and assume 3*'=
B'™ for all B=B. If a®+4b isinversible in B then A is Galois over B.

Proof. For any BB, we have 3(xa+b)=(x3*+5)a+fb=x3"a+
(B'a+ 3b), and Bx2® = (xf*+ 3x = x3*x + Fx = zx(xf** + 3*") + 23+
ﬁ"=xzﬁ**+x(ﬁ*’+ﬁ’*) _|_ an (xa _l_ b)[a** + zx» ®¢ ‘I‘ ﬁll= x(aﬁ** + 219*!) +
b3** + 3. This implies #*e=ga3** +23*. Since {3*; 3€ B} =B, it
follows that fa = ¢3* + 23’ for all 3= B. Hence we obtain that for any
BEB,

Bla—x)=Pa—PBx=fa—xf* —F'= —x3*+(af* + 27—
=(a—x)F*+7'.

Moreover, we have
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(¢—2x)=a*—2xa+5"=a"—2xa+xa+b=(a—x)a+b.

Hence the mapping o : xb, + b, — (& — x)b, + b, (b;, by = B) is a B-ring
automorphism of A. Now, we assume that &+ 4b is inversible in B.
Then, since (z —2x)2 =a® — 4xa + 4x5* = &® + 4b, the difference a—2x=
(@ — x) — x is inversible in A. Hence ¢51 and ¢* =1. If xb, +
b= Jlo, A) (b, by=B) then xb,+b,=0(x)b,+ by=(a — x)b, + b,, and so,
(@ — 2x)b, = 0, which implies that b, = 0. Now, we set u; = (¢ —
20y (e—=x), #,=(@—2x)"v,=1, and v, = —x. Then X us7(v;) =
a.. for all = € {1, a;. Hence, it follows that A is a Galois extension of
. B with Galois group {1, ¢;, completing the proof.

In the rest of this paper, Z will mean the center of B. Moreover,
U(B) denotes the set of inversible elements in B, and for any subset S
of B, U(S) denotes the intersection of S and U(B). Clearly U(Z)
coincides with the set of inversible elements in Z. Further, for any
b< B, b, (resp. b,) denotes the left (resp. right) multiplication of B
determined by .

2. On B[X; ple. In this section, we study B[X; plw, the
subset of B[X; p]. Asin [4], we shall use the following conventions :
B,= J(p, B); Z,=ZNB,; B{p")={uEB; au=up"(a) for all a« = B}
(where = is any integer); B,(o") = B(p™)N B,.

Now, let f=X?—Xa—b&e B[X;plw. Then, the factor ring A =
BI1X; pl/fB(X; p] is a quadratic extension of B such that for x =
X + fBIX; pl,

A= B+ xB, ax = zp(a) forall a« € B,
#*=2a+b=axr+0b and
{1, 2} is a right free B-basis.
Then we have xa=ax, x°=x(xa+ b)=(xa+ b)x, and «x®= x’p*«) for
all « = B. From these equalities, it follows that

2, 0) a € B(p) and beB,(p?).

Clearly ab=ba, xa=ax, and xb=bx. Conversely, if a system {p, a, b}
(@, b= B) satisfies the condition (2, 0) then

XZ —Xe—be B[X: p](g).
Hence, it follows that
2, i) B[X;pleo=1{X*—Xa—b;ac Byp)and b B,(0)).

For any f= X’ — Xa — b& B[X; pJ, we denote the factor ring
B[X; p]l/fBIX; p] by Blx; p, a, b] (or, by Blx]) where x=1x,=X+
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fB[X; p]. First, we shall prove the following

Lemma 2.1. Let f= X’ — Xa —b< B[X; ple. Then f is se
parable over B if and only if there exist elements by, b, by and b, in
B such that

2, ii) 1=5b + b, (2, iii) aby + by, + b; =0
(2, iV) bb] = abg + P(b4) (2, V) P(bg) = b3
(2, vi) beZ (2, vii) b, € B(p™?)

(2, viii) b, € B(p™).
Proof. Weset A=B[x; p, @, b] and assume f is separable overv
B. Then, the (left)B-(right)B-homomorphism
$: ARz A~ A (Zia@b— 2, a;by)
splits. Hence there exists an element ¢ in AQzA such that ¢(e) =1
and (c@Q1l)e=e(1Qc) for all cE A. Since ARA=(xQx)B+ (*Q1)B +
(1Rx)B+(1RX1)B, we may write
e = (x@x)b, + (x@1)b, + 1R2)b; + (1R1)8,
where b, € B, i=1,---, 4. The equality ¢(e)=1 implies
x(abl + bz + b3) + bbl + b4 =1,
Moreover, we have
(2Q@1)e= (2R x) (@b, + b3)+ (xQ1) (ab,+ b))+ (AR x)bb, + (1R 1)bb,
e(1Qx)=(2®x) (20(b:)+ p(82))+ (xQ1)bp(by) + (1Qx) (ap(bs)+ p(by)) +
(1®1)bp(b;), and for each a € B,
(a@1)e=(xQx)p*(c)b; + (2@1) ()b, + (1Q %) p(c)bs + (1Q1)axd,
e(1Ra)=(xRx)b;a + (£R1)bx + (1R x)bscx + (1X1)b,cx.

Hence we obtain

(@ aby+b+b=0 (b) by +b=1

(c) ab, + b; = ap(b,) + p(bz) (d) ab, + b, = bp(b,)
(e)  bby = ap(bs) + p(by) (f) b, = bp(bs)

(8 P = b ()  pla)b, = b

(i) pla)bs = b (1) ab, = b

where « runs over all the elements of B. Conversely, if there exist
elements &, b, b; and &, in B which satisfy the conditions (a)—(j) then
the map ¢ (stated earlier) splits, thatis, A is separable over B. Hence
it suffices to prove that the system of conditions (2, ii—viii) is equivalent
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to that of conditions (a)—(j). Assume (2,ii—viii). Then, (2, vi— viii)
imply (g), (h), (j), and (2, v, viii) imply that for each « € B, pla)b; =
() p(b:)= plab,)= 0(b,p~" (a))=p(b)a=bsx. Hence we have (i), that is,

(2, ix) b, € Blp™Y).

Moreover, (2, vi—ix) and (2, i, ii) imply that for each i=1, -, 4,
(2, %) ab; = bia = ap(b) = plab;) = p(bia) = p(b)a

(2, xi) bb, = bib = bp*(b;) = p*(bby) = p*(bib) = P*(b:)b,

bbl =1 b4 =1 — p2(b4).

As is easily seen, (2, x) and (2, iii, v) imply ab, + p(b,) + p(b;) = 0 and
(23 Xil) p(bE) = bS) P(b:i) = bZl abz = ap(bz) = abg = ap(bg).

Further, (2, x—xii) and (2, iv) imply (c)—(f). Thus, (a)—(j) are contained
in (2, ii—viii). Conversely, assume (a)—(j). Then (g)—(j) imply (2, vi—
viii). Moreover, (g)—(j) and (2, i) imply (2, x). As is easily seen, (2, x),
(a) and (c) imply (2, xii) which contains (2, v). Clearly, (2, xii) and (e)
imply (2,iv). Thus, (2,ii—viii) are contained in (a)—(j). This completes

the proof.

Now, by (2, viii, ix, xii) and (2, xi), we have
(2, Xiil) bzz = bzb:; = 532 = bgbz
(2, xiv) Pz(b4 )= b,.

For i =2 and 3, bb; = p*(b)b, = b:b, (by (2, vii, xii)). This and (2, vi,
x — xiv) imply

(2,xv) wv=owvu for each pair u, v E{a, b, by, b, bs, by, p(b,)}
rs=sr for each pair », s<{a, b p(b)), by b3, by, p(by)}.

Moreover, (2,iii, xii, xiii) imply

(2, xvi) @bt = 4b,2 = 4b®, a’b, + 2ab, = a’h, + 2ab; = 0

and, (2,ii,iv, xii, xiv) imply

(2, xvil) 1 =bb, + b, = b, + p(b,) + ab, = b(b, + p(b,)) — ab,.

These equalities will be used lately in our study.
Next, we shall prove the following

Lemma 2.2, Let f=X?—Xa—b=B[X; pley and f separable
over B. Let (b, by, by, by} be a system of elements of B which satisfies
the conditions (2, ii—viil). Then 8(f)B = B(f) (6(f) = a® + 4b), and

(2, xviii) 2(bb, + p(bs)) = 6(f)b,
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@ Xix) 4=0(f) (b, + p(bl)): and a = o(f) (bb, — b,")a.

