ON A CONGRUENCIAL PROPERTY OF
FIBONACCI NUMBERS

— CONSIDERATIONS AND REMARKS —
MASATAKA YORINAGA

In a previous note with the same title [4], we have examined on a
computer the possibility of the converse of the following proposition,
obtaining several counter examples to it :

Proposition. If N is a prime number = 5, then we have

U= (L) (mod W),
where Uy denotes the N-th Fibonacci number and (N|5) is the Legendre
symbol.

In the present note, we shall try to weaken the restriction for N to
be a prime, thus extending this proposition. We have found, as a result,
that this can actually be achieved to some extent (cf. our Theorem below).

We define the numbers V, (=1, 2, ---) by setting

U
V,= 32,
U.
The sequence (V,) is known as the so-called associated Lucas sequence
[1, 2]. The numbers U, and V, can be written in the form, with

a=Q1+15)2 b=00—15)2

(1) U, = “1/%{’ Vimd'+b (=1, 2, ).

If an integer N >0, 5= 5, satisfies the relation

Uy = (%) (mod N),

we shall call N a converse number. When a prime number p retains
the property that some U, with »>1 is divisible by p, but for any
integer m, 0 <<m <n, U, is not divisible by p, we call p a primitive
(prime) factor of U,. It is known that every Fibonacci number U, with
n%1, 2, 6 or 12 admits a primitive factor (cf. [3; §2]). A prime factor
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g of U, which is not primitive will be called an elementary factor of U,.

The proper part of U, is the number which is obtained by removing
all the elementary factors from U,. In the subsequent discussions, we
always assume that #>5 in U,, so that the proper part of any U, under
consideration is an odd integer which does not contain the number 5 as a
factor.

Lemma 1. If p is a primitive factor of @ number U,, then p can
be written in the linear form :

:1'

)= -3
with some positive integer k.
This lemma is an immediate consequence of the proposition quoted in
the previous note [4] and is a well-known result.

p=nk+1 if

P
Ul"t‘r U‘l\‘w
~—’

p=nk—1 z'f(

Lemma 2. If N is a divisor of the proper part of some U,, then
N can be written in the form :
)=1

)=-1

N=nk+1 if (%
N=nk—1 if (%
with some positive integer k.

Proof. We shall prove the lemma in the case where N is the product
of two primitive factors p, and p, of U,; the general case can be
treated in quite a similar way. Put s;=(x,/5), s,= (p,/5) and s=(N/5)=
$.8,. Since, by virtue of Lemma 1, p,=unk,+s, and p,=nk,+ s, for
some k,, k,>>0, we have then

(2) N= plpg = n(nk,kz -+ Szkl —+ Slkg) -+ $152.
From this expression, the assertion is obvious.

Lemma 3. For any odd integer N >0, there hold the following
relations :
(3) Uy — (— 1)¥ P2 = Uy_iypp Vewsie,
(4) UN‘ - (““ 1)(N+D/2 = U(A’-bl)]ZV(N—])IZ-
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Proof. By the expressions in (1), we have for any integer # >0

a‘.‘—. b" i " -
UlViany = _‘l/g (a — b l)
az,w»l — b2n+1 . a—b
R
= U2n1‘-! _ ('_‘ 1)“)

giving the first relation in the lemma. The proof for the second relation
is quite the same.

Lemma 4. If k is an odd integer >0, then V., is divisible by V..

Proof. By the second expression in (1) we have V, = ¢" +" and
Vin=a™ + b*", so that

KV"_’L = gW&—Dn 4 pti-bim __ (ab)w(a(k—(!)n KR b(k—s)n) e
- (_1)(1:—1)[2 ((Zb) (k=Dns2

whence the result.
In the subsequent lemmas, N denotes a divisor of the proper part of
some U, #>5, and we put s=(N/5).

Lemma 5. Uw_g is divisible by N if (N —s)/n is even, and
Vevoop is divisible by N if (N—s)/n is odd.

Proof. Note that (N —s)/n is integral, by Lemma 2. We examine
four cases according to the the sign of s and the parity of k= (N — s)/x.

1) The case of s=1 and k2 even. In this case, (N —1)/2 is
divisible by n. Therefore, Uw_p» is divisible by U,. Consequently,
Uc—np is divisibleby N.

2) The case of s=1 and % odd. This case is possible only when
n is even, and (N—1)/2 is an odd multiple of #/2. Therefore, Viy_iyp
is divisible by V.., by Lemma 4. Besides, when # is even, all primitive
factors of U, are always factors of V,,. Hence, V(y_y is divisible
by N.

3) Thecaseof s=—1 and % even. In this case, (N-+1)/2 is
divisible by n. Therefore, Uy is divisible by U,. Hence, Uy
is divisible by N.

4) The case of s= —1 and % odd. This case is possible only when
n is even. Then, as in the case 2), V(w-py is divisible by V.. and
hence Vi yinp is divisible by N.
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Lemma 6. If n isodd, then N has the linear form:
N=4nk + 1 if s=1,
N = 4nk 4+ 2n-—-1 if s=—1

Hence, (N—s)/n is always even.

Proof. We have U,,,, = U4+ Ui., for any integer m=>0. There-
fore, N is a divisor of an integer of the form x*- y? where (x, y)=1.
Hence, in view of the property of quadratic residues, we must have N=1
(mod 4). From this fact the lemma will follow easily.

Lemma 7. When n=0 (mod 4), then (N — 1)/n is even if s=1,
and (N+1)/2 isodd if s= —1.

