GALOIS OBJECTS AS MODULES OVER A HOPF ALGEBRA

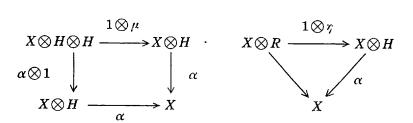
ATSUSHI NAKAJIMA

Let \mathbb{C} be the category of coalgebras over a commutative ring R with identity and let H be a Hopf algebra with antipode which is a finitely generated projective R-module. In § 1, we shall define the notion of a Galois H-object in \mathbb{C} as a generalization of that given in [2] and discuss the properties of such objects. In § 2, we shall state several results of Galois objects in the category of R-algebras which are similar to those in \mathbb{C} . In § 3, a homomorphism from the group of Galois H^* -objects to Pic(H) for some Hopf algebra H will be considered, where $H^* = Hom_R(H, R)$. This is a generalization of [3, Th. 2]. Finally we correct some errors in the previous paper [4].

Throughout this paper, R will denote a commutative ring with identity and unadorned \otimes will mean \otimes_R . Moreover we shall assume that every ring has an identity which is preserved by every homomorphism, every module is unital and every algebra is an R-algebra. Concerning coalgebras and Hopf algebras we shall use freely the notation and terminology in Sweedler [6]. Finally H will represent always a Hopf algebra with structure maps $(\mu, \eta, \Delta, \varepsilon)$.

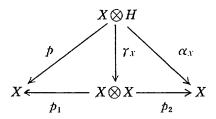
1. Let C be the category of R-coalgebras. In this section we shall give several results which are similar to those stated in [2] for the category of cocommutative R-coalgebras. The tensor product \otimes is the product in the category of cocommutative R-coalgebras (cf. [2]), but in general it is not so in C. Therefore we are obliged to abandon the categorical argument employed in [2].

An *H*-object in \mathbb{C} is defined to be a pair (X, α) , where X is in \mathbb{C} and $\alpha: X \otimes H \longrightarrow X$ in \mathbb{C} such that the diagram below commute



the unlabeled map being the natural isomorphism. Occasionally we shall

denote the pair (X, α) by X. If we need the explicit reference to α we shall write $\alpha = \alpha_X$. One may remark here that H itself with $\alpha_H = \mu$ is an H-object. Let \mathbb{C}^H be the category of all H-objects. A map $f \colon X \longrightarrow Y$ in \mathbb{C}^H is a \mathbb{C} -map such that $\alpha_Y(f \otimes 1_H) = f\alpha_X$ where 1_H is the identity map from H to H. For an H-object X, we define an R-module homomorphism $\gamma_X \colon X \otimes H \longrightarrow X \otimes X$ by $\gamma_X(x \otimes h) = A_X(x)(1 \otimes h) = (1_X \otimes \alpha)(A_X \otimes 1_H)(x \otimes h)$ $(x \in X, h \in H)$. Then the following diagram commutes



where $p(x \otimes h) = \varepsilon(h)x$, $p_1(x \otimes y) = x\varepsilon_X(y)$ and $p_2(x \otimes y) = \varepsilon_X(x)y$ $(x, y \in X, h \in H)$.

Definition 1.1. Let H be a Hopf algebra. Then X in \mathbb{C}^H will be called a *Galois H-object* in \mathbb{C} if X is a finitely generated projective faithful R-module and the map $\gamma_X \colon X \otimes H \longrightarrow X \otimes X$ is an R-module isomorphism.

Let $\phi: G \longrightarrow H$ be a homomorphism of Hopf algebras, X in \mathbb{C}^H , and $\alpha_{\phi,X}: X \otimes G \longrightarrow X$ the composition

$$X \otimes G \xrightarrow{1 \otimes \phi} X \otimes H \xrightarrow{\alpha_X} X.$$

Since $(X, \alpha_{\phi, X})$ is an object in \mathbb{C}^6 , we can define a functor

$$C_{\phi}: C_{H} \longrightarrow C_{G}$$

as follows: $\mathbf{C}^{\phi}(X) = (X, \alpha_{\phi, X}) ((X, \alpha) \in \mathbf{C}^{H}), \mathbf{C}^{\phi}(f) = f(f: X \longrightarrow Y).$

In the subsequent study of this section, we shall assume that Hopf algebras G and H are cocommutative Hopf algebras. First, we state the following lemma which is easy to be verified.

