GALOIS OBJECTS AS MODULES OVER A
HOPF ALGEBRA

ATSUSHI NAKAJIMA

Let C be the category of coalgebras over a commutative ring R with
identity and let H be a Hopf algebra with antipode which is a finitely
generated projective R-module. In §1, we shall define the notion of a
Galois H-object in C as a generalization of that given in [2] and discuss
the properties of such objects. In §2, we shall state several results of
Galois objects in the categery of R-algebras which are similar to those in
C. In § 3, a homomorphism from the group of Galois H*-objects to Pic(H)
for some Hopf algebra H will be considered, where H*=Hom.(H, R).
This is a generalization of 3, Th.2]. Finally we correct some errors in
the previous paper [4].

Throughout this paper, R will denote a commutative ring with iden-
tity and unadorned & will mean &, Moreover we shall assume that
every ring has an identity which is preserved by every homomorphism,
every module is unital and every algebra is an R-algebra. Concerning
coalgebras and Hopf algebras we shall use freely the notation and termi-
nology in Sweedler [6]. Finally H will represent always a Hopf algebra
with structure maps (2, 7, dJ, e).

1. Let C be the category of R-coalgebras. In this section we shall
give several results which are similar to those stated in [2] for the category
of cocommutative R-coalgebras. The tensor product (X is the product in
the category of cocommutative R-coalgebras (cf. [2]), but in general it is
not so in C. Therefore we are obliged to abandon the categorical argu-
ment employed in [2].

An H-object in C is defined to be a pair (X, «), where X is in C and
a: X Q H—> X in C such that the diagram below commute

1& 1Ry
XQHRQH ——>XQH - XQ®R ——> XQH
S N
XRH X X
a

the unlabeled map being the natural isomorphism. Occasionally we shall
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denote the pair (X, «) by X. If we need the explicit reference to @ we shall
write «=ay. One may remark here that H itself with ax=yp is an H-
object. Let C” be the category of all H-objects. A map f: X——>Y in C¥
is a C-map such that a,(f ®1,)= Fay where 1 is the identity map from
H to H. For an H-object. X, we define an R-module homomorphism 7,:
XQH—>XR®X by 7(2Q@hk) = 4x(x)1Q%) = (1:Qa) xR 1)z R k)

(*X, hEH). Then the following diagram commutes
X®H
P Tx Xy

Xe—m XR®X— X
b b2

where p(x@h)=c(h)x, p(xQy) =xex(¥) and p,(xRy)=ex(x)y (x,y €
X, hEH).

Definition 1.1, Let H be a Hopf algebra. Then X in C” will be called
a Galois H-object in C if X is a finitely generated projective faithful R-
module and the map y»: X@ H— XQX is an R-module isomorphism.

Let¢: G——> H be a homomorphism of Hopf algebras, X in C¥, and -
& x: X@Q G—> X the composition

1®(I) Ay
XRG— XRH—X.
Since (X, ay.x) is an object in C°, we can define a functor
- c*: ¢’ —>cC°

as follows : C*(X)=(X, ay.») (X, ) ECH), C*{(f)=f(f: X—>Y).

In the subsequent study of this section, we shall assume that Hopf
algebras G and H are cocommutative Hopf algebras. First, we state the
following lemma which is easy to be verified.

Lemma 1.2(cf. [2, Remarks 4.3 (d)]). Let¢: G—> H be a homomor-
phism of Hopf algebras, and X in C°. Viewing H as a left H-module via
b, Y=XQeH is an H-object with the obvious right H-module structure
and the coalgebra operations on Y satisfying the following formulae

4@ B) =2 . 0 (2n @ %y) @ (2y @ hzy)
é"y(x® h) = 5.\'(x) e(h)
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where dd(x) =2 x0y@ x5y, and J(h) = ZmhoyQho (xEX, hE H).
Furthermore the diagram

(U.l‘.d 1'_-_-
XQGCRH —— XQH —> Y=XQ.H
a.x’®111

is a coequalizer diagram in C, where wy,(xQgRh)=x2Rb(g)h and 7
is the canonical map.

