ON THE DIOPHANTINE EQUATION ag*=b¥+c*
TosHIHIRO HADANO

0. Introduction We consider the Diophantine equation ¢ =b"+¢°
for given, distinct integers @, b, c that are larger than 2. It is well
known that there are only a finite number of non-negative integral solutions
(x, y, z) for every such equation (cf. [2; Chap. 23, Theorem 4]). T.
Nagell [3] has found all the solutions of non-trivial equations of this type
in which @, & and ¢ are distinct primes < 7. In this note, by means of
elementary congruencial methods in many cases, following Nagell, we
shall find all the solutions of the non-trivial equations ¢’ = §'-}¢® when «,
b and ¢, with b <c, are distinct primes = 17.  Of these equations, A.
Makowski [1] and S. Uchiyama [4] have solved for (a, 5, ¢)=(5, 2, 11)
and (2, 3, 13) respectively.

1. Results®’

Case Equation Solutions (x, ¥, 2)
1 2° = 3"+ 11* 1, 0, 0), (2, 1, 0)
2 F=2Y+11° 1, 1, 0), (2, 3, 0), (3, 4, 1)
3 11IF=2"+ 3 (1,14, 2, (1 3, 1)
4 27 = 5" + 11° 1, 0, 0), (4, 1, 1)
5 5" =2V 4 11° 1, 2, 0), 3, 2, 2)
6 11"=2¢-+45 none
7 28 =T+ 11° 1,0 0), (3,1, 0), (7, 1, 2)
8 7F=2Y + 11I° none
9 11I"=2"4+T7 1, 2 1)
10 27 =3V 4 13° 1, 0, 0), (2, 1, 0), (4, 1, 1), (8 5, 1)
11 F=2"+ 13 1, 1, 0), 2, 3, 0)
12 13F=2"+ 3 1, 2, 2
13 27=5 + 13 @1, o, 0)
14 57 =2+ 13 1, 2, 0
15 1F=2'+4+5 1, 3 1)
16 27 =T+ 13 (1, 0, 0), (3, 1, 0), (9, 3, 2)
17 77 = 2Y 4 13° none
18 13 =247 none
19 27 = 11" + 13° (1, o, 0)

* Here, we have excluded in the list the results obtained by Nagell
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20 11"=2"+ 13 none
21 1¥F=2'+ 11° 1, 1, 1)
22 2T =3+ 17 (1, 0, 0), (2, 1, 0)
23 IF=2"4+ 17 (1, 1, 0), (2, 3, 0), (4, 6, 1)
24 17 =24 3 1, 4, 0), (1, 3, 2
25 2F=5 417 (1, 0, 0)
26 55=2"+ 17 @, 2 0, (@ 3 1)
27T 17"=2"4+5 (1, 4, 0)
28 22=T7T"4+ 17 1, 0, 0), (3, 1, 0)
29 TT=2 41T 2, 5 1)
30 17"=2"+T7 (1, 4, 0)
31 2 =11" + 17 1, o, 0)
32 11F =24 17 none

.33 177 =2+ 11° (1, 4, 0)

2, Proof Casesl, 8, 13, 17, 18, 19, 22, 25, 28 and 31. These
equations can easily be treated by considering them modulo 3, modulo 8
and modulo 16 (the modulus 16 is used only in the case 28).

Case 6. The equation is found to be impossible if we take it modulo
8if y=0, and modulo5if y=1 or2. If y=3 then x and z are even,
as is readily seen when the equation is taken modulo 8. Put then x=2s,
z=2t to get (11°)*—(5*)?=2¢, whence we have 11°+5'=2""! and 11'—5'=
2. The latter equation is, however, impossible as we have seen above.

Case 20. This is found to be impossible just as in the case 6.

Case 4. On taking the equation modulo 5, modulo 17 and modulo 2°,
we find that it has no solutions with x> 4. .

