ON A CONGRUENCIAL PROPERTY OF FIBONACCI NUMBERS — NUMERICAL EXPERIMENTS —

MASATAKA YORINAGA

1. Introduction. Let (U_n) be the sequence of Fibonacci numbes, that is, a sequence of integers defined by

$$U_0=0$$
, $U_1=1$, $U_n=U_{n-1}+U_{n-2}$ $(n=2, 3, \cdots)$,

and let $\left(\frac{n}{5}\right)$ be Legendre's symbol, so that

$$\left(\frac{n}{5}\right) = \begin{pmatrix} 1 & \text{if } n \equiv 1, \ 4 \ (\text{mod } 5) \\ -1 & \text{if } n \equiv 2, \ 3 \ (\text{mod } 5). \end{pmatrix}$$

Then, the following proposition is well known in standard textbooks of the theory of numbers (cf. e. g. [2]).

Proposition. If n is a prime number $\neq 5$, then we have

$$U_n \equiv \left(\frac{n}{5}\right) \pmod{n}.$$

Recently, Prof. S. Uchiyama proposed the author to carry out a numerical experiment examining whether the converse of the above proposition is true or untrue. Namely, the problem is this: if $U_n \equiv \left(\frac{n}{5}\right) \pmod{n}$, then is n necessarily a prime?

We have solved negatively this problem*) by means of a computer calculation and the present note is a report of the result obtained in our experiments.

2. Principle. Let $N = a_0 a_1 a_2 \cdots a_t$ be the binary representation of an integer N > 0 where $a_0 = 1$, $a_i = 0$ or 1 ($i = 1, 2, \dots, t$) are binary digits of N and t + 1 is the number of binary digits.

The first point with which we are confronted is how to compute the value of $U_n \pmod{n}$ for fairly large n. In this situation, it is not much effective to compute $U_n \pmod{n}$ by its definition. Our fundamental for-

^{*)} The problem was actually posed by Prof. D. Sato in University of Regina, Canada, in a private communication. One may easily verify that if $n \equiv 21$ or 35 (mod 56), then $U_n \not\equiv \pm 1$ (mod n).

mulas are as follows:

$$U_{2n-1} = U_{n-1}^2 + U_n^2,$$

$$U_{2n} = (2U_{n-1} + U_n)U_n,$$

$$U_{2n+1} = (U_{n-1} + U_n)^2 + U_n^2,$$

These formulas are easily derived from the definition and basic relations of Fibonacci numbers [1, 3].

Now, for the moment, to avoid the trouble of double suffix, we denote $U_k \pmod{N}$ by U(k). We define the sequence of integers s_i as follows:

$$s_0 = a_0 = 1$$

 $s_i = 2s_{i-1} + a_i$ $(i = 1, 2, \dots, t).$

Obviously, $N=s_i$. Put U(0)=0, U(1)=1. When values of $U(s_{i-1}-1)$ and $U(s_{i-1})$ are known, then $U(s_i-1)$ and $U(s_i)$ can be obtained by use of the fundamental formulas. More precisely, if $a_i=0$, then $U(s_i-1)$ and $U(s_i)$ are computed with the modulus N by use of the upper two formulas and if $a_i=1$, then they are computed by the lower two of them. Hence, we can obtain $U(s_i)\equiv U_N\pmod N$ for relatively small number of steps.

The second point is the multiplication of two numbers with the modulus N.

Let A and B be given two integers and let $B = b_0 b_1 \cdots b_t$ be the binary representation of B. We adopt the following scheme:

$$C_0 = b_0 A$$
,
 $C_i \equiv 2C_{i-1} + b_i A \quad (i = 1, 2, \dots, t) \pmod{N}$.

In this manner, we can obtain the product $C_i \equiv AB \pmod{N}$ by taking no care of overflow in an accumulator of a computer.

3. Procedure. In the following, we state schematically the actua lprocedure.

Step 1: Read a starting value N. Reset $N \equiv 1 \pmod{5}$.

Step 2: Store a_1, a_2, \dots, a_t and t to the memory.

Step 3: Set P(1)=0, Q(1)=1 and k=1.

Step 4: Take up a_k .