Proof. For each o= B, one will easily see that ad(f)=a(a®+4b)=
(a® + 4b)p* () = 6(f)P*(). Hence o(f)B = Bi(f). Now, we shall
prove (2, xviii) and (2, xix).

o( )b, = (a@® + 4b)b, = a*b, + 4bb, = alab,) + 4(bb,)

= a( — b, — b))+ 4(p(b,) + ab,) (by (2,iii, iv))
= — 2ab, + 4p(b,) + 4ab, (by (2, xii))
= 2ab, + 4p(b,) = 2(ab, + 2p(b,))

= 2(bb, — p(bs) + 2p(by)) (by (2,iv))

= 2(bb, + p(by)) .
0(f) (b + p(8y)) = 6(f )by + 8(F)p(bs) = 8(f)by + p(3(f)by)

= 2(bb, + p(bs)) + 2p(bb, + p(bs)) (by (2, xviii))

= 2bb, + 2p(b,) + 2p(bb,) + 2b, (by (2, xiv))

= 2(bb, + by) + 2(p(bb,) + p(bs))

=24+2=4 (by (2,ii)).
(f)(b:by — b.)a = (a® + 4b) (b1bs — b)a

= a{(a® + 4b)b,)b, — a(a® + 4b)b,* (by (2, xv))

= 20(P(b4) + bbl)b4 _ a(ﬂzbzz + b(4bzz)) (by (2, XVili))
= 2a(b, + bb,)b, — a(a®h,® + ba®b,%) (by (2, x, xvi))

= 2ab, — a(a’h,® + b(a’b,)b,) (by (2, ii))
= 2ab, — a(a®b,® + b( — 2ab,)b,) (by (2, xvi))
= a(2b, — a(ab, — 2bb,)b,) (by (2, xv))
= a(2b, — a(bb, — p(b)) — 2bb,)b,) (by (2,iv))
= a(2by — a(— by — bb)by) (by (2,%))
= a(2b, + ab,) (by (2, ii))
= a(b, + p(b) + ab,) (by (2,x))
= aq(b, + bb,)) = a (by (2,ii, iv)).

This completes the proof.

Lemma 2.3. Let f=X? —be B[X; ple. Then

(i) f is separable over B if and only if b is inversible and there
exists an element z in Z such that z + p(z) = 1.

(ii) f is Galois over B if and only if 2b is inversible.

Proof. (i). Assume that f is separable over B. Then, by
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(2, xvii) and (2,xv), we have 1=b(b, + (b)) = (b, + p(b,))b. Hence b
is inversible in B. Since p(bb,)=>bp(b,), 1= bb, + p(bb,). Moreover, by
(2,1, vi), we have bb, =1 — b, & Z. Conversely, assume that 5 is
inversible in B and there exists an element z in Z such that z+ o(z)=1.
Then 1=>58(b""2) + p(2), b(b7'2)=p(p(2)), piz)E Z, and b'zE B{p~?.
Hence, the system {b,=5"'2, b,=b;=0, b, = n(2)} satisfies the conditions
(2,ii—viii). Thus f is separable over B. (ii). Weset A=B[x; p,
0, b]. First, we assume that 2b is inversible in B. Then A(f) = 4b
is inversible in B. Hence by Lemma 1.5, A is Galois over B. Con-
versely, assume that A is &-Galois over B. By Lemma 1.2, ®& is of
order 2. Hence we may write ® = {1, ¢; (1 0). Then, by [5, Th.
1.5], A is separable over B, and whence, by (i), b is inversible in
B. Now, we suppose that 2 is not inversible in B. Then 24 is a
proper ideal of A. We set A = A/2A (the factor ring of A modulo
24), B= (B+2A)/2A, u=1u+ 2A for each u = A, and G = {1, 7}
will mean the group of automorphisms of A induced by {1, ¢;. Then,
by Lemma 1.4, A is a Galois extension of B with Galois group & (1},
and A=%B+ B=Bxr+ B#B(Z =0). Hence by Lemma 1.2, {x, 1}
is a right free B-basis of A, and the difference ¥ — a(x) = x + (%) is
inversible in A. We set here d = x — o(x). Then (@) = o(x + o(x)) =
o)+ x=d. Hence d € B, and so, we may consider d as an element
of B. Since x* =05, wehave b = o(%)’=(x + @)’ = %’ + x(d + o(d)) +
@t =xd+ p(d)) + b+ d°. Since {z, 1} is right B-free, it follows that
d* =0, and whence d is not inversible in A. This is a contradiction.
We conclude therefore that 2 is inversible in A.

Remark 2.4, We shall present an example of B[X; pls such
that it contains a separable polynomial which is not Galois. Let
F = GF(2%). Since the extension F/GF(2) is Galois, there exists an
automorphism p of F such that p*=1 and ps~1. Hence there is
an element z € F with z+ p(2)=1. Consider here F[X; »]. Then
F[X;ple={X? X*+ 1} By Lemma 2.3, X? is not separable over
B, and X%+ 1 is separable over B but it is not Galois over B.

Now, we shall prove the following theorem which is one of the main
results of this section.

Theorem 2.5. For f € B(X; plw, the following conditions are
equivalent.

(a) f is Galois over B.

(b) 0(f) isinversible in B.

(Y F'B[X; p]) + fB[X; p] = B[X; p] where f' is the derivative
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of f.

Proof. Let f=X*—Xa—b€E B(X; ple, and set A= Blzx;
P, a b]. Then f'=2X —q and 2x—a)’=42* —4xat+ " =a* —4xa +
4(xa+ b)=a® + 4b=43(f). This shows that (b) and (b’) are equivalent.
Moreover, by Lemma 1.5, we see that (b) implies (a). To see the
converse, we assume (a) and suppose that 6(f) is not inversible in B.
Then, by Lemma 1.2, A is a Galois extension of B with Galois group
of order 2, and by (5, Th. 1. 5], f is separable over B. Hence by
Lemma 2. 2, the elements 4 and @ are contained in o(f)B = B4(f)+B.
Since 8(f)E B,, o(f)x=x0(f). Weset here A = A/3(f)A (the factor
ring of A modulo #(f)A), B= (B+4(f)A)S(f)A, and u=u+3s(f)A
for each # € A. Then from Lemma 1.4, it follows that A is Galois
over B and A= xB + B= Bx + B*B. Hence by Lemma 1.2, {x, 1}
is a right free B-basis of A. Since p(3(f)) = 6(f), p induces an
automorphism of B, which will be denoted by p. Then ax = xo(a)
foreach ¢ € B, and %*=05. Hence by (2. i), X* — b is a polynomial
of B[X; plw which is Galois over B. Therefore, it follows from
Lemma 2. 3 (ii) that 2 is inversible in B. However, since 4 € 4( f)B,
we have 0 = 4 = 2%, This is a contradiction. Thus we conclude that
A( ) is inversible in B.

Corollary 2.6. Let f=X*—Xa=BiX; pln. Then the following
conditions are equivalent.

(a) f is Galois over B.

(b) a isinversible in B.

(c) f is separable over B.

Proof. By Th.2.5, (a) and (b) are equivalent. By [5, Th.1.5],
(a) implies (c). Moreover, by (2, xvii), we see that (c) implies (b).
Thus we obtain the assertion,

Next, we consider the following conditions.

(C,) 2isinversible in B.

(Cy PIZ =1.

(C3) p is an inner automorphism of B.

(Cs)) B,(p) contains an inversible element of B.

(Cy') B[X; ple contains an element f=X?—Xeg which is separable
over B.

In case (C,), it follows from the result of K. Kishimoto [4, Th. 1.2]
that for f& B[X ; plu. f is separable over B if and only if f is Galois
over B, and this is equivalent to that &(f) is inversible in B.
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Clearly (C,;) implies (C,), and (C;) is equivalent to (C;'). Moreover,
by Cor. 2.6, (C;) and (C,") are equivalent.

Now, we shall prove the following

Theorem 2.7. Assume that there holds one of the conditions (C,) —
(Cs'"). Then, for f& BIX; pla, the following conditions are equi-
valent.

(@) f is Galois over B.

(b) 4(f) is inversible in B.

(c) f is separable over B.

Proof. In virtue of Th. 2.5 and [5, Th. 1.5], it suffices to prove
that (c) implies (b). Assume (c). Let f=X?>—Xa—be& BiX; plo,
and set A = B[x; p, a, b].

Case (C,). The assertion follows from the result of {4, Th. 1.2].
However, this is also obtained as an easy application of Lemma 2.3
which is as follows. Set y =x—1/2. Then y*®= (&* + 4b)'4, and
A=yB+ B. Clearly g= Y?— (a®* + 4b)/4 = B[Y; p]>, and this is
separable over B. Hence, it follows from Lemma 2. 3 that (a® + 4b)/4
is inversible in B, and hence, &® + 4b( = 4(f)) is inversible in B.

Case (C,). Let {b,, b,, bs, b} be a system of elements of B which
satisfies the conditions (2,ii—viii). Then, by (2, xvii, xviii), we have
1=2b,+ab, and 2=43(f)b,. Since @=4(f)(b,b,—b,")a (2, xix), we have
1= 2b, + ab, = o(f) (b1d, + (b\by — b,")ab,). This shows that 4(f) is
inversible in B, completing the proof.

In the rest of this section, we shall deal with the set of B-ring
isomorphism classes of the extensions B[x/]/B(f€ B[X; plw). For
elements g and g, € B[X; plw, if Blx,] = B(x,] (B-ring isomorphic)
then we write g ~ g,. Clearly, the relation ~ is an equivalence relation
in B[X; ple. By B[X; pls, we denote the set of equivalence
classes of B[X; ple with respect to the relation ~, and we write
C=<(g) if C€B[X; pls and g € C.

Now, we consider the following conditions.

(D,) There is a Galois polynomial in B[X; pla.

(D;) p* is an inner automorphism of B determined by some
element in U(B,).