Theorem 1.3 (cf. [3, Th.2.9]). Let ¢: G—>H be a homomorphism

of cocommutative Hopf algebras, and let a(X ) be defined by the following
coequalizer diagram

Wy, Ty ~
XQ CRH — = XQH —> X@.H=3(X)
a,v®1u
where vy, and 7wy are as in Lemma 1.2. Then ¢ : C° ——>CF is the left
adjoint of C*: C¥ —— C°. In particular,if f: X——>CXY) is a C°-map
(YECH), then the corresponding CP-map f: XQ H—>Y, arising from
adjointness, renders the diagram below commutative

x
XQH —— XQR:H
|

f®1nl l f

Y®H Y

Ay

Proof. LetXbeinC’ and YinC". If f: X—> C*(Y)=Yisin
C° then we have far = ar(1,Q¢) (fR1:). It follows that ay(f®1,)
(a.¥® 1H)=C¥Y(Oéx~'® 1H) (11'® ¢ ®1H) (f® 1G®1H)=a}’(f® 111) Wy,g. Thus
by Lemma 1.2, there exists a unique C"-map f: X®H —> Y such
that fry=ca(f @1y). As above we define

@: Hom _s (X, C*(Y))—>Hom _s (B(X), Y)
#: Hom _; ($(X), Y) —> Hom _; (X, C*(Y))

by &(f)=f and ¥(g)=g(1x®%m): X=XQR—> XQH —> Y. Then
it is easy to see that ## =1 and y¥=1.

If :H is a Hopf algebra with antipode which is a finitely generated
projective R-module, then H is called a finite Hopf algebra.

The following lemma will be easily shown.
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Lemma 1.4 (cf. [2, Prop.9.1]). If H is a finite Hopf algebra, then
His a Galois H-object in C.

Lemma 1.5. Let H be a finite Hopf algebra. If X is a Galois H-object
in C, then X is a finitely generated projective H-module.

Proof. Let X be a Galois H-object. Then ¢y: X——>R is an R-module
epimorphism and thus R is an R-direct summad of X. Since the isomor-
phism yy: X@H—>X® X is a right H-module isomorphism, X is an H-
module direct summand of XX X. By the projectivity of XX = XQH
as H-modules, X is a finitely generated projective H-module.

By Lemmas 1. 4 and 1. 5, we have the following

Theorem 1.6 (cf. [2, Th. 2. 20]). Let ¢: G——> H be a homomor-
phism of finite cocommutative Hopf algebras. If X is a Galois G-object

in C, then $(X)=X® «H is @ Galois H-object in C.

Proof. Let X be a Galois G-object in C, and define amap p: XQH
—> XQXQH by p(2a@h) = Lty 2@k (x € X, h € H). Since
1x Q) (UxR1s) : XQG——>X X X is an isomorphism of right G-modules,
p is an isomorphism with the inverse 1,& ;& 1,. We consider now the
following diagram :

3

X®H®H—l——> XQRQHRQH
P®1E 1 J/o"z

XQRXRHRQH — > XRXQHRQXQ:H

23

where

0, (xQrRR) =2 2Q b by k

3 (xQrQR) =2 0y Q2 R Q 2, Q k

3 (AQyREQR) =2 . Q@31 Ry Q@ Yy Q by ke
(x, y€X, h, k=H). Then it is easy to see that the above diagram com-
mutes, and so 4, is an isomorphism by Lemma 1. 4. Since XX XR:HRX
R sH is a submodule of XR XX HR XX XX -H canonically, 4§, has the
inverse 1,Qe,Q1, Q1R ex®1,, thatis, ¢, is an isomorphism. There-
fore 65 is an isomorphism and XQR:HR H = (XR H) R (XQ;H). Clearly
X Q@ H being finitely generated projective R-module, X® .H is a Galois
H-object in C.



GALOIS OBJECTS AS MODULES OVER A HOPF ALGEBRA 163

Definition 1.7 (cf. [2, Def. and Remarks 2.22]). Let H be a finite
Hopf algebra. We shall denote by E<(H) the set of C%isomorphism classes
of Galois H-objects in C.

If $: G— H is a homomorphism of Hopf algebras, in virture of
Th. 1.6, we can define a map E(9): E(G) —> E-(H) by E(¢) (X))=
@;(X ), where (X)means a C’-isomorphism class of Xin C%, If¢: G—>
H and ¢: H—> J are homomorphisms of Hopf algebras, then we can
check easily that C**=C*C*: C/—> C’. Moreover by the uniqueness of
adjoints (or an easy direct computation), we obtain a natural equivalence
of functors vrp = 1”7,?,5' C°——C’, which gives rise to the equality E(y¢)
=E@) E(}): Ec(G)—> E(]).

We insert here the following which will be used in § 2,

Lemma 1.8. (a) Let X be a Galois G-object in C. Then jues(X) =
Hin CU.

