IMBEDDINGS OF SOME SEPARABLE EXTENSIONS IN GALOIS EXTENSIONS II

Dedicated to Professor Kiiti Morita on his 60th birthday

TAKASI NAGAHARA

This note is a supplement to the previous paper [10]. In [12], O. E. Villamayor proved an imbedding theorem which is as follows:

Let R_1/R be a strongly separable extension with $\operatorname{rank}_R R_1 = n$. Then the extension R_1/R can be imbedded in an \mathfrak{F} -Galois extension S/R such that $J(\mathfrak{F}(R_1, \mathfrak{F}), S) = R_1$ and \mathfrak{F} is isomorphic to the symmetric group S_n (the group of permutations of $\{a_1, \dots, a_n\}$) where $\mathfrak{F}(R_1, \mathfrak{F})$ is imbedded into \mathfrak{S}_n as the subgroup leaving fixed the element a_1 .

Recently, he kindly advised me of that the theorem is useful for the study of imbeddings of separable algebras into Galois extensions. Indeed, this contains the results of [1, Th. A. 7], [6, Cor. 2. 3], a partial result of [4, Th. 1. 1] (cf. [5]), and some partial results of our theorems [8, Th. 1. 1] and [10, Ths. 1 and 2].

In this note, we shall prove that every strongly separable extension can be imbedded in a Galois extension with Galois group isomorphic to some symmetric group (Th. 1). Moreover, by using its result, we shall verify some generalizations of the results [10, Ths. 1 and 2] (Ths. 2, 3 and 4). In their proofs, the Villamayor's theorem plays an important rôle. As to notations and terminologies used here, we follow our previous paper [10].

Now, if B/R is a strongly separable extension then the rank_{Rp} $(S \bigotimes_R R_p)$ ($p \in Spec\ R$) have the least common multiple, which will be denoted by l(B/R) (where R_p denotes the localization of R with respect to p). First, we shall prove the following

Theorem 1. Let B/R be a strongly separable extension with l(B/R) = m. Then, the extension B/R can be imbedded in a Galois extension with Galois group isomorphic to the symmetric group \mathfrak{S}_m (in the sense of CHR-Galois extension defined in [3]).

Proof. By [2, Th. 2. 5. 1], there exists a finite set of orthogonal non-zero idempotents $\{e_1, \dots, e_s\}$ in R such that $\sum_{i=1}^s e_i = 1$ and the each extension Be_i/Re_i is a strongly separable extension with $\operatorname{rank}_{Re_i}Be_i = m_i$

 $(i=1, \dots, s)$. Then $B=Be_1+\dots+Be_s$ (direct sum), $R=Re_1+\dots+Re_s$, and m is the least common multiple of the m_i . We set here $q_i=m/m_i$ ($i=1,\dots, s$), and consider the following rings:

$$B_i^* = Be_i \oplus \cdots \oplus Be_i \quad (q_i \text{ copies}),$$

$$B_i' = \{(b_i, \cdots, b_i) \in B_i^* ; b_i \in Be_i\},$$

$$R_i' = \{(r_i, \cdots, r_i) \in B_i^* ; r_i \in Re_i\}$$

(where the direct sum \oplus is that of rings). Clearly the extension Be_i/Re_i is isomorphic to the extension B_i'/R_i' by the canonical map, and hence B_i'/R_i' is a strongly separable extension with rank m_i . Moreover, by [9, Lemma 1.1], the extension B_i^*/B_i' is a strongly separable extension with rank q_i . Thus the extension B_i^*/R_i' is a strongly separable extension with rank m_i . Next we consider the following rings:

$$B^* = B_1^* \oplus \cdots \oplus B_s^*$$

$$B' = B_1' \oplus \cdots \oplus B_s' \subset B^*$$

$$R' = R_1' \oplus \cdots \oplus R_s' \subset B'.$$

Then the extension B^*/R' is a strongly separable extension with rank m. Hence, by Villamayor's imbedding theorem, this extension can be imbedded in a Galois extension with Galois group isomorphic to the symmetric group \mathfrak{S}_m . Moreover, the extension B'/R' is isomorphic to the extension B/R by the canonical map, which is our desired one. This completes the proof.