If $a_k = 1$, then go to the Step 6.

Step 5:
$$P(k+1) \equiv P(k)^2 + Q(k)^2 \pmod{N}$$
, $Q(k+1) \equiv (2P(k) + Q(k))Q(k) \pmod{N}$, then go to the Step 7.

Step 6:
$$P(k+1) \equiv (2P(k) + Q(k))Q(k) \pmod{N}$$
, $Q(k+1) \equiv (P(k) + Q(k))^2 + Q(k)^2 \pmod{N}$.

Step 7: Replace k+1 to k. If k < t, then go to the Step 4.

Step 8: Compare Q(t) with $(\frac{N}{5})$.

If they are not equal, then go to the Step 10.

Step 9: Test the primality of *N*. Print the result.

Step 10: Replace N+1 to N.

If $N \not\equiv 0 \pmod{5}$, then go to the Step 2.

Step 11: Replace N+1 to N, then go to the Step 2.

4. Observations. In this experiment, we have computed the value of U_N up to $N \le 707000$ and we have found many composite numbers N satisfying $U_N \equiv \left(\frac{N}{5}\right)$ (mod N).

In the following table, we list these numbers with their factorization. At a glance, a definite regularity is not found in the sequence of such numbers. Nevertheless, we have observed somewhat plausible characters.

(i) Distribution of values of N in the modulus 5 is as follows:

$$N \pmod{N}$$
 1 2 3 4 total Number of N 41 14 21 33 109

Appearence of 1 is slightly more often than others. May one regard this phenomenon as a fluctuation?

- (ii) It seems that distribution of prime factors does not spread over all primes. Within the bound 200, the prime factors which do not appear are the following 6 primes: 67, 97, 127, 157, 179, 191. Is this phenomenon a proper character?
- (iii) In the early stage of our experiment, it was anticipated that the numbers in question did not satisfy that $2^{N-1} \equiv 1 \pmod{N}$. However, we found the number N=252601 which satisfied the both conditions, namely, $U_{252601}\equiv 1$ and $2^{252600}\equiv 1 \pmod{252601}$.
- (iv) If *n* is an odd integer, then there holds the relation $U_n^2 1 = U_{n-1}U_{n+1}$. From this relation, one can derive the well known

Proposition. If n is a prime number $\neq 5$, then

$$U_{n-1} \equiv 0 \pmod{n}$$
 if $\left(\frac{n}{5}\right) = 1$,

$$U_{n+1} \equiv 0 \pmod{n}$$
 if $\left(\frac{n}{5}\right) = -1$.

We have examined that in what extend the above proposition is satisfied. As a result, we have recognized that there occurred all of the possible cases of combination except for one case. In the following, we have used the well known facts that:

- (a) If n=ab, then U_n is divisible by U_a and U_b .
- (b) U_{n-1} and U_{n+1} are coprime for any n.

Example 1. $N=4181=37\cdot113$.

37 and 113 are the primitive factors of U_{19} .

 $4180 = 2^2 \cdot 5 \cdot 11 \cdot 19$ is divisible by 19.

Hence, U_{4180} is divisible by 37.113. This is the case where

$$U_{N-1} \equiv 0 \pmod{N}$$
 and $\left(\frac{N}{5}\right) = 1$.

Example 2. $N = 6479 = 11 \cdot 19 \cdot 31$.

11 is the primitive factor of U_{10} .

$$U_{1}$$

$$U_{30}$$
.

 $6480 = 2^4 \cdot 3^4 \cdot 5$ is divisible by LCM(10, 18, 30).

Hence, U_{6480} is divisible by $11 \cdot 19 \cdot 31$. This is the case where

$$U_{N+1} \equiv 0 \pmod{N}$$
 and $\left(\frac{N}{5}\right) = 1$.

Example 3. $N=5777=53\cdot 109$.

53 and 109 are the primitive factors of U_{27} .

 $5778 = 2 \cdot 3^3 \cdot 107$ is divisible by 27.

Hence, U_{5778} is divisible by 53·109. This is the case where

$$U_{N+1} \equiv 0 \pmod{N}$$
 and $\left(\frac{N}{5}\right) = -1$.