If f is a Galois polynomial in B[X; ple, then, by Th. 2. 5,
3(f)€ U(B) N By(p?), which implies p? = ¢(f);'3(f).. This shows that
(D,) implies (D;). In case (C,), if p®=0;'0, for some ¢ in U(B,)
then 6= B(p*) N U(B,), and by Th. 2.5, the polynomial X?—¢ is a Galois
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polynomial in B[X; plw; whence, the conditions (D,) and (D,) are
equivalent. In [4], K. Kishimoto proved that if the conditions (C,) and
(D;) are satisfied then the set B[X; plg forms an abelian semi-group
which is isomorphic to the (multiplicative) factor semi-group of Z, modulo
the subgroup {zp(z); z = U(Z)}. Inour consideration, it will be showed
that if the condition (D,) is satisfied then B[X; p]l& forms an abelian
semi-group under some composition which is somewhat interest.
First, as a preliminary lemma, we shall prove the following

Lemma 2.8. Assume p° =100, for some 0 U(B,). Let n be an
arbitrary integer. Then B(p®)=Z, B(p*)B(p™) T B(p™)=0Z, B,(p™)=
0"Z,, p(B(p")) = B(p"), and J(p®, B)> B(p").

Proof. 1tis obvious that B(p°) = Z. Now, let ¢ be an arbitrary
elementof B. If 3 and 3 € B(p) then ¢35 = Bp(c)f' = 33'p%(c). This
implies B(p)B(p) CB(p*), and so, B(p")B(p")TB(p™). If ve B(p?) then
cv=vp*(c) =v0"'cl which shows v9'€Z, thatis, v=6Z. Conversely,
if z&Z then ¢(82) = (¢6)z = (0p*(c))z=(02)p*c), and hence 6z& B(p?).
Thus we obtain B(p?)=6Z. Since p™=0;7"0;, it follows that B(p™)=0"Z,
and B,(p*")=B,NB(p™)=B,N0"Z~=6"Z,. Next, let 3 bein B(p"). Then
P (c)B=Rp""'(c), and hence cp(3)=p(3)p"(c). This implies p(3)& B(p").
Moreover, since p(c)3 = 3p" '(c), we have cp™'(3) = p~(8)p*(c) which
shows p7'(3) € B(p"). Hence it follows that p(B(p")) = B(p"). Finally,
since 03=78p™(0)=p6, 3=07"'30=p%*(3), which shows that B(p")C J(p?, B).

Corollary 2.9. Assume p® = 070, for some 6 € U(B,). Let u,
EB,(p) UB(PHUB(PYUZ, u,=B\(p), and S B(p). Then uu' = u'u,
uf=pu=pp(u)=pW)3, wf=pfu=up(3)=p(Bu,, and 3F=73p(B)=p(B)3.

Proof. Let v and o' bein B(p?) UB(p*) U Z. Then, by Lemma
2.8, we have vv'=0v'v. Since p*(B3)=p, 03=730, and whence v3=fo.
Moreover u,3 = 3p(u,) = fu, = u,p(3) = p(F)e(u,) = p(A)u,. Hence Pu=
uB = 3p(u) = p(u)3, and wuu' = w'u. Further, by Lemma 2,8, we have
B = Bp(B) = p(R)p(8) = p(B)P*(3) = p(A)B.

Next, we shall prove the following

Lemma 2.10. Assume p*=0'0, for some 0=U(B,). Let g=X*—
Xu—v, g=X*—Xu,—v,€B[X; ples. Then, g~ g, if and only if
there exist elements «, B in B such that € U(Z), 3 B(p), u=u,a+
B+ pB), and v=vapla) —unald — 5.
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Proof. We consider B{x,] and B[x,]1. For the convenience, we
set x=x, and y=x,. First, we assume that there are elements ¢, 3B
such that « € U(Z), B B(p), u=wa+ 3+ p(3), and » = vapla) —
waf—. Then, for any c=B, c(ya+3)=yplc)a+ci=yapc)+3p(c)=
(ya+3)ple), and (ya-+3)=ywa+p@+3a+ vapla) + 3 =yua+ v+
waf+ P+ P =yuc+ v+ @at+ 3+ p()3 = yua+ v+ u3 = (yva + Hu+v (by
Cor. 2.9). Hence, noting ¢ € U(Z), the mapping xc,+¢;— (ya+F)c,+
¢, (¢y, c;EB) is a B-ring isomorphism of B[x] to Biry]. Thus we obtain
g~ g1 Conversely, we assume that there is a B-ring isomorphism
¢: B[x] — B[yl. Then &(x) =3ya+ 3 for some «, 7€ B. Since
y=(ya + 3¢, + ¢, for some ¢, and ¢, € B, the element « is inversible
in B. Now, for any ¢ € B, ¥(cx) = {(xp(c)) = (ya + Iplc) = yap(c) +
Bplc), and {(cx) = ch(x) = c(ya+ ) =yp(c)a+ c3. Hence ap(c)= p(c)a
and 3p(c) =c¢B (c=B). Thisimplies = U(Z) and 3 = B(p). Next,
we note ((x%)=¢(xu+v)=(ya~+Nu+v=yau+3u+v and Px?) = PH(x) =
(ya+ 3 =ya+ p(3)+ Ha+ viap(a)+ 3 (by Cor. 2.9). Then au= (u,a+
p(A+MNa and Futov=vap{a)+ 3. Hence it follows that « =uw,a + 3+
p(3), and v=wvap(a)+3—Fu=vapla)+ P —3uma+ 3+ p(A) =vapla)—
waB—3* (by Cor.2.9). This completes the proof.

Throughout the rest of this section, p will mean the restriction of p
to Z. Then, one will easily see that for p=Z, p=Z(p") if and only if
zp = pp"(2) for all z& Z, where » is any integer. From this and
Lemma 2. 10, we obtain the following

Corollary 2.11. Assume p° = 670, for some 0 & U(B,. Then
=1, Z(o)y={(p=Z;zp=p2)p for all z€Z}, and Z[ X; pley =
(X*—Xp—qe=Z[X;p); p, g€ Z, and p = Z(p)}. Moreover, for
h=X"—Xr—s and h=X*—Xr,—s,€Z[X; plw, h~ hy if and only
if there exist elements «, 3=Z such that a=U(Z), 3= Z(p), r=ra+
B+ p(@) and s = s,apla) — rad — 3.

Remark 2.12. Assume p’=0;0, for some 6= U(B,). Let S denote the
subring of B generated by B, (p)UB(p*)UZ, and set T= {X’—Xu—veE
B[X: pl; w,0v=S}. ThenbyCor.2.9, S is a commutative ring. Let
fi=X'—Xu.—v, €T (=1, 2) and s,€S. We write f, X f, = X* —
Xuguy— (0,20, + 0,10,° + 4010,), $1 Xfi=X’—Xs\u,—s,’v,, and fixs,=X"—
Xu,s, — v;5,. Then, this composition is commutative and associative,
ie, AXf=frkf1, siXfi=fixs, andfor fET, (f<fIXfi=fX
(fixfa), six(fixfo)=(s:xXfi) xfra=(fr4s)) X fr=f1X(s1 K fo) =f1 X (S~

s =(fiXf)xs,. Moreover, for s&S, s> (s, Xf1)=(s81) < f1=(f1 X8)Xs,.
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Hence this composition makes 7 an abelian S-semigroup. Further, as is

easily seen; we have &(f, X f3) = 8(f1) 8(f) and a(f; X s5,) = 8( fu)s%

We identify the ring Z[X, p] with the subring of B[X; p] consisting of

polynomials with coefficients in Z. Then B[X; pln U Z[X; plewC T.
Now, we shall prove the following

Lemma 2.13. Assume p*=07'0, for some 6 U(B,). Let g, g.E
B[X; plw, h, i E Z[X; ply, and E€ U(Z,). Then g~gx EE
B[X; plw, and in particular, h~h X & € Z[X; ple. Moreover,
gX&XO0'EZ[X; plwy, gxhEB[X; plw, and hxXhEZ[X; plos

Proof. Let g=X?—Xu—v and g,=X*—Xu,—v,. ‘Then gx E=
X2 —XuF— v, u"€B,(p), and vE’€B,(p?). Hence gXxEEB[X; plw.
If weset a=§ and =0 then u®*=ua+ 8+ p(B) and vE = vap(a) +
uaB+ 3%, Hence by Lemma 2. 10, we have gx£f~g. Next, we consider
EX g X0 ' =X%— X(uu,)0 ' — (%0, +vu,"+ 4vv,)0 . Then, by Lemma 2. 8,
we have uu, = 0Z, and #’v, + vu® + 4vv, € 6°Z,. Hence uu,07' € Z,
and («%v, + vu,” + dov,)072 Z,. Moreover, by Cor. 2. 9, we have that
(z — p(2))uu,0' =0 for all z= Z. Hence by Cor. 2.11, we obtain
gXgx0'=Z[X; ple. The other assertions will be easily seen from
Lemma 2.8 and the fact that the sets B,(p), Bi(p?), Z,(p) and Z,(p?)
are Z,-submodules of B. This completes the proof.

If there is a Galois polynomial f in B[X: ple then 4(F) € U(B,),
P =0(f)'0(f) (Th. 2.5); and whence, by Lemma 2.13, we have the
mappings

pr: BIX; Pl — ZLX; Plo; m{g) =f x a(f)™' X g and

vrt Z[X; pley— B[X; Play; vAk) = f X h.

Now, we shall prove the following lemma which plays an important
role in our study.

Lemma 2.14. Assume that there is a Galois polynomial [ in
B[X; ple. Then

(1) if g~g in B[X; plo then pdg) ~ 1g).

(i) If h~bhy in Z[X; play then v{h) ~ vih).