Now, if $\mathfrak{D}_1, \dots, \mathfrak{D}_n$ are groups then $\mathfrak{D}_1 \times \dots \times \mathfrak{D}_n$ will mean the direct product of the groups \mathfrak{D}_i , and in case $\mathfrak{D}_1 = \dots = \mathfrak{D}_n = \mathfrak{D}$, this product will be denoted by $(\times \mathfrak{D})^n$. Moreover, if \mathfrak{S}_n is the symmetric group of permutations of $\{1, \dots, n\}$ and \mathfrak{D} is a group then $\mathfrak{S}_n \times (\times \mathfrak{D})^n$ will mean the semi-direct product of \mathfrak{S}_n and $(\times \mathfrak{D})^n$ such that given any $\sigma = \{i \to p_i; i=1, \dots, n\} \in \mathfrak{S}_n, (\tau_1, \dots, \tau_n)\sigma = \sigma(\tau_{p_1}, \dots, \tau_{p_n})$ for all $(\tau_1, \dots, \tau_n) \in (\times \mathfrak{D})^n$. If $\mathfrak{S}_n \times (\times \mathfrak{D})^n = \{(\sigma, (\tau_1, \dots, \tau_n)); \sigma \in \mathfrak{S}_n \text{ and } \tau_i \in \mathfrak{D}, (i=1, \dots, n)\}$ then the subgroup $\{(\sigma, (\tau_1, \dots, \tau_n)) \in \mathfrak{S}_n \times (\times \mathfrak{D})^n; \sigma(1) = 1\} (\cong (\mathfrak{S}_{n-1} \times (\times \mathfrak{D})^{n-1}) \times \mathfrak{D})$ will be denoted by $[(\mathfrak{S}_{n-1} \times (\times \mathfrak{D})^n; \sigma(1) = 1\} (\cong \mathfrak{S}_{n-1} \times (\times \mathfrak{D})^{n-1})$ will be denoted by $[\mathfrak{S}_n \times (\times \mathfrak{D})^n; \sigma(1) = 1\} (\cong \mathfrak{S}_{n-1} \times (\times \mathfrak{D})^{n-1})$ will be denoted by $[\mathfrak{S}_{n-1} \times (\times \mathfrak{D})^n]^n$. Under this situation, we shall prove the following

Theorem 2. Let R_1/R be a strongly separable extension with $\operatorname{rank}_R R_1 = n$ and T/R_1 an \mathfrak{P} -Galois extension. Then the ring extension T/R can be imbedded in a \mathfrak{P} -Galois extension A/R such that $\mathfrak{P}(R_1, \mathfrak{P}) = \mathfrak{P}$,

 $J(\mathfrak{J}(T, \mathfrak{G}), A) = T$, and $\mathfrak{G} \cong \mathfrak{S}_n \widetilde{\times} (\times \mathfrak{H})^n$ where the subgroups $\mathfrak{J}(R_1, \mathfrak{G}) \supset \mathfrak{J}(T, \mathfrak{G})$ are imbedded into $\mathfrak{S}_n \widetilde{\times} (\times \mathfrak{H})^n$ as the subgroups $[(\mathfrak{S}_{n-1} \widetilde{\times} (\times \mathfrak{H})^{n-1}) \times \mathfrak{H}]' \supset [\mathfrak{S}_{n-1} \widetilde{\times} (\times \mathfrak{H})^{n-1}]'$.

Proof. By Villamayor's imbedding theorem, the extension R_1/R can be imbedded in a \mathfrak{F} -Galois extension S/R such that $\mathfrak{F} \cong \mathfrak{S}_n$ $(\sigma \to \sigma')$ and $\mathfrak{F}(R_1, \mathfrak{F}) \cong \mathfrak{S}_{n-1}$ $(\sigma \to \sigma')$ where \mathfrak{S}_n is the group of permutations of $\{a_1, \dots, a_n\}$ and $\mathfrak{S}_{n-1} = \{\sigma' \subseteq \mathfrak{S}_n : \sigma'(a_1) = a_1\}$. By Galois theory, the cardinal number of $\mathfrak{F}|R_1$ (the restriction of \mathfrak{F} to R_1) is n. We write here

$$\mathfrak{F}|R_1 = \{\sigma_1 | R_1 = 1, \cdots, \sigma_n | R_1\}.$$

Then, we have that $\{\sigma_1'(a_1), \dots, \sigma_n'(a_1)\} = \{a_1, \dots, a_n\}$, and hence, for $\sigma \in \mathfrak{F}$, we may write $\sigma' = \{\sigma_i'(a_1) \rightarrow \sigma'\sigma_i'(a_1) ; i=1, \dots, n\}$. We consider the group homomorphism of \mathfrak{F} into the group of permutations of $\mathfrak{F}|R_1$ which is defined by the following

$$\phi: \sigma \longrightarrow \{\sigma_i | R_1 \rightarrow \sigma \sigma_i | R_1; \quad i = 1, \dots, n\}.$$