Example 4. $N=27071=11\cdot 23\cdot 107$.

11 is the primitive factor of U_{10} .

$$U_{2}$$

$$U_{36}$$
.

 $27070 = 2 \cdot 5 \cdot 2707$ is divisible by 10 and $27072 = 2^6 \cdot 3^2 \cdot 47$ is divisible by LCM(24, 36).

Hence, U_{27070} is divisible by 11 and U_{27072} is divisible by 23·107. This is the case where the prime factors of N are partitioned into two classes of factors of U_{N-1} and U_{N+1} and $\left(\frac{N}{5}\right)=1$.

Example 5. $N = 300847 = 37 \cdot 47 \cdot 173$.

37 is the primitive factor of U_{19} .

 $300846 = 2 \cdot 3 \cdot 7 \cdot 13 \cdot 19 \cdot 29$ is divisible by LCM(19, 87) and $300848 = 2^4 \cdot 18803$ is divisible by 16.

Hence, U_{300846} is divisible by $37 \cdot 113$ and U_{300848} is divisible by 47. This is the case where the prime factors of N are partitioned into two and $\left(\frac{N}{5}\right) = -1$.

The case where $U_{n-1} \equiv 0 \pmod{N}$ and $\left(\frac{N}{5}\right) = -1$ did not happen in our experiments.

The program was written by an assembly language and the computation was done on a computer HITAC 10 in the Department of Mathematics, Okayama University.

REFFERENCES

- [1] L.E.Dickson: History of the the theory of numbers, Volume I, Chelsea Publ. Co., New York, 1952.
- [2] G.H. HARDY and E. M. WRIGHT: An introduction to the theory of numbers, 3rd ed. Clarendon Press, Oxford, 1954.
- [3] N.N. VOROB'EB: Fibonacci numbers, (English translation), Pergamon Press, Oxford, 1961.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received November 22, 1976)