(iii) For each g € B[X; pla, £ —~viulg), and moroever, g is
Galois over B if and only if nAg) is Galois over Z.

(iv) For each h = Z[X; plw, bk~ nrdg), and moreover, h is
Galois over Z if and only if v/ k) is Galois over B.

Proof. Let f=X?—Xa —b, and set 0 = &(f) (= a® + 4b). (i).
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Let g=X*—Xu—v, g=X’—Xu,—v,€B[X; rle, and g~ g,. Then,
by Lemma 2.10, there exist elements «, 7 € B such that « € U(Z),
3=B(p), u=wa+i3+p(3), and r=v,apla)—ual—F. By Lemma 2.8
and Cor. 2.9, we have auf ™' = (au,a + a3 + ap(P))0~' = au,0 ' + 2a30™"
and ¢30-'€Z,(p). Next, we note a*v+ bu®+ 4bv=a*(v,ap{a) —u,ad—pB%) -+
blue + 3 + p(D) + 4b(vap(a) —wad — F) = a’vapla) — w3 — a*F +
bluscuic+ B + p(R)uia+wad+ 3+ p(R)3 + wap(3)+ Be(8) + p(B)p(3) +
b(4v,ap(a) — 4w — 473%). Then, by Cor. 2.9, we obtain (e’v + bu’ +
4bv)072 = (a®v, + bu,® + 4bv )0 ap(a) — (au,0") alapd™") — (a30°')*. This
implies /1(g)~n{g) (Cor.2.11). (ii). A=X*—Xr—s, h=X*'—Xr —s,.
eZ[X: plw, and k~h,. Then, by Cor. 2. 11, there exist elements «,
#in Z such that a€ U(Z), 3€Z(p), r=ra+3+p(3), and s=s,ap(a)—
riaf—3. By Cor.2.9, we have aer=ar,a+ 2a3, a3 B\(p), and a’s+
b+ 4bs=a’(s\apla)—raf—72)+ blria+ 3+ p(3)) + 4b(s,apic) —riaf—57)
=(a%s,+ br,*+4bs,) apla)—(ar)x(e3)—(a3)’. This rmplies vAh)~ 3,(h,)
(Lemma 2.10). (iii). Let g = X* — Xu — v = B[X; plo. Then, by
Remark 2. 12, we have vy g)=Ff X {(fxo DN xg)=({(fXf)<g) <t '=
X? — Xa®ub ' — (a’v + (2a%b + 4b7)u? + 4(2a%0 + 46P)v)0 = X* — Xa'u0 ™' —
((@® + 4b)%v + 2(a® + 4b)bu® — 4b*u*)0 " = X* — Xa*ub ™' — (v — u(— 2bud ™) —
(—2buf™")?) (note a®-+ 4b=0). Moreover, since @?0~' + 4b07' =1, we
have @0~ '=u+2(—2buf~') and —2buf '€ B,(p). This implies g~v{g)
(Lemma 2.10). By Remark 2.12, we have a(#{g)) = o(f X 07' X g) =
o(F)07%(g) = 07'a(g), which shows that o(g) is inversible in B if and only
if a(1Ag)) is inversible in Z. Hence by Th.2.5, g is Galois over B
if and only if {g) is Galois over Z. (iv). Let h=X"—Xr —s &
Z[X: Pla. Then nph)=(FfX0D)X(fXA)=(FfXf)Xh)X0'=X>—
Xatrt ' —(a*s+(2a%b+ 4b%)r® + 4(2a%b + 4b6))s)072 = X% — Xa’r0 ™' — (s —r(—
2670~y —(—2br87")?), a*r0 '=r+2(—2br07"), and —2br07'eZ(p) (Lemma
2.8). This shows that A~/w k) (Cor.2.11). Since (v (h))=d(fxh)=
043(h), h is Galois over Z if and only if »{k) is Galois over B (Remark
2.12 and Th.2.5). This completes the proof.

Next, we consider the sets B[X; pla and Z[X; pls (the sets of
equivalence classes in B[ X ; ple andin Z[X; pli (respectively) with
respect to the relations ~). For the convenience, if CEB[X; pls, and
geC (resp. C'e Z[X; pl®» and he C') then we write C= (g (resp.
C'=(h)).

Now, if there is a Galois polynomial f in B[ X ; p], then, by Lemma
2.14, we have the (well defined) mappings

¢r: BLX; p1n— ZIX; Pl dKgd) = (g)D, and
Y0 ZIX; ploe — BIX: 21y v(KhD) = vlh) )
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such that Yy),=1 and ¢yr,=1. Hence we obtain the following

Corollary 2.15. Assume thet there is a Galois polynomial f in
B[X; plw. Then <y is oneto-one, and &;'=+r. Moreover, for {g>
€ B[X; Pl and h € 0{g)), g is Galois over B if and only if h
is Galois over Z.

Next, we shall prove the following

Theorem 2.16. Assume that there is a Galois polynomial f in
B[X; ple. Then Z[X; pla forms an abelian semigroup under the
composition {h)<k)=<h X k> which has the identity element
GACD)Y =S X FXG(F)D, and the subset Kh> = Z[X; Plaw; h is
Galois over Z} coincides with the set of all inversible elements in the
semigroup Z[X: play, which is a group of exponent 2.

Proof. Let k=X*—Xp—q, h=X*—Xr—s, hh=X"—-Xr,—s,
Z[X; ple, and h~h,. Then, by Lemma 2.13, kX % and k Xk, are
contained in Z[X ; p]u. Moreover, by Cor. 2. 11, there exist elements
«, BEZ such that « € U(Z), F€Z(p), r=r,a+3+p(#), and s=saplx)
—raf—3. Hence we have kX k= X"— Xpr—(p*s + qr* + 4¢s)= X?> —
Xp(ria+ 3+ p(3)—(0*(siap() —71aB— %)+ g(ria + B+ p(3)) + 49(s,ap(a)
—riaf—3F)=X*—X(pria+ 2p8) —((p*s, + gr.* + dgs)ap(a) — (pr)a(pB) —
(#3)?, and pS< Z,(p). This implies k X 2~k < &, (Cor. 2.11). Further,
if b~k EZ[X; ply then kX h~kXh =h X k~Hh <k. Thus,
the comrgosition {kP<{A)> =<k x h) in Z[X ; ply is will defined.
Moreover, as is easily seen, this comgosition is associative and commuta-
tive. Hence this makes Z[X; plc into an abelian semigroup. Now,
forany h=Z[X; pley, wehave B~ up h)=(f X 6(f) )X (fXh)=
(fXfxo(f)N)Xbh=n(f)xh, thatis, <h) =l f)xhm> ={u(f) k.
Hence {2 f)) is the identity element of Z[X; plg,. Similarly, for any
Galois polynomial g € B[X; plo., {(g))> is the identity element of
Z[X: pla, andso, <l f ) = {m(g)) =<g x g X d(g)™). Next, let
k be an arbitrary Galois polynomial in Z[X; plw. Then, by Lemma
2.14, v/(h) is a Galois polynomial in B[X ; p].). Hence {u,(f))=<{v (k)X
vh) X 8 R) > =X B X f Xk x a(h)™d(f) D= (f X fFxa(f))x
(Mxhxah)y™ > ={p{fI><Ex B x h)'D = X hx6(h)y"> =L{hx )
(Lemma 2.13). Thus we obtain {/{f)> = {k)%. This shows that {#)
is an inversible element of Z[X; pla, of order 2. Conversely,
assume that <{#) is inversible in Z[X; pJlw. Then <y (f)) =
ChYLkY>=<Chx k) forsome kD> Z[X; pla. By Cor.2.15, pf) is
Galois over Z, andso is s x k Hence a(k X k)=4a(h)3(k) is inversible
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in Z, and so is #(#). Thus A is Galois over Z. This completes the
proof.

Now, we shall prove the following theorem which is one of our main
results.

Theorem 2.17. Assume that there is a Galois polynomial f in
BX; plw. Then B[X; pla forms an abelian semigroup under the
composition {(g>{g1> =L FfXxe(f)") X (g X g,)> with the identity
element {f), and the subset {{g> € B[ X; pla; g is Galois over
B} coincides with the set of all inversible elements in the semigroup
B{X; plo, which is a group of exponent 2. Moreover, this semigroup
is isomorphic to the semigroup Z[X; pls, by the map .

Proof. By Th. 2.16, ¢LLfD) = {y(f))> is the identity element
of the semigroup Z[X ; pls. Now, let C={g) and C, =<{g, >
be any elements of B[X; pls. Then, by Lemma 2.13, we see that
gXgi XM f)'EZ[X; ploy, and v{gX g Xo(f) ) =Fxgxg,xé(f) "=
fXo(f)'x gxg1EB[X; ple. Moreover, we have ;' (¢/C)p/(C,)) =
o7 (K@) <o) = 7' Kl g) X (g D) = b7 ({f X 6(f) ' X g X
Fxo(f)Y ' )xg)={fx(f XY x(fxo(f) " xgxg)) =< vplfXx
A(f) ' xgxg)w=<{fx3(f)"' % gxg. Thisshows that B[X; p]5
forms an abelian semigroup under the composition < g > (g, >=<{(f x
o(f)) x (g X g1)) with the identity element { ) which is isomorphic
to the semigroup Z[X ; ple by the map ¢,. The other assertion
follows from the results of Cor.2.15 and Th.2.16. This completes the
proof.

