ON THE DIOPHANTINE EQUATION 2*—3¢+13
To Professor MOTOKITI KONDO on his seventieth birthday
SABURG UCHIYAMA

Extending the anterior results due to T. Nagell [7] and to A.
Makowski [6], T. Hadano [3] recently determined by an elementary,
largely congruencial argument, the solutions in non-negative integers «,
¥, z of all the exponential Diophantine epuations

a'=b"+c
in which @, b and ¢ are distinct prime numbers < 17, but one equation
(1) 27=3V413".

This equation can also be treated by a well-known traditional method,
and we shall show in this paper that there are just four solutions in %, ¥, z
of the equation (1). Indeed, we shall prove the following

Theorem. The only solutions in non-negative integers x, ¥, z of the
Diophantine equation (1) are given by

(x, v, 2=(1, 0, 0), (2, 1, 0), (4, 1, 1) and (8, 5, 1).
We note that this result has been announced without proof in [4].

1. Obviously there are no solutions x, ¥, z of the equation (1) with
=0, and y=2z=0 is the only solution of it with x=1.
If £0, y>0 and z=0, then the equation (1) is

27=3%+1, or 2°—3'=1,
Here, we need the following result due to W. J. LeVeque [5].

Lemma. Let a and b be given positive integers. The equation
a‘—b¥==1
has at most one solution in positive integers x, y if a is even and b is
odd. If
2°|le and 2° || b+1,

the only possible solution is with r=B/aif a > 1, and with x=1or 8 if
a=1.
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The equation 2°—3'=1 has a solution (%, ) =(2,1) and this is its
unique solution since, in view of the lemma, it has at most one solution.

Thus, there are just two solutions z, y, z of (1) with z=0.

If £>0, y=0 and 2>>0, then the equation (1) becomes

2°=1+413, or 2*°—13'=1,

which has no solutions #, 2, since, again by the lemma above, this last
equation has at most one solution, and the only possible solution is with
x=1.

Therefore, in dealing with the equation (1), we may assume henthforth
that x>0, y>0 and 2>>0.

2. We now proceed by a series of propositions. In propositions (i),
(ii) and (iii) below the integers x, ¥, z are assumed to satisfy the equation

(1).
(i) 2=0(mnd 2) and y=1 (mod 2), if y>0.
Indeed, we have by (1) 2°=1 (mod 3), which implies x=0 (mod 2)

(since 2 is the (unique) primitive root of 3). Write x=2E. Then we see
from (1)

24=3"+13,
so that 0=(—1)?+1 (mod 4), y=1 (mod 2).
(ii) 2=0 (mod 4) if y=>0 and 2>0.
Since 2 is a primitive root of 13 and 3=2* (mod 13), we have
27=3"+413*=3"=2" (mod 13).
Hence x=4y (mod 12), or x=0 (mod 4).
(iiil) y=z=1 (mod 4) if y>>0 and z2>0.

By (ii) we have x=4F for some integer £. Suppose that z be even and
put z=2¢. Then, since 3 is a primitive root of 17 and 13=23* (mod 17),
we have from 2%¥=3v413%

(—1)f=3v+3%=3+(—1) (mod 17).

It is impossible that £ and ¢ are both odd or both even. If £ is odd and ¢ is
even, then

3'=-—2 (mod 17), y=6 (mod 16),

and if £ is even and ¢ is odd, then
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3"=2 (mod 17), y=14 (mod 16);
either choice is again impossible in view of (i).
Suppose now that z be odd. Since 3 is a primitive root of 5, we have

2%¥=3"+13", 1=3"+3’ (mod 5).
But 3°=2 (mod 5). Hence. the only possibility is with y=z=1 (mod 4),
as asserted.
In the equation (1) we write
x=4E y=4d7+1, z=48+1,
where £, 7, ¢ are integers with £2>1, » =0, {=0, and put
Y=3" Z=13%.
Then we have

(2) 3-2¥=(3Y)*+39Z%

3. Now, let us consider the imaginary quadratic number field
Q{1 —39) whose class number is 4 (cf. [2; Table III, Part 1 (continued),

p. 264]; also [1; Table 5, p. 484]). In this field we have the decompo-
sitions into prime ideals

2= PP, 3=Q,
where
P=(2, 1—”“1/‘19) P=(z, 1—‘/_ 3~9) (P, P)=1
and
Q=(3, v —39).

It follows from (2) that

3Y+Zv —39 <3Y'_‘Z]/:§§ N2 1)4e-2
2 ) 2 )_Q (PP,

any common divisors of the two factors on the left-hand side dividing 3=
Q% Hence, we must have (for an appropriate choice of signs =
(3 Y=Zv/239
2
or, on squaring both sides and then dividing them by 3,

(3 Y2—-137% + 2YZ]/._—339) _ (5+ 1/—‘_39)*‘-'
4 - 2

) =QpH-?
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since

5+ V@) pie (5+ 1/-39)
2 ’ 2 :
The units in the field Q(1/—-39) being = 1, we obtain the relation

L3Y*—137° +2YZY/ 39 _ (5+ VrsTa)“"‘
- 4 B 2
Now, we define the sequences of rational integers («#,) and (v,) (n=
0, 1, 2, ---) by setting
( 5+ 1/':?;9')" _Uat 0.V —39
\ 2 2 ’

it is easy to see that these sequences are determined by the relations

Pr= (4,

uo=2, u1=5, un+]=5un’_‘16un—l (7121):
v=0, v,=1, v,y =50,—160,_, (n=1).
In fact, we have
_[(5+V=30\»  [5—1/—30\"
w= (7 ) (=)
1 BV 39\ (5— 1/ =30\
”""1/—39{( 2 ) ( )}

Note that we have %,5+0 for =0 and »,5%0 for n==1.
Using the recurrence relations for («%,) and (2,), we find by induction
on » that

&)

(iv) #,=v,=1 (mod 4) for all n=>1,

The next two propositions are easy deductions from (3).
(V) 20nsn=tnv,+uwp,. for m=0, n=0.

vi) vm=wu.v. for n=0.