Case 5. We get y=2 (mod 4) by taking the equation modulo 5. If
y=6, then x and y are found to be even, when we take the equation
modulo 8, and so we can make use of the case 6. Thus, on being taken
with the modulus 8, the equation will be reduced to the one

5 =4+ 11° with 2tx, 2|z

By considering the above equation to the moduli 7 and 13, we get either
=1 (mod 12) and z=0 (mod 12), or =3 (mod 12) and z=2 (mod 12).
Taking modulo 11 and modulo 41 if z>0, we find that the former choice
is impossible. Thus x=0 (mod 3). Put 5”=X and 11"*=Y to get
Y?=X3%—4. This last equation has only two solutions (X, ¥Y)=(2, 2),
(5, 11) (seee.g. [2; p.123]). Soweget x=1, z=0and =3, z2=2.

Cases 9, 11, 12, 14, 21, 23 and 27. By an argument similar to the
one used in the case 5, these equations are reduced respectively to the
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following ones :

(9) 11"=4+ T with 2fx, 2kz
11) 3 =2+ 13  with 2kx, 2|z
12) 13 =44+ 3F with 2fx, 2]z
(14) 5= 4+ 13 with 2fx, 2]z
(21) 13* = 2 4+ 11° with 2kx, 2%z,
(23) F=2+17 with 2fx, 21z
and

27 177=1+2¢ with 2fx, 2|y

(Note that in the case 23 the equation is reduced to (23) and (27).) So we
shall treat these equations instead.

(9): Taking modulo 16 and modulo 25 we get x—1=0 (mod 20), z—1=0
(mod 20). Suppose ¥>1, z>1. Then 11(1177'—1)=7(7*"'—1), where
11*"1—1=0 (mod 11° + 1). Hence 7°~'— 1 = 0 (mod 13421) by the fact
that 11° + 1=0 (mod 13421) for the prime 13421, and so z — 1 =0 (mod
13420). Thus z—1=0 (mod 110). However, we have 7' —1=0 (mod
11%). This is a contradiction.

(11): If z>>0, then 3*=2 (mod 13). This is impossible.

(12): If z>2, then 13"=4 (mod 27). This is impossible.

(14): If 2>0, then 5°=4 (mod 13). This is impossible.

(21) : Taking modulo 11 and modulo 13 we get x—1 =0 (mod 10), z—1
=0 (mod 12). Suppose x>1, 2>1. Then 13(13"'—1)=11 (11*"'—1),
where 13*7'—1=0 (mod 13" —1). Hence 11*7'—1=0 (mod 30941) by
131 —1=0 (mod 30941), where 30941 is a prime, and so z—1=0 (mod
30940). Thus z—1=0 (mod 13). Therefore z—1=0 (mod 12 - 13). This
is, however, a contradiction since 11'*'** —1=0 (mod 13?).

(23): If x>1, then 2+ 177=0(mod 9). This is impossible.

(27): Suppose x>1, y>4. Then 17(17*7'—1)=2*(2"*—1). Since «x
is odd and 17> —1=0 (mod 2°), we have a contradiction.

Case 2. Taking the equation modulo 8 and modulo 11 we get either
y=1 and 2=0, or y==3 and #==z (mod 2). We may argue as before
if x and z areeven. If x and z are odd, then we get ¥y =4 on taking
the equation to the moduli 17 and 2%, In such a way as this we readily find
that the equations in the cases 2, 3, 15, 24, 26, 29 and 32 are reduced to
the following equations :

(2) 3* =2+ 11° with 2fzx, 2kz,
(3) 11" =2+ 5 with 2/% 24z
(15) 13¥=2+ 5 with 2Xx, 24z,
(24) 17" =28 + 3° with 2z, 2]z

(26), 5" = 22 + 17 with 2kz, 2|z
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(26), 57 = 2% + 17° with 2|z, 2kz,
(29) 7t =254 17" with 2lx, 2tz
and