By virtue of Ths. 2.7 and 2. 17, we obtain the following

Corollary 2.18. Assume that p=1 and there is a separable polyno-
mial f €EB[X; ple. Then B[X; ple forms an abelian semigroup such
that B[X; plo=Z[X; 1o and for g € B[X; plw, £ is separable
over B if and only if {g) is inversible in the semigroup B[X; pla.

Lastly, for the case (C;), we shall prove the following

Theorem 2.19. Assume p=u;'u, for some u<= U(B). Then, there
exists a one-to-one correspondence between B[X; ple and Z[X; 1] in
the sense of the following : g— n(g)=g Xu™', Inthis case, there holds
that for g and g, = B[X; plw,

(i) g~ g ifand only if u(g) ~ 1(g)).
(ii) g is separable over B if and only if 1(g) is separable over Z.
(iii) B[#,] = BQ.Z[%u>] (B-ring isomorphic).
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Proof. As is easily seen, we have that f= X*? — Xu € B[ X ; plwm,
and it is Galois over B. Moreover, for any g € B[X; plm, (g) =
gXul=fxdo(f)"'x g=pnlg), and vyy(g) = g. Further, for any
he Z[X; 1]w, mv h)=h Hence n(=p,) is one-to-one, and by Lemma
2.14, the map  satisfies (i) and (ii). Now, for any g=X*—Xc—d e
B[X; plw, we consider B[x,] and set y =x,z~'. Then, for each a € B,
we have ay= alx,u " )=x,0(c)u =20 "cur™' =(x,u ) = ya. Moreover,
Vi=(xu "V =2u"=(x,c+d)u=x,cu+du =(x,ucu +du = ycu' +
du™?. Hence, it follows that yZ + Z = Z[#.,] (Z-ring isomorrphic), and
Blx,)=yB+ B=By+ B=B(yZ+ Z)=BR:AyZ + Z) = BR:Z [ %u¢,:]
(B-ring isomorphic). This shows (iii).

3. On B[X;D]y. In this section, we study B[X; D], the subset
of B[X; D] (where D is a derivation of B with D(xy)= D{(x)y+ 2D(»)
for all ¥ and y in B). As in [4], we shall use the following conventions :
By={beB; Db)=0}; Z,=Z NBy; I.=b5 —b (an inner derivation
determined by b € B); B(D* — a,D)={b; I, = D> — a/D}; B(2D) = {b;
1,=2D}; B(D?®—a,D)= B(D*—a,D)N By,; By(2D)= B(2D) N B,.

Now, let f= X? — Xa — b€ B[X; Dlw. Then, the factor ring
A =B[X; D]/fB[X; D] is a quadratic extension of B such that for
=X+ fB[X; D],

A= 2xzB + B, ax = 2a + D(a) for all « € B,

x*=2xa + b, and {1, x} is a right free B-basis.
Clearly 2* = x(xa + b)= (xa + b)x and (ax)x = alxa + b) for all « € B.
From these equalities, it follows that
(3,0) @ € By(2D) and b & B(D* — a,D).
Particularly @b = ba, aex = xa, and bx = xb. Conversely, if a system
{D, a, b} (e, b € B) satisfies the condition (3, 0) then

XZ ’_‘Xa"‘bEB[X; D](g).
Hence, it follows that
(3,i) B[X; Dloy=1{X?*—Xa—b; a<€ By(2D) and b E By(D* —a.D)}.
For any f= X® — Xa — b € B[X; D], we denote the factor ring

B[X; D]/fB[X; D] by B[x; D, a, b] (or, by B[x,]) where x=x,=
X +fB[X; D]. First, we shall prove the following

Lemma 3,1. Let f=X*—Xa—b=B{X; D]w. Then f is separable
over B if and only if there exist elements b,, b, by and b, in B such
that
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(3,ii) bb1 + b4 =1 (3, iii) abl + bz + b3 =0
(3, iV) abz + b4 = bbl + D(bz) (3, V) bl eZ
(8, vi) bs — b, = D(by) (€ 2) (3, vii) Iaz = — (b))-D

(3,vil) L, = LD — aL,.

Proof. Weset A=B[x; D, a, b] and assume that A is separable
over B. Then, the (left)B-(right)B-homomorphism

b: AQsA — A (X ai®b: — 2 aiby)
splits. Hence there exists an element ¢ in AQzA such that ¢(e) =1
and (c®1)e=e(1Qc) for all ce A. Since AQA = (xQx)B + (*@®1)B
+ (1R2)B + (1Q1)B, we may write
where the b/s arein B. The equality ¢(e) = 1 implies
x(ab1 + bz + b3) + bbl + b4 = 1.

Moreover, we have

(x@1)e = (2R =) (@b, + b3) + (¥ Q1) (@b, +b,) + (1Q2)bb, + (1Q1)bb,,
e(1Qx) = (xQx) (@b, + D(b,) + b,) + (xQ1) (bb, + D(by)) +
(1Rx) (abs + D(b;) + b,) + (1Q1) (bbs + D(b,)), and for each a € B,
(a®1)e = (2Qx)ab, + (xR1) (D()b; + ab,) + (1Qx) (D(a)b, + abs) +
(1R1) (D* ()b, + D(a)b, + D{a)bs + ab,),
e(1Qa) = (xQx)b,a + (x@1)b.a + (1Q )b + (1R1)d,.
Hence we obtain

(a) aby+b,+b;=0 (b) bb;+b,=1

(c) aby+b;=ab,+Db,)+b, (d) ab, + b, = bb, + D(b,)

(e) bb, = abs + D(b;) + b, (f) bb, = bb; + D(b,)

(g) ab, = b« (h) D{a)b; + ab, = b

(i) D(a)b, + ab; = by (i) D*a)b,+ D(a)by+ D(a)bs+aby=b,x
where « runs over all the elements of B. Conversely, if there exist
elements b,, b,, b; and b, in B which satisfy the conditions (a)—(j) then
the map ¢ (stated earier) splits, thatis, A is separable over B. Hence
it suffices to prove that the system of conditions (3, ii—viii) is equivalent
to that of the conditions (a)—(j). Assume (a)—(j). Then (g), (c) and (i)
imply (3, v, vi, vii). Moreover, (j), (a) and (3, v, vii) imply I, = —(b,),D*—
(b;+bs),D=I,,D + (ab,).D = I,,D—a,I,. Hence (3, ii — viii) are contained
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in (a)—(j). Conversely, we assume (3, ii—viii). Then, as is easily seen,
we have (a)— (d), (g) — (j) and bb, = bb, + D(1) = bb, + D(bb, + b,) = bb, +
bD(b,)+ D(b,)=bb,+ b(b;—b,)+ D(b,) =bb;+ D(b,). We set here

(3, iX) 2 = b3 —_ bg (= D(bl) e Z).

Then, since I,=2D and I, = D*— a¢,D, we have D(2) = D*(b,) =
(I, + @ .D)(b,) = a.D(b,) = za = az, and 2D(b;) = I,(by) = L.(by) = 2D(b,) =
—I,(@) = (b,)-D(a) = 0. Hence we obtain

(3, %) D(z) = @z, and 2D(b,) = 2D{(b;) = 0.

This and (3, iV) imply bb1=ab2_D(b2)+ b4=a(b3—z)—D(b3—2)+b1=ab3—
az — D(b;) + D(2) + b, = ab; + D(b;) + by,. Thus (a)—(j) are contained in
(3, ii—viii). This completes the proof.

Now, since 5,=Z ((3, v)), we see that 2z2=2D(b,)= I.( b,) =0, z'=
2(—2b,— z)=2(— b, —b3) =zab, = a,(b,),D(b;)) = —a,1,(b))=0, zb, =D(b)b,=
- Ibz(bl) =0, b,D(b;)=(b,)-D(;) = — Ibz(b2)= 0, and D(b,)D(b,) = D(b,D{b,))
—b,D*(b;) = —b:(a,D(b,)) = — a,(b,).D(b;)=a, I, (b,)=0. Thus we obtain

(3, xi) 0 = 2z = 2 = b,z = b,D(b,) = D(b,)D(b,).

Moreover, by (3, vii, viii), we have 0= I,,z(a) = Iba(a) = I,,4(a) =], z(b) =
IbB(b)= Ibé(b)’ and 154(172): - Ibz(b,;) = - Ir,z(l“‘bb]) = 0. This ShOWS that

(3, xii) uv=vu for each pair u, v = {a, b, b,, b,, b, b.}.
Next, we shall prove the following.
Lemma 3.2. Let f=X*— Xa—b<= B[X; Do and f separable

over B. Let by, by, bs, by} be a system of elements of B which satisfies
the conditions (3,ii—viil). Then

(3, xiii) = 6(f) (b1 + bbs — by%), 4= o(f) (2b1)
where 6(f) = a® — 4b, moreover

(3, xiv) a® = 6(f) b, — bb,)

(3, xv) o(f)B = Ba(f), D@B(fF)B)C 6(f)B

(3, xvi) 1,=0 (mod o(f)B)

(3, xvii) =0, b,=0b, b=1 (mod o(f)B)
(3, xviii) ab, + D(b,)=1, DB,V =1 (mod 3(f)B)
(3, xix) I, =0 (mod & (F)B).