Let σ be in the kernel of ϕ . Then, for each $1 \leq i \leq n$, there exists an element ε_i in $\Re(R_1, \Re)$ such that $\sigma\sigma_i = \sigma_i\varepsilon_i$. Hence $\sigma'\sigma_i' = \sigma_i' \varepsilon_i'$, and so, $\sigma'\sigma_i'(a_1) = \sigma_i' \varepsilon_i'$ (a_1) = $\sigma_i' (a_1)$. This implies $\sigma' = 1$ (identity), that is, $\sigma = 1$. Thus ϕ is an isomorphism (whence, by the results of [7, Lemma 3.1] and [3, Th. 2.2], S is generated by the subrings $\sigma_i(R_1)$, $1 \leq i \leq n$). Now, we set $[i] = \sigma_i(R_1)$ ($i = 1, \dots, n$). For each i, the isomorphism $\sigma_i^{-1}|[i]$ ($[i] \rightarrow [1] = R_1$) makes T into an [i]-algebra. We consider the tensor product of $S_{[1],\dots,[n]}$ and the [i] T:

$$A = (\cdots((S \bigotimes_{\{1\}} T) \bigotimes_{\{2\}} T) \bigotimes \cdots) \bigotimes_{\{n\}} T,$$

and we denote $(\cdots((a \otimes b_1) \otimes b_2) \otimes \cdots) \otimes b_n \in A$ as $a \otimes b_1 \otimes b_2 \otimes \cdots \otimes b_n$ omitting all parentheses. Then, A is an R-algebra, and the canonical map

$$\psi: b \longrightarrow 1 \otimes b \otimes 1 \otimes \cdots \otimes 1 \quad (b \in T)$$

is an R-algebra monomorphism of T into A (cf. [10, Lemma 2]). As in [10], if $\tau \in \mathfrak{H}$ then, for each $1 \leq i \leq n$, there exists an R-algebra automorphism $\tau^{(i)}$ of A such that

$$\tau^{(i)}(a \otimes b_1 \otimes \cdots \otimes b_n) = a \otimes b_1 \otimes \cdots \otimes b_{i-1} \otimes \tau(b_i) \otimes b_{i+1} \otimes \cdots \otimes b_n.$$

Given such automorphisms $\tau^{(i)}$ and $\nu^{(j)}(\tau, \nu \in \mathfrak{D})$, it is obvious that $\tau^{(i)}\nu^{(j)} = \nu^{(j)}\tau^{(i)}$ for $i \neq j$. Next let $\sigma \in \mathfrak{F}$ so that $\sigma\sigma_i \mid R_1 = \sigma_{\rho_i} \mid R_1$ and $\sigma^{-1}\sigma_i \mid R_1 = \sigma_{\rho_i} \mid R_1$. Then we have an R-algebra isomorphism

$$A \longrightarrow (\cdots ((S \bigotimes_{[p_n]} T) \bigotimes_{[p_n]} T) \bigotimes \cdots) \bigotimes_{[p_n]} T$$

which is defined by the following

$$a \otimes b_1 \otimes \cdots \otimes b_a \longrightarrow \sigma(a) \otimes b_1 \otimes \cdots \otimes b_n$$
.

Hence there exists an R-algebra automorphism σ^* of A such that

$$\sigma^*(a \otimes b_1 \otimes b_2 \otimes \cdots \otimes b_n) = \sigma(a) \otimes b_{q_1} \otimes b_{q_2} \otimes \cdots \otimes b_{q_n}.$$

Moreover, there holds that for any $\tau \in \mathfrak{P}$, $\sigma^* \tau^{(i)} = \tau^{(p_i)} \sigma^*$ $(i = 1, \dots, n)$. Therefore, if $(\tau_1, \dots, \tau_n) \in (\times \mathfrak{P})^n$ then

$$\sigma^*(\tau_1^{(1)}\cdots\tau_n^{(n)})=(\tau_1^{(p_1)}\cdots\tau_n^{(p_n)})\sigma^*=(\tau_{q_1}^{(1)}\cdots\tau_{q_n}^{(n)})\sigma^*$$

so that

$$(\tau_1^{(1)}\cdots\tau_n^{(n)})(\sigma^{-1})^*=(\sigma^{-1})^*(\tau_{q_1}^{(1)}\cdots\tau_{q_n}^{(n)})$$

and similarly

$$(\tau_1^{(1)} \cdots \tau_n^{(n)}) \sigma^* = \sigma^* (\tau_{p_1^{(1)}} \cdots \tau_{p_n^{(n)}})$$