(b) Let ¢.: G.—> H; be homomorphisms of cocommutative Hopf
algebras and let X, be Galois Grobject (i=1, 2). Ther $,R¢, (X; R X,)

= 51(X1) ®:52(Xz) in CHi%%,,

Proof. It suffices to prove (a) only. Since R is the only Galois R-
object over R, we have £:(X) = R in C*. Thus 7x¢¢(X) =7nes (R) =7x(R)
= H in C”.

By Th. 1. 6, we readily obtain the following

Theorem 1.9 (cf. [2, Th.3.9 (a)]). Let H be a finite, commutative,
cocommutative Hopf algebra. Then E-(H) is an abelian semi-group with
the addition

X)+TV)= (XQY)N)=(XQY)QuezH)
where H is a left HQ H-module by 12 and XQ Y is in CH®X by the natural
way. (H) is the zero element in E- (H).

2. In this section we shall give some statements which are duals of
those in § 1.

Let H be a finite Hopf algebra. If (S, @) is a right H*-comodule alge-
bra, then S has a left H-module structure which is defined by

h(x)= 220 Q<h, 2oy (€S, hEH)

where (,>: HQ H*—— R denotes the duality pairing. Thus S is a left
H-module algebra. Conversely, if S is a left H-module algebra, then we
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obtainamapa: S—> SQH*;
a(S)=2:5 1 SQh* (s€S, hEH, h*EH")

where {h:;, #:*}.1z:5. is an R-projective coordinate system of H. Since S is
a left H-module algebra, S is a right H*-comodule algebra with respect
to a (cf. [4, p.142]).

In the subsequent study, we shall assume, unless explicitly stated
otherwise, that Hopf algebras are finite, commutative, cocommutative and
every right H*-comodule algebra (resp. left H-module algebra) will be
regarded as a left H-module algebra (resp. right H*-comodule algebra) in
the above way. '

The following definition is slightly different from [2, Def. 7. 3].

Definition 2.1. Let H be a Hopf algebra, and X a right H-comodule
algebra. X will be called a Galois H-object if

(1) X s a faithfully flat R-module.

2 7r: XQX—> XQ H defined by y (2@ »)=(x®1) a(y) is an R-
module isomorphism.

The following theorem can be proved by the same method as in the
proof of [2, Th. 9.3].

Theorem 2.2. Let H be a finite commutative Hopf algebra, and S a
right H-comodule algebra. Then the following conditions are equivalent :

(a) S is a Galois H-object.

(b) S is a finitely generated faithful projective R-module and the
mapping f: SE H* —> Endx(S) defined by f(s ¥ h*)(x)=sh*(x) is an R-
module isomorphism (s, xES, h*SH*).

Let A be the category of R-algebras and let A, (resp. C.) be the full
subcategory of A (resp. C) whose objects are those of A (resp. C) which
are finitely generated projective R-modules. Then the functor —*: C,*
—> A, is an isomorphism of categories, where —* = Homg (—, R). From
this fact, the following is immediate ([cf, 6, 1.1 and 2, p. 34]).

Lemma 2.3. (@) IF(C, dc, ec) is in C,, then (C*, d.*, %) is in A..
(b) If (A, ni, 7.)isin A, then (A%, rs*, 7.%) is in C..
(c) IfF(X, a)isin G, then (X*, a*)isin A .
(@ IF(Y, B)isin AF, then (Y*, 3*)isin CM .
Here AL ° is the category of ( )-comodule algebras in A.
By Th. 2.2 and Lemma 2. 3, we have the following
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Proposition 2.4. Let H be a fintte cocommutative Hopf algebra.
Then X is a Galots H-object in C, if and only if X* is a Galois H*-object
in A,

Let H be finite cocommutative Hopf algebra and let Ea (H*) be the
set of isomorphism classes of Galois H*-objects in A,. Then it is clear
that the mapping *: Ec (H) —> E. (H*) defined by *((X))=(X*) gives
the set of isomorphism. Since Ec (H) is an abelian semi-group by Th.1.9,
the mapping * defines the abelian semi-group structure on E. (H*). If A, <
is the full subcategory of A, whose objects are those of A, which are com-
mutative R-algebras, then by Th.l.4, Th.1.9 and the functor —*, we
can see that the semi-group structure on EAU(H *) coinside with the group
structure of [2, Chap. I].

Next we shall prove that EA(_(H *) has a group structure for finite, com-
mutative, cocommutative Hopf algebra H. First, we have the following

Lemma 2.5. Letb: G——> H be a homomorphism of Hopf algebras
and let X be a Gelois G*-object in A.. Then ¢(X)=Hom, (H,X) is a
Galois H*-object in A,, where the multiplication on (X)) is defined by the
Sformula

(f. g) (B)=2a flhayg(he)
(J(h)=2(h) h(])®h(g)) and H acts on ¢(X) via (I’lf)(k):f(kh) (h, kEH).