(32) 117 = 28 + 17" with 2%, 24z,

respectively. So we treat these equations in turn.
(2): Taking modulo 11 we get 3*=5 (mod 11), and so x—3=0 (mod 5).
Suppose >3, z>1. Then 3*(3°* —1)= 11(11°"' — 1). Therefore
3*7—1==0 (mod 11%), since 3°—1==0 (mod 11%). This is a contradiction.
(3): Taking modulo 7 we get £ —1=0 (mod 6). Suppose x>1, z2>1.
Then 11(11°°'—1)=3(3*"'—1). Therefore 11*~' —1=0 (mod 3?%), since
11°—1=0 (mod 32). This is a contradiction.
(15): Taking modulo 5 and modulo 13 we get x —1=0 (mod 4), z—1=0
(mod 4). Suppose x=>>1, z>>1. Then 13(13"'—1)=5(5""'—1). Therefore
13*'—1=3 (mod 31), 5! —1=0(mod 7), since 13*—1=0 (mod 7) and
5%—1=0 (mod 31). Hence x —1=0 (mod 60), and so 13*"!—1=0 (mod
13°—1). Thus 13*'—1=0 (mod 5%), since 13*°* —1=0 (mod 5%). This
is a contradiction.
(24) : Taking modulo 5 and modulo 13 we get x — 1=0 (mod 6). Suppose
x2>1, 2>>2. Then 17 17'—1)=3%3*?—1). Therefore 17°'—1=0
(mod 3%), since 17°%-—1=0 (mod 3°). This is a contradiction.
(26),: If 20, then 5°=4 (mod 17). This is impossible since x is odd.
(26),: Suppose £>2, z>1. Then 55 2—1)=17(17""'—1). Hence
17! —1=0 (mod 5%), so that z—1=0 (mod 20). Therefore we have
a contradiction since 17'* —1=0 (mod 5°).
(29) : Taking modulo 7 and modulo 17 we get ¥*—2==0 (mod16), z—1=0
(mod 6). Suppose z>>1. Then 7¥7*2—1)=17(17""'—1). Therefore
7*-t—1=0 (mod 307), since 17°—1=0 (mod 307), and so x — 2=0 (mod
306). Thus x—2=0(mod 16-17) and 7'*'"—1=0(mod 17%). Thisis a
contradiction.
(32): Taking modulo 16 and modulo 13 we get x=0 (mod 3). Hence
17 = (117 —8 = (11" — 2){(11*"* — 2)2+ 6 - 117}, and so we must have
11"# —2=17° for some integer s==0, but this is impossible.

Case 7: We find that ¥+ and y are odd and z is even, except in
the trivial solution, on taking the equation modulo 3 and modulo 8. And
so we can put x+—2=pn, where »n isodd and =3, y=2b+1 and z2=2a.
We then consider the decomposition of 2* in the quadratic number field
Q(1/—7), which has class number one. Thus we have b=0 by making
use of the same method as in Nagell [3; pp. 580-581]. Hence y=1 in the
non-trivial solutions.

Case 16. In this case also, by Nagell's method, we get »=0 (mod
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7%), where x—2=gpx as before. Put y=2b+1, z=2¢. If b>1, then
we have A, | A., where in Nagell’s notation (1+ /_—7)'=A,+ B,V —7
(A,, B,: rational integers). But this contradicts +2"7'.13"= A4, as
is easily verified. Thus we get either e¢=1, b=1, n=1, or b=0. Now,
if =0, i.e. y=1, then the equations in the cases 7 and 16 will reduce
to the famous Ramanujan equation 2" =74 Y2 (cf. e.g. [2; Chap. 23]),
and proof for the cases 7 and 16 is completed.

Cases 30 and 33. In these cases x is odd and y and z are even,
as can be seen by taking the equations modulo 3 and modulo 8. So we
have U?+V2=17" with U=2"", V=7 or 11 thatis,

(U+iV)(U—iV)=ed+iy (4 —1i)

with e=+1, +{ (= —1). Put (4+i)*=a,+ib,. Then a,.,=4a,—1,,
br=a,+4b,, @,=4, b,=1. By induction we get 4|a., 2tb, since «x
isodd. We take ¢=1, aswe may, toget U+ iV = (4 + {)*, andso
U=a, is a 2-power integer if, and only if, ¢,.= U=4, V=1. We there-
fore obtain x=1, y=4, z=0.

Thus we have completed the proof of all the cases proposed, except
one case, the case 10, which was treated by Uchiyama [4] by using the
decomposition in the field Q(1/—39).
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