Lemma 1.2(cf. [2, Remarks 4.3 (d)]). Let $\phi: G \longrightarrow H$ be a homomorphism of Hopf algebras, and X in \mathbb{C}^{σ} . Viewing H as a left H-module via ϕ , $Y = X \bigotimes_{\sigma} H$ is an H-object with the obvious right H-module structure and the coalgebra operations on Y satisfying the following formulae

$$J_{Y}(x \otimes h) = \sum_{(x), (h)} (x_{(1)} \otimes h_{(1)}) \otimes (x_{(2)} \otimes h_{(2)})
\varepsilon_{Y}(x \otimes h) = \varepsilon_{Y}(x) \varepsilon(h)$$

where $\exists_X(x) = \sum_{(x)} x_{(1)} \bigotimes x_{(2)}$, and $\exists (h) = \sum_{(h)} h_{(1)} \bigotimes h_{(2)} (x \in X, h \in H)$. Furthermore the diagram

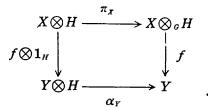
$$X \otimes G \otimes H \xrightarrow{\alpha_{X,\phi}} X \otimes H \xrightarrow{\pi_X} Y = X \otimes_G H$$

is a coequalizer diagram in C, where $\omega_{X,\phi}(x \otimes g \otimes h) = x \otimes \phi(g)h$ and π_X is the canonical map.

Theorem 1.3 (cf. [3, Th. 2.9]). Let $\phi: G \longrightarrow H$ be a homomorphism of cocommutative Hopf algebras, and let $\widetilde{\phi}(X)$ be defined by the following coequalizer diagram

$$X \otimes G \otimes H \xrightarrow{\alpha_{X,\phi}} X \otimes H \xrightarrow{\pi_{X}} X \otimes_{\sigma} H = \widetilde{\phi}(X)$$

where $\omega_{X,\phi}$ and π_X are as in Lemma 1.2. Then $\widetilde{\Phi}: \mathbb{C}^G \longrightarrow \mathbb{C}^H$ is the left adjoint of $\mathbb{C}^{\circ}: \mathbb{C}^H \longrightarrow \mathbb{C}^G$. In particular, if $f: X \longrightarrow \mathbb{C}^{\circ}(Y)$ is a \mathbb{C}^G -map $(Y \in \mathbb{C}^H)$, then the corresponding \mathbb{C}^H -map $f: X \otimes_G H \longrightarrow Y$, arising from adjointness, renders the diagram below commutative



Proof. Let X be in \mathbb{C}^{g} , and Y in \mathbb{C}^{H} . If $f: X \longrightarrow \mathbb{C}^{g}(Y) = Y$ is in \mathbb{C}^{g} , then we have $f\alpha_{X} = \alpha_{Y}(1_{Y} \otimes \phi)$ ($f \otimes 1_{G}$). It follows that $\alpha_{Y}(f \otimes 1_{H})$ ($\alpha_{X} \otimes 1_{H}$) = $\alpha_{Y}(\alpha_{Y} \otimes 1_{H})$ ($1_{Y} \otimes \phi \otimes 1_{H}$) ($f \otimes 1_{G} \otimes 1_{H}$) = $\alpha_{Y}(f \otimes 1_{H})$ $\omega_{X,g}$. Thus by Lemma 1.2, there exists a unique \mathbb{C}^{H} -map $f: X \otimes_{G} H \longrightarrow Y$ such that $f\pi_{X} = \alpha_{Y}(f \otimes 1_{H})$. As above we define

$$\psi: \operatorname{Hom}_{c^{n}}(X, \mathbf{C}^{\bullet}(Y)) \longrightarrow \operatorname{Hom}_{c^{H}}(\widetilde{\phi}(X), Y)$$

$$\Psi \colon \operatorname{Hom}_{\mathsf{C}^H}(\widetilde{\phi}(X), Y) \longrightarrow \operatorname{Hom}_{\mathsf{C}^G}(X, \mathbf{C}^{\bullet}(Y))$$

by $\psi(f) = f$ and $\psi(g) = g(1_X \otimes \eta_H) : X \cong X \otimes R \longrightarrow X \otimes_G H \longrightarrow Y$. Then it is easy to see that $\psi \psi = 1$ and $\psi \psi = 1$.