Table

$4181 = 37 \cdot 113$	$139359 = 3 \cdot 11 \cdot 41 \cdot 103$	$430127 = 463 \cdot 929$
$5474 = 2 \cdot 7 \cdot 17 \cdot 23$	146611 = 271.541	$433621 = 199 \cdot 2179$
$5777 = 53 \cdot 109$	$156178 = 2 \cdot 11 \cdot 31 \cdot 229$	$438751 = 541 \cdot 811$
$6479 = 11 \cdot 19 \cdot 31$	$157079 = 13 \cdot 43 \cdot 281$	$451979 = 11 \cdot 17 \cdot 2417$
$6721 = 11 \cdot 13 \cdot 47$	$160378 = 2 \cdot 17 \cdot 53 \cdot 89$	$467038 = 2 \cdot 11 \cdot 13 \cdot 23 \cdot 71$
$10877 = 73 \cdot 149$	$161027 = 283 \cdot 569$	$480478 = 2 \cdot 79 \cdot 3041$
$12958 = 2 \cdot 11 \cdot 19 \cdot 31$	$162133 = 73 \cdot 2221$	$486359 = 29 \cdot 31 \cdot 541$
$13201 = 43 \cdot 307$	$163081 = 17 \cdot 53 \cdot 181$	$489601 = 7 \cdot 23 \cdot 3041$
$15251 = 101 \cdot 151$	$163438 = 2 \cdot 11 \cdot 17 \cdot 19 \cdot 23$	$510719 = 11 \cdot 29 \cdot 1601$
$17302 = 2 \cdot 41 \cdot 211$	$168299 = 31 \cdot 61 \cdot 89$	$512461 = 31 \cdot 61 \cdot 271$
$27071 = 11 \cdot 23 \cdot 107$	$186961 = 31 \cdot 37 \cdot 163$	$520801 = 241 \cdot 2161$
$34561 = 17 \cdot 19 \cdot 107$	$196559 = 11 \cdot 107 \cdot 167$	$530611 = 461 \cdot 1151$
$40948 = 2^2 \cdot 29 \cdot 353$	$197209 = 199 \cdot 991$	$534508 = 2^2 \cdot 13 \cdot 19 \cdot 541$
$41998 = 2 \cdot 11 \cdot 23 \cdot 83$	$203942 = 2 \cdot 107 \cdot 953$	$544159 = 7 \cdot 11 \cdot 37 \cdot 191$
$44099 = 11 \cdot 19 \cdot 211$	$219742 = 2 \cdot 17 \cdot 23 \cdot 281$	$545279 = 7 \cdot 61 \cdot 1277$
$47519 = 19 \cdot 41 \cdot 61$	$219781 = 271 \cdot 811$	$553679 = 7 \cdot 19 \cdot 23 \cdot 181$
$51841 = 47 \cdot 1103$	231703=263.881	$553839 = 3 \cdot 11 \cdot 13 \cdot 1291$
$54839 = 29 \cdot 31 \cdot 61$	$233519 = 11 \cdot 13 \cdot 23 \cdot 71$	$556421 = 431 \cdot 1291$
$64079 = 139 \cdot 461$	$252404 = 2^2 \cdot 89 \cdot 709$	$568342 = 2 \cdot 29 \cdot 41 \cdot 239$
$64681 = 71 \cdot 911$	$252601 = 41 \cdot 61 \cdot 101$	$575599 = 41 \cdot 101 \cdot 139$
$65471 = 7 \cdot 47 \cdot 199$	$254321 = 263 \cdot 967$	$618639 = 3 \cdot 7 \cdot 89 \cdot 331$
$67861 = 79 \cdot 859$	$257761 = 7 \cdot 23 \cdot 1601$	$620279 = 11 \cdot 17 \cdot 31 \cdot 107$
$68251 = 131 \cdot 521$	$268801 = 13 \cdot 23 \cdot 29 \cdot 31$	$635627 = 563 \cdot 1129$
$72831 = 3 \cdot 11 \cdot 2207$	$272611 = 131 \cdot 2081$	$636641 = 461 \cdot 1381$
$75077 = 193 \cdot 389$	$283361 = 13 \cdot 71 \cdot 307$	$638189 = 619 \cdot 1031$
$78089 = 11 \cdot 31 \cdot 229$	$300847 = 37 \cdot 47 \cdot 173$	$640798 = 2 \cdot 17 \cdot 47 \cdot 401$
$88198 = 2 \cdot 11 \cdot 19 \cdot 211$	$302101 = 317 \cdot 953$	$641199 = 3 \cdot 13 \cdot 41 \cdot 401$
$90061 = 113 \cdot 797$	$303101 = 101 \cdot 3001$	$654626 = 2 \cdot 7 \cdot 19 \cdot 23 \cdot 107$
$95038 = 2 \cdot 19 \cdot 41 \cdot 61$	$314158 = 2 \cdot 13 \cdot 43 \cdot 281$	$654718 = 2 \cdot 23 \cdot 43 \cdot 331$
$96049 = 139 \cdot 691$	$327359 = 23 \cdot 43 \cdot 331$	$655201 = 23 \cdot 61 \cdot 467$
$97921 = 181 \cdot 541$	$330929 = 149 \cdot 2221$	$670879 = 11 \cdot 71 \cdot 859$
$100127 = 223 \cdot 449$	$336598 = 2 \cdot 31 \cdot 61 \cdot 89$	$680578 = 2 \cdot 17 \cdot 37 \cdot 541$
$109871 = 17 \cdot 23 \cdot 281$	$389666 = 2 \cdot 23 \cdot 43 \cdot 197$	$689359 = 11 \cdot 29 \cdot 2161$
113573=137.829	$390598 = 2 \cdot 13 \cdot 83 \cdot 181$	$697034 = 2 \cdot 13 \cdot 17 \cdot 19 \cdot 83$
$118441 = 83 \cdot 1427$	$393118 = 2 \cdot 11 \cdot 107 \cdot 167$	$701569 = 11 \cdot 23 \cdot 47 \cdot 59$
$130942 = 2 \cdot 7 \cdot 47 \cdot 199$	$399001 = 31 \cdot 61 \cdot 211$	
$133742 = 2 \cdot 7 \cdot 41 \cdot 233$	$417601 = 19 \cdot 31 \cdot 709$	