Proof. Let X be a Galois G*-object in A,. Then by Prop.2.4, X* is
a Galois G-object in C,. Thus by Th.1.6, X*®,H is a Galois H-object
in C.. Applying the functor —* to X* @ .H, we obtain
Homz(X*Q :H, R) = Hom.(H, X)
as Galois H*-objects in A,. The rest of the proof will be clear.

Lemma 2.6, Let ¢: G——> H be an epimorphism of Hopf algebras
“and let X be a Galois G*-object in A,. Then
H(X)=X*"®
in A, where ker (P)= {g=€G | (1QP) de(g)=gR®1 in GRH}, X ®=
{xEX|gx=eg)x for all gEker(P)t, and the action of H=d(G) on
X='¥ s given by ¢(g)(x)=g(x).

Proof. Let g be in ker(). Then an easy computation show that $(g)
=eg(g). We define the maps j: X* ¥ — ¢(X) and j/: H(X)—> X @
by j(x) (P(g))=g(x) and j'(f)=r(1), respectively. It is easy to verify
that j, j/ are morphisms in A,” and jj'=1, j'j=1.
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By Lemmas 2. 5 and 2. 6, we have the following

Corollary 2.7. Let ¢: G—> H be an epimorphism of Hopf algebras

and let X, Y be Galois G*-objects in A.. Then t;1>(x)=($(X N* in AY
and
X)+(Y)=(XQY)=((XQR Y)* ™) ¢n E. (G*).

Lemma 2.8. Let ¢,: G, —> H; be homomorphisms of finite, commut-
ative, cocommutative Hopf algebras and let X, be Galois G*-objects (i =
1, 2). Then ($,Q%,) (X;RX,) = $:(X 1) Qbo(X3) in AT 1B,

Proof. Note that ($:®%,) (X,* ® X,*) == $,(X,*) ®@ $(X,*) and

@(X*N*=d(X,).
Recently, M. Takeuchi has pointed out the following lemma which is
useful in our study, and he kindly permitted us to cite it here.

Lemma 2.9. Let X be a Galois H*-object. Then X*=R.

Proof. Let x be an arbitrary element in X*. Then it is easy to see
that ax(2)=2®1in XQH*. Since XQ X = X@ H* as right H-modules
(H acts on the second factor), we have XQ X" = XQ H** = XX R. Now
the faithful flatness of X shows that X¥=

Theorem 2.10. Let X be a Galois H*-object in A, and let H be a
fintte, commutative, cocommutative Hopf algebra. Then

X))+ (X)=(H*)
where A is the antipode of H. That is, Ea (H*) is an abelian group.

Proof. By Cor. 2.7, we have
XN +(X) = (A X) R X)) = (2@ 1) (XR X)) = (X R X)+"08D),

First, we assume that H is a free R-module with the basis {#,=1, &,, **-,
k.}, and consider the following commutative diagram

X®X————>X®H*

N

Homg(H, X)

where ¢(x @ ) (B)=x(ky) and (zQ k*) (B)=h*(R)x (2, yE X, hEH,
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h*€H*). Since X is a Galois H*-object, there exist elements «;; and y;,
in X such that

7’x(2¢21xu®yu)=1®h,* (7=1,2, -+, m)
and thus

2%y (e yi) = (3021 2y Ry (k)= ('l]l“)’x (X212 Q 34) (h4)
=y(1®h*) (he)=h,*(h)=24,. (Kronecker's delta).
Then it is easy to see that

2 Dilibay 2 Q by yiy=e(h) 23: 212, Q ¥y
for all 2= H. Noting that im(#f)=ker (2(A® 1)), we have
Z:-L%@J’u in (X® X)ker(#(h@l)).
By Lemma 2.9, we can define a map
7 (XQX) 8 — Homg (H, R)
by v=¢. Then * is an H-module and algebra homomorphism. Moreover

(2%, Qy,)=~hs*, v is an epimorphism. A counting of ranks then
yields that = is an isomorphism. In general, using the localization argu-
ment, we have (X® X)r®38 == Homg(H, R) in AZ".

The next theorem is a generalization of {3, Prop. 2].

Theorem 2.11. Let H be a finite, commutative, cocommutative Hopf
algebra. Then the direct sum Ex (H*)@DE. (H*) is a direct summand of

E.(H*®H*).