If H is a Hopf algebra with antipode which is a finitely generated projective R-module, then H is called a *finite* Hopf algebra.

The following lemma will be easily shown.

Lemma 1.4 (cf. [2, Prop. 9. 1]). If H is a finite Hopf algebra, then H is a Galois H-object in C.

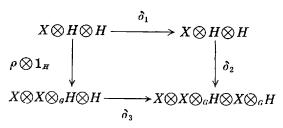
Lemma 1.5. Let H be a finite Hopf algebra. If X is a Galois H-object in C, then X is a finitely generated projective H-module.

Proof. Let X be a Galois H-object. Then $\varepsilon_X \colon X \longrightarrow R$ is an R-module epimorphism and thus R is an R-direct summad of X. Since the isomorphism $\gamma_X \colon X \otimes H \longrightarrow X \otimes X$ is a right H-module isomorphism, X is an H-module direct summand of $X \otimes X$. By the projectivity of $X \otimes X \cong X \otimes H$ as H-modules, X is a finitely generated projective H-module.

By Lemmas 1. 4 and 1. 5, we have the following

Theorem 1.6 (cf. [2, Th. 2. 20]). Let $\phi: G \longrightarrow H$ be a homomorphism of finite cocommutative Hopf algebras. If X is a Galois G-object in C, then $\widetilde{\phi}(X) = X \bigotimes_{\alpha} H$ is a Galois H-object in C.

Proof. Let X be a Galois G-object in C, and define a map $\rho: X \otimes H \longrightarrow X \otimes X \otimes_G H$ by $\rho(x \otimes h) = \sum_{(x)} \chi_{(1)} \otimes \chi_{(2)} \otimes h$ $(x \in X, h \in H)$. Since $(1_X \otimes \alpha)(J_X \otimes 1_G): X \otimes G \longrightarrow X \otimes X$ is an isomorphism of right G-modules, ρ is an isomorphism with the inverse $1_X \otimes \varepsilon_X \otimes 1_H$. We consider now the following diagram



where

$$\partial_1 (x \otimes h \otimes k) = \sum_{(h)} x \otimes h_{(1)} \otimes h_{(2)} k$$

$$\partial_2 (x \otimes h \otimes k) = \sum_{(x)} x_{(1)} \otimes x_{(2)} \otimes h \otimes x_{(2)} \otimes k$$

$$\delta_3 (x \otimes y \otimes h \otimes k) = \sum_{(y), (k)} x \otimes y_{(1)} \otimes h_{(1)} \otimes y_{(2)} \otimes h_{(2)} k$$

 $(x, y \in X, h, k \in H)$. Then it is easy to see that the above diagram commutes, and so δ_1 is an isomorphism by Lemma 1.4. Since $X \otimes X \otimes_{\sigma} H \otimes X \otimes_{\sigma} H$ is a submodule of $X \otimes X \otimes_{\sigma} H \otimes X \otimes_{\sigma} H$ canonically, δ_2 has the inverse $1_X \otimes \epsilon_X \otimes 1_H \otimes 1_X \otimes \epsilon_X \otimes 1_H$, that is, δ_2 is an isomorphism. Therefore δ_3 is an isomorphism and $X \otimes_{\sigma} H \otimes H \cong (X \otimes_{\sigma} H) \otimes (X \otimes_{\sigma} H)$. Clearly $X \otimes_{\sigma} H$ being finitely generated projective R-module, $X \otimes_{\sigma} H$ is a Galois H-object in \mathbb{C} .

Definition 1.7 (cf. [2, Def. and Remarks 2.22]). Let H be a finite Hopf algebra. We shall denote by $E_c(H)$ the set of \mathbb{C}^a -isomorphism classes of Galois H-objects in \mathbb{C} .

