ELEMENTARY PROOFS OF SOME
THEOREMS ON SPECIAL FOURIER SERIES

TAKESHI KANO

1. Introduction. A real sequence {a,} is said to be quasi-convex if
2 (m+1)|La,| <o
nel

where f2a,= 4@, — @01, = Gn—Gns1.
It is known that a bounded convex sequence is quasi-convex and a
bounded quasi-convex sequence is of bounded variation, viz

,% |da, | <<oo.
We denote by (7'a),, the n-th arithmetic mean of {a.],
(Ta),.=—,11— (@1 +ay+-+a,).
Hardy [4] proved that if
1) Z‘_‘: a, sin nx
is the Fourier series of a function f(x)E L?(0, 2#) (p = 1), then
@) 3 (Ta), sin s

is the Fourier series of a function ¢(x)EL?(0, 2=).
G. and S. Goes [2] obtained for a special sequence {a.} the following

Theorem A. Let {a.} be a real null-sequence of bounded variation.
Then (2) is the Fourier series of an L*-function if and only if

3) sl o
n=1 A
Hence Theorem A, when combined with the above result of Hardy,
has the following interesting corollary.

Corollary 1. If {a.} is a real null-sequence of bounded variation,
then (3) is necessary for (1) being a Fourier series.

1 Cf. [2; Proof of Theorem 5. 3]
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If {@.} is a quasi-convex null-sequence, the following important theo-
rem due to Teljakovskil [7] is known.

Theorem B. Let {e.} be a quasi-convex real null-sequence. Then (1)
is the Fourier series of an L -function if and only if (3) holds.
Thus we have

Corollary 2. When {a.} is a quasi-convex null-sequence, (1) is a
Fourier series if and only if (2) is a Fourier series.

For the proof of Theorem A, the following theorem [2; Theorem 6. 1]
is required.

Theorem C. A bounded sequence {a.} is of bounded variation if and
only if {((Ta).} is a quasi-convex sequence.

Proofs of Theorems A and C due to G. and S. Goes are by a theory of
the so-called BK-space, and so they are not elementary. In the next section
we shall first give an elementary proof of Theorem C and then prove
Theorem A in an elementary way depending upon Theorems B and C.

2. We need the following lemmas to prove Theorem C.
Lemma 1. Put S,= i &, t,=(T a),,=—‘§zl . Then
k=1
2 dt] < X | dal.
k=1 k=1

Proof. Writing d.= da.= a,—a,.,, we have

dty=ti— b= St S
() e
=(—2—— kJ1r1 ) @i+ 2dy+ -+ k).
Hence
b3 PAESDS (%—T}r—l) (1dy| +2]dg] + - +E|de])

<lai (1-— )+ 21al (50 )+l (=)
<|dy| + |da| + -+ | dnl

=3|da|.
k=1
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Lemma 2. Assume that {a.} is of bounded variation. Then {t.} is
quasi-convex if and only if it is of bounded variation.

Proof. It will suffice to prove that {#,} is quasi-convex when it is of
bounded variation. A simple calculation shows that

SnA__ Sn-H — 1

Jt11:7 n+1 -———m (Sn’_‘nan+l)y
24 — Sﬂ Sﬂ+1 Ana2 . @n+1
St = A T A D D) T e ntl
_  2(S,—na..,) 1 _
nn+1) (n+2)  n+2 (@12 121).
Hence
(4) (n+2) Pt =24t + da,.,.

Thus we have by Lemma 1

oo

5 (n+2)| 21| <20 dtl + E | daa] <eo,

n=1

which shows that {¢,} is quasi-convex.

Proof of Theorem C. If a bounded sequence {a,} is of bounded
variation, then (Ta), is also of bounded variation by Lemma 1, so it is
quasi-convex by Lemma 2. - Conversely, if (Ta), is quasi-convex ((Ta), is
bounded since ¢, is bounded), then it is necessarily of bounded variation.
Therefore, from (4) we obtain
i | Ja.] < gl (n+2)| 2, +2§]l | 48, <oo,

n=2

which proves that . is of bounded variation.

Proof of Theorem A. If {a,} is a null-sequence of bounded variation,
then ¢,=(Ta). is quasi-convex according to Theorem C. Thus, by Theorem
B, (2) is the Fourier series of an L'-function if and only if

5)  APLARPN
a=L N

On the other hand, since

[
==ttt

n+1

£
n+1"’

we have
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S el s |t Sy
1.Z=2 n nzn:l n+l S“Z‘:lldtnl,

which implies that (5) holds if and only if (3) holds, whenever {a,} is a
null-sequence of bounded variation, Thus our proof is complete.

3. It has been stated without proof by Szidon [6] that if {a, log #n} is
a real sequence of bounded variation, i.e.

(6) ";:‘l | J(@, log n)| << oo,
then
) i a, Cos nx

n=}

is the Fourier series of an L!-function. A proof of this fact seems to have

been first published by T. Kano [5; Theorem C], and an independent one

by G. Goes [3; Theorem 5.1]. Their proofs are of a different character.
On the other hand, it is elementary to prove that if

(8 i}ldanllogn<°° and a,— 0,
n=|

then both of (1) and (7) converge in the metric of L', and hence they are
Fourier series (cf. [1;p.26]). Note that, in the case of sine series (1), (6)
ceases to be a sufficient condition for (1) being a Fourier series, as is easily
seen from the example @,=1/log (n+1). That condition (6) is weaker
than condition (8) has been proved by G. Goes [3; Theorem 4., 3] in the
following form,

Theorem D. Condition (8) holds if and only if both of (3) and (6)
hold.

Goes applied a theory of BK-space to prove this theorem, however,
we shall give an entirely simple and elementary proof of this theorem.

Since

Aa, log n)= Jda,log n — @,-, log (1+_11i_) ,

we have inequalities
9) IAa,.IlognSI:J(a,,logn)|+ﬁ"zi'-l-,

(10) ld(anlogn)lglda,.llogn+|a—"’;‘|—.
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Therefore, if {a, log n} is of bounded variation and in addition (3) holds,
then (8) follows from (9). Conversely, if (8) holds, then

}si{li !Aak|}

n=1 0 N k=n

> da,
k=n

sle-2l

n

=5 {ldanl 2} <5 | daellog N <o,
N=1 n =1

n=\

i.e. (3) holds. Thus we conclude from (10) that {a, log #} is of bounded
variation. This completes our proof of Theorem D.
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