Proof. Weset z=b; — b,. Then
a(f)(bl + bp2) = 8(f )b, + (& + 4b)b,z = 6( f )by + a’b,z (by (3, xi))
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= (@® + 4b)b, + az + az(1 + ab,) (by (2, xi, xii))
= @%b, + 4bb, + az + az(bb, + b, + ab,) (by (3, ii))
= g(ab, + 2z) + 4bb, + az(2bb, + D(b,)) (by (3, iv))
= g(—2b,)+2bb,+ 2(1 —b,)+a2D(b,) (by (3, i, iii, xi))
=2 — 2ab, + 2bb, — 2b, + aD(b,)D(b,) (by (3, ix))
=2 — 2D(b,) + aD(b,)D(b,) = 2 (by (3, iv, x, xi)).
S(f)2by) = 6(F)(2b, + 2b,2) = 26(f )by + by2) = 4 (by (3, xi)).
s(f )by — bb) = a(f) (1 — 2bb)) = 6(f) — 6(f)(26,1)b (by (3, ii))
=q*+ 4b— 4b=a° (by (3, xiii)).

o( f)B = (¢* + 4b)B C a*B + 2B C a(Ba — 2D(B)) + 2B (by (3, 1))
C(aB)a+ 2B C Ba*+B2CBi(f) (by (3, xii, xiii, xiv)).
Similarly, we have Bo(f)C48(f)B, and hence 4 (f)B=B4(f). More-
over, since D(3(f)) = 0, it follows that D(3(f)B) = 6(f)D(B) C a(f)B.
In the rest of this proof, 2=k denotes the congruence 2=Fk (mod ¢( f)B)
in B. Then I.(B)=2D(B)=0 (by (3, i)), thatis, I,=0. Further,

b= bbb, + b,) = b(ab, + by — D(b;) + by) (by (3, ii, iv))
= blabg + 2b1b4 - le(bz) = blabz (by (3, Xi))
= (b,ab,)ab, = a’b,b,’ =0 (by (3, xiv)).

Hence by (3, vi, ii, iv, xiii, xiv, vii), we have b; — b, =D(,)=0, b, =1,
ab,=1+ D(b.), D(b,)*=(ab,— 1)=a%,"—1= 1, and Ihz(B)ED(B)blzo.
This completes the proof.

Lemma 3.3. Let f=X*—Xa—b and g=X*—Xu—1v be in
B[X: Dlw, and let f be separable over B. Then

(i) e=wu (mod o(f)B) and &(f)B D &(g)B.

(ii) If g is separable over B then o(f)B = 5(g)B.

(iii) If aB=B (mod 6(f)B) then o(f) < U(B), and conversely.

(iv) If D isinner then o(fF) € U(B).

(v) If 2€ UB) then &(f) = U(B).

(vi) If 2=0 and D|\Z =0 then a, o(f) € U(B).

Proof. Let {b,, b, b;, b} be a system of elements of B which
satisfies the conditions (3,ii — viii). In the proof, x =3y denotes the
congruence x =y (mod 6(f)B) in B. Since I, = D?* — @.D and I, =
D? — 4. D, we have

@ = D(b;)D(b,)a = D(b,) (I.(b:) + D(b,)a) (by (3, xviii, xix))
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= D(b,) (I,+ a.D) (b,) = D(b,)D*(b,) = D(b,) (I,+u,D)(b,)

= D(b,) (Io(b2) + D(b2)u) = D(b;)D(b2)uu = u (by (3, xviii, xix)).
Moreover, 8(g)=#"+4v=u*=a*=0 (by (3, xiii, xiv)). Thus we obtain (i).
If g is separable over B then, by (i), we have also #(g)BDd(f)B, and
and (i). so, 0(g)B=6(f)B. To see (iii), let gB=B. Then, since ¢*=
I,=0, we have B=(a¢B)’=4a’B=0, and this shows B = ¢(f)B.
Conversely, if B=4(f)B then B=(a’+4b)B=a’B=a(aB) (by (3, xiii)),
and this implies B=¢B. Next, if D is an inner derivation I, then, by
(8, xviii, xix), we have 1=D(},)’=(I(b,))’=(—I,(d))*=0, and whence
o f)B=B. If 2€ U(B) then D=2"1, = I,-1, and hence 3(f) <& U(B)
by (iv). Finally, let 2=0 and D|Z =0. Then

b1 = (bb] + b4)61 = (abz + b4 —_— D(bz) -+ b4)b1 (by (3, ii, iV))
= (@b, + 2by — D(b,))b, = ab;b, = (aby)b, (by (3, xi))
= —(b; + by)b, = D(b)b, = 0 (by (3, iii, v, vi)).

Hence by (8, vii), we have I,,= —(b,),D=0. This implies b,€Z, and
so, D(b,)=0. Thus we obtain ab, = bb, + D(b,) — b, = bb, + b, = 1 (by
(3,1ii, iv)). Therefore, it follows that ¢B= B, andso, &(f)e€ U(B) (by
(iii)). This completes the proof.

Next, we consider the following conditions.

(C,) B[X; D]u contains an element f= X? — Xa — b such that
either 8(f) or a is inversible in B.

(C,) D is an inner derivation.

(C,) 2 is inversible in B,

(C) 2=0 and D|Z =0.

Now, we shall prove the following theorem which is one of the main
results of this section.

Theorem 3.4. Assume that there holds one of the conditions (C,) —
(Cy). Then, for g B[X; Dlw, the following conditions are equivalent.

(a) g is Galois over B.

(b) o(g) is inversible in B.

(c) g is separable over B.

Proof. By Lemma 1.5 and [5, Th. 1.5], we see that (b) implies (a),
and (a) implies (c). Hence it suffices to prove that (c) implies (b). We
assume (c), andset g = X?>— Xu—v. If 4(f) is inversible in B then,



ON SEPARABLE POLYNOMIALS OF DEGREE 2 87

by Lemma 1.5 and [5, Th. 1.5], f is separable over B, and hence, by

Lemma 3.3 (ii) and (3, xv), B = 4(f)B = #(g)B = Bdi(g), which implies

#(g)e U(B). Next, let @ be inversible in B. Then ¢B=B. By Lemma

3.3(i), we have u=¢a (mod 4(g)). This implies ¥uB=aB= B (mod #(g)).

Hence by Lemma 3. 3(ii), we obtain #(g) & U(B). The other assertions

follow from the results of Lemma 3. 3(iv, v, vi). This completes the proof.
Now, for the cases (C,) and (C;), we shall prove the following

Theorem 3.5. Let D= I, an inner derivation. Then, there exists
a one-to-one correspondence between B[X; Dlwy, and Z[X :; 0lw (=
Z[X; D == 0] in the sense of the following

f=X*—-Xa—b — HNf)=X*—X(a—2c)— b+ cla —2c)+ c?)
such that for f, fi and f, € B[X; D],

(i) f is separable over B if and only if ¢(f) is separable over Z,

(ii) Bl = BQ®: Z[xx») (B-ring isomorphic),

(iii) Blx,] = Blx,] (B-ring isomorphic) if and only if Z[xx,] =
Z[xpsp)) (Z-ring isomorphic).

PfOO_f. Let f=X2—‘Xa’—b e B[X; D](g). Since Iu,_gcz Ia'_ZIgZO,
we have ¢ —2c € Z., Wesethere 2= — 2¢c. Then
0= [{. —_ Icz + arIc = Ib + (ar - ]t)Ic = Ib -+ ((20 =+ Z)r -_ (Cr —_ Cl)>Ic
=I5+ (c:+ c)l. + z.1. = I, + (¢, + ¢) (¢, — ¢c) + L.
= Ib + I.-Z + Icz = Ib+cz+cz.
This implies b + ¢* + ¢z € Z. Moreover, it is obvious that if f, 54 f, €
B[X; D] then H(f1)5¢( f;). Hence the ¢ is an injective map of B[X; D],
to Z[X; 0)x. Conversely, let g=X?’—Xa'—b'€ Z[X; 0. We set
here a=a'+2c and b=¥8 —c*—ca’. Then I,=I..2= 1.4 I2= 21,
Moreover, we have
I, = Ib'_cz_ ar = In' -_ Lg - Icul = — I-;Z — Lear
= - (Cr + cl) (Cr - Cl) - a'rIr: = - (C'r + cl)Ic - a'rIc
= ((Cr —_ Cl) —_ zcr - a’r)-['! = ((Cr - Cl) - ar)lr: = Icz - arIc-
Hence we have f=X?—Xa—b& B[X: I.]o, and ¢(f)=g. Thus, the
¢ is surjective, and so, this is one-to-one. Now, let f=X*— Xa —b, f,,
f:EB[ X; D] Then 6(f)=a*+4b=(a—2c)* +4(c(a —2c)+ b+ c*)=
o(¢(f)). Hence the assertion (i) follows from Th. 3. 4. Next, we consider
B[x,] andset y = x, — ¢. Then, for each a € B,
ay=ax,—ac=xa+ I{x)—ac= % — ca = (x,— c)a = ya.
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Moreover, we have
V=@ —c)=zx—2%c+ c*=2xa+b— 2xc + c
=zx{a—2c)+b+ct=(x—c)(@a—2c)+ (cla—2¢) + b + ¢
= y(a — 2¢) + (cle — 2¢) + b + co).

Hence yZ+Z=Z[x4,]. Thus, it follows that B[x,]=yB+B=By+B=
B(yZ + Z)=BQ:Z[%x;). This shows (ii). If B[x, ] = Blx,] (Bring
isomorphic) then Z[x,,,] == (the centralizer of B in B [#,]) = (the
centralizer of B in B[%,,]) == Z[x4,,] (Z-ring isomorphic). The converse
is obvious. Thus we obtain (iii). This completes the proof.