(vii) If m (>0) divides » then v, divides wv,.

Indeed, v;n=#n.v2»=0 (mnd v,) by (vi). Suppose now that v,,=0
(mod v,) for some k=2. Then, by (v),
200+ 1m= U On+ U U =0 (mod vm)-
By (iv) v, is odd for m>0; hence vu:+H.=0 (mod v,), completing the
induction.

(viil) (v, vur1)=1 for n=0.
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Here, (a, b) denotes the greatest common divisor of the integers ¢ and
b. Let d|(#,, 0.+1). Then d|vs=5v,—16v,.,. Hence d|v,-; and so
d|(va-1, v.). Continuing this process we ultimately arrive at d|(v,, v,)=1,
that is, d=1.

(ix) (an, v.)=1 for n=1,
Let d|(#,, v,). Then d is odd and

4|20, 01= 1,01+ 0,0,

which implies that d| (v, v.+1)=1 by (viii). Hence the result.
(%) Wm, 02)=|Vn.ny] if m+n>0.

If one of m, n is 0, the result is obvious. Suppose now that m>0,
n>0, and put d=(m, n), v=(v., v,). By (vii), »|v,. for any 7>0 and
v| v, for any >0. We have am—bn=d for some positive integers «, b.
We find on account of (ix)

v I zvuw: uam—nvﬂ+ unvum—'n, vl vum—ﬂy
Ul zvam—n: Uam—22Va+ UnVam 2., vl Vam—12n,

and repeating this procedure we get finally
v l Zvum—(b—])n =Uam-vuUn+ %Vam- bny Ul Vg,

Since v.] v is obvious from (vii), we mnst have v=v.]|.

We are now in the final stage of our search of the solutions of the
equation (1).

From what we have seen above it will follow that if

2°=3+13"
and
x=4E, y=4y+1, z=4{+1,
then we must have
|83Y?—13Z%| =2|uzy\|, YZ= |0,

with Y=3" Z=13%

It will be easier to deal with YZ than to do with 3Y2—13Z% Here,
we find it convenient to have a table of values of », for 0<% <13.

Uo=0
v]_=1
1)2:5

v3=9=32
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vy=—35=—5-7
vs=—319=-—11-29

vs= —1035= —3%5-23

v =—71

5=16205=5-7-463
1,=82161=3%-17-179
v1,=151525=5%-11:19-29

v,;= —556951= —241-2311

v1,= —5209155= —3%-5.7-23-719
v;3= —17134559= —13-313-4211

The use of the next and final proposition (xi), which seems to be of
some interest in itself, can in fact be avoided in our argument,

xi) v.,s=*+1for n>1.

By (iv) we have v,=1 (mod 4) for n=1, so that v, —1 for n=1.
We have by (vii) v:,=0 (mod »,) with »,=5, whence v.,, 7 1 for m=1.
Using (iv) again we find for n =2

Vns1=50,—160,_=>50,-+16 (mod 32),
Vas2 = S(SUH’I‘ 16) “+ 16 = 520,, (mod 32),

which implies v,.s=wv, (mod 32) for n==2, since 5*=1 (mod 32). Thus we
have for m=0

Vsm+9=03=9, Vpn+:=0;=25, Vsn+s=0,=17 (mod 32).
By (v) we have for m=1
21}4m+|=u4v4m-3+ Uim—ily,

where #,= —463= —1 (mod 7) and »,= —35=0 (mod 7). It follows from
this that

20im+1= —Vim—3 (mod 7),
or
Vym+1= 30sm-3 (mod 7),
so that
Vyms1 =23™ (mod 7)
which is valid for all m =0. Hence we have for m =0
Vimes=3""'=3-2™ (mod 7)

and so
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Ugm+553, 6 or 5 (mod 7)

according as m=0, 1or 2 (mod 3). We thus have proved that v,,.,;5=1
for m>0. This completes the proof of (xi). *’

Now, suppose that the equation (1) admit a solution x, y, z with
x>0, y>0, z2>0. We shall first show that such a solution may exist only
with z2=1, i.e. with {=0. Indeed, if 2>>1 then z=4{+1=5 and YZ=
| v2:-1| would be divisible by 13. But, in view of (x), v, is divisible by 13
if and only if » itself is divisible by 13, and s0 »;._; should then be a multiple
of v,; which has extra prime factors other than 3 and 13. Hence YZ = | v, ;|
is impossible if z>1.

Thus, it remains only to examine the case of 2=1, i.e. the case of
YZ=Y=3"is a power of 3. If 7=0 then Y=1=u, by (xi), and this gives
the solution x=4, y=1, z=1. If >0 and Y=|v:,}, then 25—1=3x for
some #>0. If 3|n then 3*=9|3n, so that v.._, is is divisible by v, which
has prime factors other than 3. Therefore, we must have (n,3)=1. But
then (v;., vo)=v;=3% where 3*|v,. It follows that 3%||v;,, Y=|vs|=3%
which implies #=1 (since v,|v;, and since by (xi) v, has a prime factor 3
if n>1), 25—1=3, »=1, giving the solution x=45=8, y =45+ 1=35,
z=1.

This concludes the proof of our theorem.

Remark. In the concluding part of our proof of the theorem we had
two occasions to quote the proposition (xi). However, as is readily seen,
this part could be disposed of without appealing to (xi) and with a par-
ticular reference to the original equation (1) instead.
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