Proof. Leti, j: HQH—> H be homomorphisms defined by #(A&
B=1Re) (2QF), iRk =(cR1) (hQF), respectively. Let f: E.(H)
DE: (H)—> E. (H®H) and g: Ec (HQH)—> E. (H)DEc (H) be
homomorphisms defined by

AX), (Y)=(X®QY) and g(Z)=((i(2)), (G(Z))), respectively.
Then by Lemma 1. 8 (a), we have 7(X RY) = (’I_lT/@e) XQRY)=X ®ZZY)

= X and ?(X(X) Y)=Y in C.”. Thus gf=1. The rest of the proof will
be clear.

3. Throughout this section we assume again that H is a finite Hopf
algebra.

Theorem 3.1 (cf. [2, Th.9.6]). Every Galois H*-object X is a pro-
jective H-module.
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Proof. Noting that H* is a left H-module via (hf)(k)=F(kh) (h, Rk E
H, f€H*), 7yx: XQX—> XQ® H* is a left H-module isomorphism,
where the left H-module structure of X X is given by A(x QR y)=2& hy.
Since X is a projective R-module, we can apply [5, Lemma 2 and Prop. 3]
to obtain that X&) X is a projective left H-module. Also, by Th.2.2, X is
a direct summand of X X as left H-modules, and therefore X is a pro-
jective H-module.

Now let H be a commutative Hopf algebra, and S an H-module alge-
bra. Then for the smash product S 2 H, we consider the following condi-
tion :

@ If .25 Ehhi=(1EE) 02 s: 8k for all RE H, then every s; is in R.
If H is a such a Hopf algebra as in [4, Remark 1.6 (1) or (3)] and if S is
an H-module algebra, then the smash product S 3 H satisfies the condition
#).

For such a Hopf algebra, we have the following

Theorem 3.2. Let H be a finite, commutative, cocommutative Hopf
algebra, and X a Galois H*-object. If X # H satisfies the condition (&),
then X is a rank 1 projective H-module.

Proof. By Th. 2.2, f: X# H—— Endx(X) is an isomorphism and
F(H) is in Homz(X, X). Let g be an arbitrary element in Homx(X, X).
Since f is an isomorphism, there exists an element 3,2, x: 4% in X§ H
such that (3% x:%k)=g. Then an easy computation shows that (1 £ %)
(2 % 8k)=20:" 128 hh; for all hEH. Therefore by the condition (),
we have x,ER for all {. Hence H=Hompz(X, X). Since X is finitely gen-
erated projective H-module by Th. 3.1, we have X® »X* == Homs(X, X)
=H.

In case H is a commutative Hopf algebra, we can consider the abelian
group Pic(H) of isomorphism classes of projective H-modules of rank 1,

where cl(P)-+cl(Q) is defined to be cl(PR » Q) (cl(P), cl(@)EPic(H)).
The inverse element —cl{P) is cl(Homy(P, H))([1, §5, no. 4]).

Theorem 3.3. Let H be a finite, commutative, cocommutative Hopf
algebra such that H=H* as H-module. Assume that for any Galois H*-
object X, X # H satisfies the condition (§). Then the map 6: E.(H*)—>
Pic(H) defined by 0((X))=cl(X) ts a homomorphism of abelian groups and
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0—>Harr-H*(R, H)—> E. (H*)——>Pic(H)

is an exact sequence of abelian groups, where Harr-H*R, H) is the
generalized Harrison cohomology group of second order defined in [4].

Proof. By. Th.3.2, 0is well defined. If (X), (Y) are in E. (H*),

then we can define f: (XQ Y)RQ wen H —> XQ Y by f(xQyRb)= 2k
y(=xQ#%y). Then fis well defined and the map g(2®X¥y)=2RQyR 1 is the
inverse map of . Thus f is an isomorphism. Hence ¢ is a homomorphism
of abelian groups. The rest of the proof will be clear by [4, Th. 2. 8].

4. The statement of [4, Lemma 2. 4] is incorrect, and should be read
as follows:

Lemma. Lef H be a finite Hopf algebra, and S a faithfully flat R-
module. Then S is @ Galois H*-object in the sense of Def. 2.4 (in this
paper) if and only if S is an H-module algebra such that the mapping ¢
defined in (4, p.142]) is @ @ *H-module isomorphism.

By the way, we claim that as was mentioned in [4, p. 138, lines 12—
14] Th.2.6, and Prop. 2. 7 of [4] were stated under the hypotheses that H
is a finite, commutative, cocommutative Hopf algebra which is isomorphic
to H* as H-modules.

Finally, if we replace the definition of Galois objects in [4] by Def.
2. 4 in this paper, then the results in [4, § 2] are still valid.
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