Now, for elements g and g, € B[X; D]w, if Blx,] = B[z, ] (B-
ring isomorphic) then we write g ~ g;. Moreover, by B[X; D], we
denote the set of equivalence classes of B[X; D]s, with respect to the
relation ~, and we write C =g > if C& B[X; D] and g € C.

In virtue of Th. 3.5 and Th. 2. 16, we obtain the following corollary
which contains the result of [4, Cor. 1 (2)].

Corollary 3.6. Let D be an inner derivation. Then B[X; D1g
forms an abelian semigroup under the composition <{g,)> {g> =
{p7NP(gy) X P(g2)> where ¢ is asin Th.3.5 and . (g,) X ¢(gu) is as in
Remark 2.12, so that this group is isomorphic to the group Z[X; p =
1]% (= Z[X; D = 0] ).

For the case (C,), we have the result of Cor. 3.18 which will be
verified lately.

Next, we shall prove the following

Theorem 3.7. Assume 2=0, and let f=X*—Xa—bec B[X; Dlw.
Then

(i) f is separable over B if and only if there exist elements b,, b,
in B suchthat b,€Z, D(b)+ab,=0, D(b)+ab,=1, and I,=(b,),D.

(i) f is Galois over B if and only if there exists an element s in
U(Z) such that D(s) + as = 1.

Proof. (i). Assume that f is separable over B. Then, there exists
a system {b;, b, b, b;} of elements in B which satisfies the conditions
(3, ii — viii). Then, we have b, €7 (by (3, v)), Db, + ab,=b;— b, —
(b, +b;)=0 (by (3,iii, vi)), and D(b,)+b,= ab,+ b,—bb,+ ab,=b,+bb,=1
(by (3, i, iv)). Moreover, we have L, = — (b,).D = (b,),D (by (3, vii)).
Conversely, we assume that there exist elements b,, b, in B such that
b€ Z, D)+ ab,=0, D)+ ab,=1, and I, =(b,).D. We set here
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b;=ab,+b, and b,=bb,+ 1. Then ab,+ b, = ab, + bb, +1 = ab, + bb, +
D(b,)+ ab,=bb,+ D(b,). Moreover, since I,=2D=0 and I,= D?—g,D,
we have I;,ZD—anz= (bl)rDZ_ Inh2= (bl)r(arD"F Ib)+ Iabz=a,-(b1)7-D+ (bl),-Ib‘I’
I,,,,2=a,1,,2+ I,,,,l+ab2= Lis,+w 1a0,= I =Io,.1=1I,. Thus, the system {b,, b,
bs, by} satisfies the conditions (3, ii — viii). Hence f is separable over
B. (ii). Set A=B[x; D, a, b] where x = x,, and assume that f is
Galois over B. Then, by Lemma 1.2, A is a Galois extension of B with
Galois group {1, ¢ and x —o(x) = x + olx) = U(B). We set here
s=(x—o{x))”", y=xs, and c=y'+y. Then y+o{y)=1 and o(c)=c.
Hence c=B. Let a be an arbitrary element of B. Then alay — ya) =
ay —y«, and so, this is contained in B. Hence the mapping « — ay—
va=E(a)(« = B) is a derivation of B. Moreover ay = a(ss)= (ax)s=
(xa + D(a))s = xas + D{a)s and ay = ya + E(a) = (xs)a + E(«). Hence
sa=qas (k= B). This implies s€Z. Now, we have BDc=y2+y =
(25)*+ xs=(x5) (xs) + xs=x(xs+ D(s))s + xs=x°s" + xD(s)s + xs=(xa+ b)s* +
2(D(s)s+s)=x(as’+ D(s)s+s)+bs’. Hence as’+D(s)s+s=0. Since s
is inversible in B, we obtain D(s)+as=1. Conversely, we assume that
D(s) + as =1 for some inversible element s in Z. Then, we see that
(xs)? + xs = bs®. Moreover, one will easily see that the mapping « —
D(a)s (e € B) is a derivation in B, a(xs) = (xs)a + D(a)s (a0 € B) and
{xs, 1} is a right free B-basis of A. By Th.3.4, g=Y*— Y —bs® is
a Galois polynomial of B[ Y; s, DJ.. Hence A is a Galois extension
of B. Thus f is Galois over B, completing the proof.

Corollary 3.8. Assume 2=0, and let f=X*—Xa—b & B[X; Diw
so that a is nilpotent. Then, f is separable over B if and only if there
is an element sin Z such that D(s)+as =1; and in this case, D(s) is
inversible in B.

Proof. Assume that f is separable over B. Then, by Th. 3. 7,
there exist elements b,, b, in B such that b, € Z, D(b,) + ab, = 0,
D(b,) + ab, =1, and L,,= (5,).D. Since e"=0 for some integer n >0,
it follows that for an integer 2"=n, 1=(D(b,)+ab,)" =D(b,)"" + (ab,)*" =
D(b,)"", and whence D(b,) is inversible in B. Hence, noting that
0= Ibz(bz) = (b,).D(b,) = D(b;)b,, we obtain b, = (. This implis I,,=0,
thatis, b, € Z. Conversely, we assume that there is an element s in Z
such that D(s)+as=1. Then, for b,=0 and b,=s, we have b, EZ,
D(b,) + ab, =0, D(b;)+ab,=1, and I,,=(b),D. Henceby Th.3.7, f
is separable over B. This completes the proof.

Next, we shall prove the following
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Corollary 3.9, Let f=X>—Xa—be B[X; Dlw. Then, f is
separable (resp. Galois) over B and o(f)=0 if and only if 2=0, a®*=0,
and there exists an element s in Z (resp. in U(Z)) with D(s)+ as=1.

Proof. If f is separable over B and 4(f) = 0 then, by Lemma
3.2, we have 2=0 and «® = 0. Hence the corollary follows from the
results of Th. 3.7 and Cor. 3.8.

The following corollaries 3.10 and 3. 11 are direct consequences of
Cor. 3.9.

Corollary 3.10. Let f=X>*—beE B[X; Dl]w. Then, f is separable
(resp. Galois) over B and (f)=0 if and only if 2=0 and there exists
an element s in Z (resp. in U(Z)) with D(s) = 1.

Corollary 3. 11. Let either 250 or D|\Z = 0. Then, for any
separable polynomial f in B[X; Dlw, there holds a(f) 0.
Next, we shall prove the following

Theorem 3.12. Assume 2=0, and let f=X—Xa—bEB[X; Dlw.
If f is separable (resp. Galois) over B then, for all ve& By(D*— a,D),
X? — Xa — v is separable (resp. Galois) over B. Moreover, if f is
separable over B and a is nilpotent then, {X’—Xa—v; vEBy(D*—a.D)}
=B [X 5 D]m-

Proof. The first assertion is a direct consequence of Th. 3.7. Now,
let f be separable over B and let a be nilpotent. Then, by Cor. 3.8,
there exists an element s in Z such that D(s)+as=1, and then, D(s) is
inversible in B. Since D?*(s) = aD(s), it follows that & = D(s) (D(s))"".
Next, let X? — Xp — q be an element of B[X; D] Then I,=0,
I, = D* — p,D, and whence D¥s) = D(s)p. This shows that p =
D*s)(D(s)) '=a. Hence X*— Xp—qgE{X*—Xa—v; vE B(D*— aD)}
(CB[X; D]w). This completes the proof.

In virtue of Cor. 3.9 and Th. 3. 12, we obtain the following

Corollary 3.13. If B[X; D]u contains a separable polynomial
f=X*—Xa—0b with 6(f)=0 then B[X; Dlpn={X*—Xa—v; veE
By (D? — a.D)}. In particular, if B[(X; Dl contains a separable
polynomial X* — b with 4b=0 then B[X; D]u = {X*—v; v € By(DY}.

Now, let e € B,, and set J= BeB. Moreover, we assume JF B.
Since D(¢) =0, we have D(J) CJ. We denote the factor ring B/.J by
B,, and for any element ¢ in B, we denote c+J by ¢, Further, by
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D., we denote the derivation of B. induced by D. Then, for any
g=X’—Xu—-veEB[X; D]w, we have X* — Xu.— v, € B._X; D:]o.
This will be denoted by g.. Under this situation, we shall prove the
following

Theorem 3.14. If there exists a separable (resp. Galois) polynomial
f in B[X; Dlw such that < = 5(f) is not inversible in B then, for
any g < B(X; Dlw, the polynomial g.(E B.[X; D.w) is separable
(resp. Galois) over B., and the factor ring B[xz,]/<B[x,] is Bering
isomorphic to B.[x,].

Proof. Let g be an element of B[X; D], andset A,=B[x,; D,
a, b]. First, we assume that f is separable over B. By (3,xv), we
have ¢B = Bes= B. Noting ex, = 2,5, we see that ¢4, = A,c and
¢A,NA, = ¢B. Then, as is easily seen, the factor ring A,/<A, is
B.-ring isomorphic to B,[x,,e; D,, a., b.]. Now, since A, is separable
over B, A, A, is separable over B, by Lemma 1.3. Hence f; is a
separable polynomial in B.[X; D.], and the discriminant of f. is zero.
Hence by Cor, 3.13, g. is separable over B,. By a similar way, we
see that if f is Galois over B then g. is Galois over B. (by Lemma 1.3
and Cor. 1.13). This completes the proof.