(cf. [10, Lemma 3]). We set

$$\mathfrak{F}^* = \{ \sigma^* \; ; \; \sigma \in \mathfrak{F} \}, \; \mathfrak{F}_1^* = \{ \sigma^* \; ; \; \sigma \in \mathfrak{F}(R_1, \; \mathfrak{F}) \},$$
$$\mathfrak{P}^{(i)} = \{ \tau^{(i)} \; ; \; \tau \in \mathfrak{F} \} \; (i = 1, \; \cdots, \; n), \; \text{ and } \; \mathfrak{G} = \mathfrak{F}^*(\Pi_i \; \mathfrak{F}^{(i)}).$$

Then $\mathfrak{F} \cong \mathfrak{F}^*$, $\mathfrak{F}(R_1, \mathfrak{F}) \cong \mathfrak{F}_1^*$, $\mathfrak{D} \cong \mathfrak{D}^{(i)}$ $(i=1, \dots, n)$, $\mathfrak{F}^* \cap \Pi_i \mathfrak{D}^{(i)} = \{1\}$, and the product $\Pi_i \mathfrak{D}^{(i)}$ is direct. Moreover, since $\mathfrak{F}^*(\Pi_i \mathfrak{D}^{(i)}) = (\Pi_i \mathfrak{D}^{(i)}) \mathfrak{F}^*$, this makes \mathfrak{G} into a group. If $\sigma \in \mathfrak{F}$ and $\sigma \sigma_i \mid R_1 = \sigma_{p_i} \mid R_1 \ (i=1, \dots, n)$ then we write $\sigma'' = \{i \to p_i : i=1, \dots, n\}$. Since the above mentioned ϕ is an isomorphism, the map $\sigma \to \sigma'' \ (\sigma \in \mathfrak{F})$ is an isomorphism of \mathfrak{F} into the symmetric group of permutations of $\{1, \dots, n\}$. Hence, there exists a canonical isomorphism of \mathfrak{F} into $\mathfrak{S}_n \mathfrak{F}(\times \mathfrak{D})^n$ which is defined by the following

$$\pi: (\boldsymbol{\sigma}^*(\tau_1^{(1)}\cdots\tau_n^{(n)})) \longrightarrow (\boldsymbol{\sigma}^{tt}, (\tau_1, \cdots, \tau_n))$$

(cf. [10, Lemma 4]). Now we write

$$T_1 = \{1 \otimes b \otimes 1 \otimes \cdots \otimes 1; b \in T\},$$

$$R_{11} = \{1 \otimes r_1 \otimes 1 \otimes \cdots \otimes 1; r_1 \in R_1\},$$

$$R_* = \{1 \otimes r \otimes 1 \otimes \cdots \otimes 1; r \in R\}.$$

Then A/R_* is a \mathfrak{G} -Galois extension, $J(\mathfrak{J}(R_{11},\mathfrak{G}),A)=R_{11}$, $J(\mathfrak{J}(T_1,\mathfrak{G}),A)=T_1$, $\mathfrak{J}(R_{11},\mathfrak{G})=\mathfrak{F}_1^*(\Pi_i\mathfrak{G}^{(i)})$, $\pi(\mathfrak{J}(R_{11},\mathfrak{G}))=[(\mathfrak{S}_{n-1}\widetilde{\times}(\times\mathfrak{D})^{n-1})\times\mathfrak{D}]'$, $\mathfrak{J}(T_1,\mathfrak{G})=\mathfrak{F}_1^*(\Pi_{n-2}^n\mathfrak{D}^{(i)})$, $\pi(\mathfrak{J}(T_1,\mathfrak{G}))=[\mathfrak{S}_{n-1}\widetilde{\times}(\times\mathfrak{D})^{n-1}]'$, and T_1/R_{11} is a Galois extension with Galois group $\mathfrak{J}(R_{11},\mathfrak{G})|T_1(\cong\mathfrak{D})$. Moreover, for

the above mentioned ψ , we see that $\psi(R) = R_*$, $\psi(R_1) = R_{11}$, and ψ is an isomorphism of the \mathfrak{F} -Galois extension T/R_1 into the $(\mathfrak{F}(R_{11},\mathfrak{G})|T_1)$ -Galois extension T_1/R_{11} (cf. [10, Lemma 5]). Therefore, the extension A/R_* is a desired one. This completes the proof.