When n=2 (mod 4), then we always have s=1, and (N —1)/n may
either be even or be odd.

Proof. Firstly, we examine the case where N consists only of one
primitive factor p of U,. And we classify the case into three.

1) The case of #=0(mod 4) and s=1. Assume that (p—1)/n
is odd. By the assumption and by Lemma 5, V,_ is divisible by p
and (p—1)/2 iseven. We have, by (4),

2 _
Up - ( - 1)(”')’ = U(p+1)12 V(ﬁ—l)l‘!:

where U,=1 (mod p) since p is a prime. Therefore, in the above
expression,

the left-hand side =2 (mod p), and

the right-hand side = 0 (mod p).
This is impossible. Hence, (p—1)/# must be even.

2) The case of #=0 (mod 4) and s= — 1. Assume that (p+1)/»
iseven. Then Ug.yy. is divisible by p and (p + 1)/2 is even. From
(4) we see that

U, — (=17 = UgyeVip-vne
where
the left-hand side = — 2 (mod p), and
the right-hand side =0 (mod ).
The contradiction assures that (p+1)/n is odd.

3) The case of #=2 (mod 4). Assume that s= — 1. If we suppose
in addition that (p+ 1)/n is even, then, in like manner as in the case 2),
we arrive at a contradiction. In the sequel, we shall suppose that
(p+1)/n isodd. Then, (p+1)/2 isodd and V(.. is divisible by p.
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From (3)
Uy — (= D2 = Uiy Vi s
here
the left-hand side = — 2 (mod p), and
the right-hand side = 0 (mod p).
Hence, it must be that s=1. About the fact that (N —1)/» may be
even or odd, we can readily confirm it by examples.
Now, for the proof of the general case it will suffice only to consider
the case where N consists of two primitive factors p, and p, of U,.
Put s,=($,/5), s:=(p./5) and p,=nk, +s,, p=nk,+s,.
4) The case of =0 (mod 4). By the expression (2), we have
—N$ = nklk-; -+ Szkl + Slk2 .
Since the first term nk,k;, is even, as can be verified by arguing like
above, the following scheme of implications clarifies all of the case :
s=1:
S ;=8 =1=Fk, k, even=>k; + k, even;

S =8=—1=kFk, k, odd =k, + k, even;

s= —1:

si=1, s,= —1=Fk, even, k, odd=—=Fk, — k, odd;
s5;=—1, s,=1=>Fk, odd, b, even —=> — k, + k, odd.

5) The case of n=2 (mod 4).

From 3) we see that it is always true that s, =s,=1, and we obtain
s=s8585=1.

Now, our main result can be formulated in the following

Theorem. If N is a divisor of the proper part of a Fiboracci
number U, with n>5, then N is a converse number.

Proof. We divide the proof into five cases according to the sign of
s=(N/5) and the parity of .

1) The case of » odd and s=1. In this case, by Lemma 6,
(N—s)/n is always even and, by Lemma 5, Ug.yy; is divisible by N.
In addition, we have N = 4nk + 1 by Lemma 6, so that (N — 1)/2 is
even. From the formula (3) we see

Uy — (— D)* PP = Ug_iypp Vewrnp =0 (mod N).
Hence, we have U, =1 (mod N).

2) The case of # odd and s= —1. In this case, N has the linear
form N=4nk+2n—1 by Lemma 6, so that (N+1)/n is even. And,
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Ucv-nye is divisible by N and (N +1)/2 is odd. We have by (4)
Uy — (— )08 = Uiv-npViv-12=0 (mod N).

Hence, Uy=—1 (mod N).

3) The case of #=0 (mod 4) and s=1. In this case, (N —1)/=
is even by Lemma 7. Therefore, Uy, is divisible by N and (N—1)/2
is even. We have by (3)

Uy = (— D¥ PP = Uy _ppViyeryy =0 (mod N).

Hence, Uy=1 (mod N).

4) The case of =0 (mod 4) and s= —1. In this case, (N+1)/n
is odd by Lemma 7. Therefore, V(y.;. is divisible by N and (N +1)/2
is even. By (3)

Uy — (— 1)¥ P = Up_pypVewenp =0 (mod N).

Hence, Uy=-—1 (mod N).

5) The case of =2 (mod 4). In this case, we always have s=1.
If (N—1)/n is even, then Uy, is divisible by N and (N—1)/2 is
even. By (3)

Uy— (— 1)(N_])/2 = U(N—l)/2V(N+l)I2 =0 (mod N).

Hence, Uy=1 (mod N).

On the other hand, if (N —1)/# is odd, then V(. is divisible by
N and (N—1)/2 isodd. We have by (4)

Uy — (— 1)V = UwinpVw-nz =0 (mod N).

Hence, Uy=1 (mod N).
The proof of our theorem is now complete.

Numerical example 1. N = 4181 = 37-113 is the proper part of
U,,. Hence, N is a composite converse number, This example, which
gives the least composite converse number, is one of the examples we
have listed in the previous report [4].

Numerical example 2. N = 192900153617 = 2269-4373-19441 is the
proper part of U;,. Hence, N;=2269-4373, N, =2269-19441 and N,=
4373-19441, together with N, are all composite converse numbers.

Remark. The contraposition of the classical proposition cited in the
first paragraph of this note gives rise to the following

Criterion. If an integer N 70 (mod 5) satisfies the relation
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Us# () (mod M),

then N is a composite number.

This criterion seems to be effective for the problem of factoring a
large integer. However, our theorem shows that the above criterion does
not provide any information, in the case of factorization of Fibonacci
numbers at least.
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