Next, we shall present an example of B[ X ; D], containing separable
polynomials whose discriminants are zero.

Remark 3.15. Let F be a field of characteristic 2 (for example,
F = GF(2)), and R the ring of polynomials of x with coefficients in F,
where x is an indeterminate. Moreover, let S be the subring of the
guotient field of R which is generated by x~' over R, and D the ordinary
derivative of S such that D(3; aa’) = 2, ieix™™'. Then D*=0, and
whence X?&S[X; Dle and X’€R[X; D|Rls. Since D(x)=1 and
x is inversible in S, it follows from Cor. 3. 10 that X? is a Galois
polynomial in S[X; D]¢. As is easily seen, there is not an inversible
element s in R with D(s) = 1. Hence X? is not a Galois polynomial
in R[X; D|R)w. However, since D(x)=1 and x=R, it follows from
Cor. 3. 10 that X? is a separable polynomial in R[ X ; D|R]w. Moreover
(p=8S; D(B)=0} =F= b= R; D({)=0}, and whence by Cor. 3. 13, we
have S[X; Dlw= {X?—b; b= F} and R[X; D|R]ew={X*—b; bEF}.

In the rest of this section, we assume B[X; D]w % @, and more-
over, for a (fixed) element X® — Xa — b & B[X; D].., we shall use the
following conventions :
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B[X; Dlp.={X*—Xa—v; vE By(D* —a,D)} (C B[X: Dlw).

B[X; D]&.. = the set of equivalence classes of B[X; Dlw. with
respect to ~; and write {(g)>=C if CE B[X; Dlpa. and g € C.
Moreover, asin [4, §3], we set

B.(B) = the set of all the elements 3 in B such that 3 + D(5) +
fa=Z, and I,=D+aD for some a <€ U(Z) with a’=1 and e(l+a)=
D(c).

Bu(B)s = {#* + D) + fa; 3 € BuAB)}.
Z,={22+ D@2+ z2a; z= Z}.

Now, the following lemma will be easily seen.

Lemma 3.15. (Cf. (4, Lemma 3.2]). Let X*—Xa—b€&€ B[X; Dia.
Then B[X: D)ma.=1{X?—Xa—(b+2); zE Z,}.
Next, for case 2 = (), we have the following

Lemma 3.16. (Cf. [4, Lemma 3.1]). Assume 2=0, end let X*'—
Xa—beB[X; D]w. Then ZCB.(B), Z,cB,B),CZ, and Z, is an
additive subgroup of (Z,, + ). If B3 =243 for all 3, 0 € B(B) then
B.(B); is also an additive subgroup of (Z,, +).

Proof. Let z be any element of Z, and set ¢ = 2> + D(2) + za.
Then D(c) = D(2%) + D%z2) + D(2)a = 22D(z) + (D* — a.D) (2) = I,(2) = 0.
Hence ¢c=Z, If weset a=1 then I,=D-+a.D, a€U(Z), «’=1, and
a(l + «) = D(x). This shows z=B,(B), and whence ZC B,(B). Thus
we obtain Z,C B.(B)s. Clearly Z, is an additive subgroup of (Z,, +).
The other assertion is proved by making use of the same method as in the
proof of [4, Lemma 3.1]. This completes the proof.

Moreover, by making use of the same methods as in the proofs of [4,
Lemma 3. 3 and Th. 2.4], we obtain the following lemma and theorem.

Lemma 3.17. (Cf. [4, Lemma 3.3]). Assume 2=0, and let X*—
Xa—b& B[(X:; Dlw. Then, for elements g and h in B[X; Dle.a
g~h ifand only if g — h € B(B)..

Theorem 3.18. (Cf. [4, Th.3.4]). Assume 2=0, and let f =X>—
Xa—bEB[X; D). If Bo=208 forall B, 3 =B,(B) then B[X; Dilx.a
forms an abelian froup of exponent 2 under the composition {gr<{h) =
g+ h—+ f> with the identity element {f), and this group is isomor-
phic to the additive group (Z,, +)/BB)..

Now, we shall prove the following
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Theorem 3.19. Assume 2=0, anllet f[=X*—Xa—bEBiX; D]y,
If Z = B(B) then the group B[X; D . is isomorphic to the additive
group (Zo, +)/Z,. Moreover, if f is Galois over B and Z=3,(B) then
there exists an element s in U(Z) such that BUX; D]G,. is isomorphic
to the additive group (Z, +)/(K,+ K,) where K,= {z= Z; sD(2) =z},
and K,= (2 +z; z € Z}.

Proof. The first assertion is a direct consequence of Th. 3. 18. Now,
we assume that f is Galois over B and Z =3B,B). Then, by Th. 3.7,
there exists an element s in U(Z) with D(s)4+as=1. Clearly s Z,,
and the mapping z,—2,5* (2, Z,) is an automorphism of (Z, +). This
shows that (Z,, +)/Z,=(Z,, +)/Z,s’. Since 0=D(1)=D(ss )=D(s)s '+
sD(s7!) = (as+ 1)s'+ sD(s"'). wehave D(s™') = (as+ 1)s>. Hence
Z.,$'={(2" + az + D(@))s*; z € Z}

= {((zs7Y + a(zs™') + D(zs™))s*; z € Z}

= {22 4+ azs + (D(z)s™' + z2D(s™))s?*; z € Z}

= (22 + azs + (D(2)s™" + z(as ~ 1)s7Y)s?*; z € Z}

= {22+ 2z + s5.D(2); z = Z}.
Therefore, it follows that

(Zo, Y)W Z,=(Zy, +)/{2* + 2+ 5.D(2); 2z Z}.
Moreover, for any z€ Z, we have D(z+s,D(2))=D(z%)+ D(z+s,D(2))=
D(2*+ z + s5,D(2)) =D(Z ,s%) = {0}, which implies z+ s.D(2) € Z,. Next,
we consider the mapping
01 Z—2Z, (z— z+ s5,.D(2)).

Clearly the map « is additive, and Z, D ¢(Z) D ¢(Z,) = Z,, thatis, ¢
is surjective. Further, we have ker . =K, andfor any z€ Z, ¢(2*+
z)=2z'+z+ §.D(2" + 2) = 2"+ z+ s.D(2), which implies ¢(K,)={22+2z-+
s.D(z); z€ Z}. Hence, it follows that

(Z, V) (K, + K,) =(Z,, +)] {2+ z+ sD(2); z = Z}.

Thus we obtain (Z, +)/(K,+ K,) =(Z,, +)/Z,= Bl X; D]5..(Th. 3. 18),
completing the proof.
For case ¢ & U(Z), we have the following

Corollary 3.20. (Cf. [4, Cor. 1]). Assume that 2 =0, D|Z = (,
and there cxists a separable polynomial f=X* — Xa —b in B[X; Dla.
Then ac U(Z), and any polynmial in B[X; Dlw.. is Galois over B;
moreover, the group B[X; D1%.. is isomorphic to the additive ‘group
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Z, Y22+ z; z€ Z}.

Proof. By Lemma 3. 3(vi), #(f)=4a’ is inversible in B. Clearly,
for any g€ B[X; Dlw., wehave o(g)=a? and hence by Th. 3.4, g
is Galois over B. Next, let 8 be any element of B.,(B). Then, there
exists an element a € U(Z) such that I;= D+ a.D and a(1 + a)= D{(a).
Since D{(ax)=0 and ¢ € U(Z), we have 1= «, which implies I; =0,
thatis, A€ Z. Noting Z CB.B) (Lemma 3. 16), we obtain Z = B.(B).
Moreover, for any s Z, if z€ Z and sD(z) = z then 2= 0. Hence,
it follows from Th. 3. 19 that B[X; Dla.=(Z, +)/{Z + z; z € Z},
which is our desired one.

Moreover, for case ¢ € Z — U(Z), we have the following

Theorem 3.21. Assume that 2= 0 and there exists a separable
polynomial f=X®—Xa—b in B[X; Dl so that a is nilpotent. Then
B[X; Dlo=B[X; Dlon.=(Z, +)/Z,. If, in particular, f is Galois
over B then there exists an element s tn U(Z) such that B[X; D1p..=
(Z, H)/(K,+ K,) where K,={zE€Z; sD(z)=z}, and K,={z"+z; zEZ}.

Proof. By Cor. 3.8 and Th. 3. 12, there exists an element s in Z
with D(s) € U(Z), and B[X; D]w.= B[X; D] Now, let # be an
element of B.(B). Then I,= D + a.D for some a € U(Z). Applying
this to the element s, we have 0= I,(s)= D(s)+ D(s)a = D(s)(1+«a), and
hence a«=1. Since 2= 0, it follows I, =0, thatis, = Z. Noting
ZCB.(B) (Lemma 3. 16), we obtain Z=,(B). Hence, by Th.3.19, we
obtain the assertion.

Lastly, as a direct consequence of Cor. 3.9 and Th. 3. 21, we obtain
the following

Corollary 3. 22. Assume that there exists a separable polynomial
f=X?—Xa—b in B[X; Dlo with (f)=0. Then B[X; DIs=B[X;
D1 =(Zy +)]Z, If, in particular, f is Galois over B then there
exists an element s in U(Z) such that B[X; D1g,=(Z, +)/(K,+ K,)
where K,={z€ Z; sD(z) =2z} and K, = {z* + z; z € Z}.
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