If $\phi: G \longrightarrow H$ is a homomorphism of Hopf algebras, in virture of Th. 1. 6, we can define a map $E(\phi): E_c(G) \longrightarrow E_c(H)$ by $E(\phi)((X)) = \widetilde{(\phi(X))}$, where (X) means a \mathbb{C}^{σ} -isomorphism class of X in \mathbb{C}^{σ} . If $\phi: G \longrightarrow H$ and $\phi: H \longrightarrow J$ are homomorphisms of Hopf algebras, then we can check easily that $\mathbb{C}^{\phi} \cong \mathbb{C}^{\sigma} \mathbb{C}^{\phi}: \mathbb{C}^{J} \longrightarrow \mathbb{C}^{\sigma}$. Moreover by the uniqueness of adjoints (or an easy direct computation), we obtain a natural equivalence of functors $\widetilde{\psi} \phi \cong \widetilde{\psi} \widetilde{\phi}: \mathbb{C}^{\sigma} \longrightarrow \mathbb{C}^{J}$, which gives rise to the equality $E(\psi \phi) = E(\psi) E(\phi): E_c(G) \longrightarrow E_c(J)$.

We insert here the following which will be used in § 2.

Lemma 1.8. (a) Let X be a Galois G-object in C. Then $\tilde{\eta}_H \tilde{\epsilon}_G(X) \cong H$ in \mathbb{C}^H .

(b) Let $\phi_i: G_i \longrightarrow H_i$ be homomorphisms of cocommutative Hopf algebras and let X_i be Galois G_i -object (i=1, 2). Then $\widetilde{\phi_1 \otimes \phi_2}(X_1 \otimes X_2) \cong \widetilde{\phi_1}(X_1) \otimes \widetilde{\phi_2}(X_2)$ in $\mathbb{C}^{H_1 \otimes H_2}$.

Proof. It suffices to prove (a) only. Since R is the only Galois R-object over R, we have $\tilde{\epsilon}_G(X) \cong R$ in \mathbb{C}^R . Thus $\tilde{\eta}_H \tilde{\epsilon}_G(X) \cong \tilde{\eta}_H \epsilon_G(R) \cong \tilde{\eta}_H(R) \cong H$ in \mathbb{C}^H .

By Th. 1. 6, we readily obtain the following

Theorem 1.9 (cf. [2, Th. 3. 9 (a)]). Let H be a finite, commutative, cocommutative Hopf algebra. Then $E_c(H)$ is an abelian semi-group with the addition

$$(X)+(Y)=(\mu(X\otimes Y))=((X\otimes Y)\otimes_{H\otimes H}H)$$

where H is a left $H \otimes H$ -module by μ and $X \otimes Y$ is in $\mathbb{C}^{H \otimes H}$ by the natural way. (H) is the zero element in $E_{\mathbb{C}}(H)$.

2. In this section we shall give some statements which are duals of those in § 1.

Let H be a finite Hopf algebra. If (S, α) is a right H^* -comodule algebra, then S has a left H-module structure which is defined by

$$h(x) = \sum_{(x)} x_{(1)} \bigotimes \langle h, x_{(2)} \rangle \qquad (x \in S, h \in H)$$

where $\langle , \rangle \colon H \otimes H^* \longrightarrow R$ denotes the duality pairing. Thus S is a left H-module algebra. Conversely, if S is a left H-module algebra, then we

obtain a map $\alpha: S \longrightarrow S \otimes H^*$;

$$\alpha(S) = \sum_{i=1}^{h} h_i S \bigotimes h_i^* \qquad (s \in S, h_i \in H, h_i^* \in H^*)$$

where $\{h_i, h_i^*\}_{1 \le i \le n}$ is an *R*-projective coordinate system of *H*. Since *S* is a left *H*-module algebra, *S* is a right *H**-comodule algebra with respect to α (cf. [4, p. 142]).

In the subsequent study, we shall assume, unless explicitly stated otherwise, that Hopf algebras are finite, commutative, cocommutative and every right H*-comodule algebra (resp. left H-module algebra) will be regarded as a left H-module algebra (resp. right H*-comodule algebra) in the above way.

The following definition is slightly different from [2, Def. 7.3].

Definition 2.1. Let H be a Hopf algebra, and X a right H-comodule algebra. X will be called a $Galois\ H$ -object if

- (1) X is a faithfully flat R-module.
- (2) $\gamma_x : X \otimes X \longrightarrow X \otimes H$ defined by $\gamma_x(x \otimes y) = (x \otimes 1) \alpha(y)$ is an R-module isomorphism.

The following theorem can be proved by the same method as in the proof of [2, Th. 9.3].