By virtue of Ths. 1 and 2, we shall prove the following

Theorem 3. Let R_1/R be a strongly separable extension with rank R_1 = n and B/R_1 a strongly separable extension with $l(B/R_1)=m$. Then the extension B/R can be imbedded in a \mathfrak{G} -Galois extension A/R such that $J(\mathfrak{J}(R_1, \mathfrak{G}), A)=R_1$, and $\mathfrak{G}\cong\mathfrak{S}_n \times (\times\mathfrak{S}_m)^n$ where the subgroup $\mathfrak{J}(R_1, \mathfrak{G})$ is imbedded into $\mathfrak{S}_n \times (\times\mathfrak{S}_m)^n$ as the subgroup $[(\mathfrak{S}_{n-1} \times (\times\mathfrak{S}_m)^{n-1}) \times \mathfrak{S}_m]^l$.

Proof. By Th. 1, the extension B/R_1 can be imbedded in Galois extension T/R_1 with Galois group isomorphic to the symmetric group \mathfrak{S}_m . Hence, by Th. 2, we obtain our desired \mathfrak{B} -Galois extension A/R.

Finally, we have the following theorem which will be easily seen by using the results of Ths. 2 and 3.

Theorem 4. Let $R = R_0 \subset R_1 \subset \cdots \subset R_s \subset B$ a chain of subrings of B, and assume that for each $0 \le i < s$, the extension R_{i+1}/R_i is a strongly separable extension with rank and the extension B/R_s is a strongly separable extension. Then, the extension B/R can be imbedded in a \mathfrak{G} -Galois extension A/R such that $J(\mathfrak{J}(R_i, \mathfrak{G}), A) = R_i$ $(i=0, 1, \cdots, s)$.

REFERENCES

- [1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367—409.
- [2] N. BOURBAKI: Algèbre commutative, Chapitres I—II, Actualitès Sci. Indust., No. 1290, Hermann, Paris, 1961.
- [3] S. U. CHASE, D. K. HARRISON and ALEX ROSENBERG: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15—33.
- [4] G.J.Janusz: Separable algebras over commutative rings, Trans, Amer. Math. Soc. 122 (1966), 461—479.
- [5] A. Magid: The separable Galois theory of commutative rings, Marcel Dekker, Inc., New York, 1974.
- [6] A. MAGID: Principal homogeneous spaces and Galois extensions, Pacific J. Math. 53 (1974), 501-513.
- [7] T. NAGAHARA: On separable polynomials over a commutative ring II, Math. J. Okayama Univ. 15 (1972), 149—162.
- [8] T.NAGAHARA: On separble polynomials over a commutative ring III, Math. J. Okayama Univ. 16 (1974), 189—197.
- [9] T. NAGAHARA and A. NAKAJIMA: On separable polynomials over a commutative ring IV,

- Math. J. Okayama Univ. 17(1974), 49-58.
- [10] T. NAGAHARA: Imbeddings of some separable extensions in Galois extensions, Math. J. Okayama Univ. 17 (1974), 59-65.
- [11] O. E. VILLAMAYOR and D. ZELINSKY: Galois theory with infinitely many idempotens, Nagoya Math. J. 35 (1969), 83—93.
- [12] O. E. VILLAMAYOR: Separable algebras and Galois extensions, Osaka J. Math. 4 (1967). 161-171.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY

(Received January 27, 1976)

Added in proof: From the proof of Th. 1, one will easily see that the result of Th. 1 can be sharpened as follows

Theorem 1'. Let B/R be a strongly separable extension with l(B/R) = m. Then, the extension B/R can be imbedded in a $\Im G$ -Galois extension T/R such that $\Im G$ is isomorphic to the symmetric group $\Im G$ _m (the group of permutations of $\{a_1, \dots, a_m\}$) where $\Im (B, \Im G)$ is imbedded into $\Im G$ _m as the subgroup leaving fixed the element a_1 .

In Th. 1', we have $\operatorname{rank}_R J(\Im(B, \mathfrak{D}), T) = m$, and hence, if B has the rank over R then $\operatorname{rank}_R B = m$ and $J(\Im(B, \mathfrak{D}), T) = B$, which is the result of the Villamayor's theorem.