Theorem 2.2. Let H be a finite commutative Hopf algebra, and S a right H-comodule algebra. Then the following conditions are equivalent:

- (a) S is a Galois H-object.
- (b) S is a finitely generated faithful projective R-module and the mapping $f: S \sharp H^* \longrightarrow \operatorname{End}_R(S)$ defined by $f(s \sharp h^*)(x) = sh^*(x)$ is an R-module isomorphism $(s, x \in S, h^* \in H^*)$.

Let A be the category of R-algebras and let A_o (resp. C_o) be the full subcategory of A (resp. C) whose objects are those of A (resp. C) which are finitely generated projective R-modules. Then the functor $-^*: C_o^{op} \longrightarrow A_o$ is an isomorphism of categories, where $-^* = \operatorname{Hom}_R(-, R)$. From this fact, the following is immediate ([cf, 6, 1.1 and 2, p. 34]).

Lemma 2.3. (a) If $(C, \Delta_c, \varepsilon_c)$ is in C_o , then $(C^*, \Delta_c^*, \varepsilon_c^*)$ is in A_o .

- (b) If (A, μ_A, η_A) is in A_o , then (A^*, μ_A^*, η_A^*) is in C_o .
- (c) If (X, α) is in C_0^H , then (X^*, α^*) is in $A_0^{H^*}$.
- (d) If (Y, β) is in \mathbf{A}_0^H , then (Y^*, β^*) is in $\mathbf{C}_0^{H^*}$. Here $\mathbf{A}_0^{(-)}$ is the category of (-)-comodule algebras in \mathbf{A} .

By Th. 2. 2 and Lemma 2. 3, we have the following

Proposition 2.4. Let H be a finite cocommutative Hopf algebra. Then X is a Galois H-object in C_0 if and only if X^* is a Galois H^* -object in A_0 .

Let H be finite cocommutative Hopf algebra and let $E_{\land_o}(H^*)$ be the set of isomorphism classes of Galois H^* -objects in \mathbf{A}_o . Then it is clear that the mapping $^*: E_{c_o}(H) \longrightarrow E_{\land_o}(H^*)$ defined by $^*((X)) = (X^*)$ gives the set of isomorphism. Since $E_{c_o}(H)$ is an abelian semi-group by Th.1.9, the mapping * defines the abelian semi-group structure on $E_{\land_o}(H^*)$. If $\mathbf{A}_{o,c}$ is the full subcategory of \mathbf{A}_o whose objects are those of \mathbf{A}_o which are commutative R-algebras, then by Th.1.4, Th.1.9 and the functor $-^*$, we can see that the semi-group structure on $E_{\land_o}(H^*)$ coinside with the group structure of [2, Chap. I].

Next we shall prove that $E_{A_0}(H^*)$ has a group structure for finite, commutative, cocommutative Hopf algebra H. First, we have the following

Lemma 2.5. Let $\phi: G \longrightarrow H$ be a homomorphism of Hopf algebras and let X be a Galois G^* -object in A. Then $\phi(X) = \operatorname{Hom}_G(H, X)$ is a Galois H^* -object in A, where the multiplication on $\phi(X)$ is defined by the formula

$$(f.g)(h) = \sum_{(h)} f(h_{(1)})g(h_{(2)})$$

 $(\exists (h) = \sum_{(h)} h_{(1)} \bigotimes h_{(2)})$ and H acts on $\phi(X)$ via (hf)(k) = f(kh) $(h, k \in H)$.

Proof. Let X be a Galois G^* -object in A_o . Then by Prop.2.4, X^* is a Galois G-object in C_o . Thus by Th.1.6, $X^* \otimes_G H$ is a Galois H-object in C_o . Applying the functor $-^*$ to $X^* \otimes_G H$, we obtain

$$\operatorname{Hom}_R(X^* \otimes_{\mathfrak{G}} H, R) \cong \operatorname{Hom}_{\mathfrak{G}}(H, X)$$

as Galois H^* -objects in A_0 . The rest of the proof will be clear.

Lemma 2.6. Let $\phi: G \longrightarrow H$ be an epimorphism of Hopf algebras and let X be a Galois G^* -object in A_o . Then

$$\phi(X) = X^{\ker(\phi)}$$

in \mathbf{A}_{o}^{H} , where $\ker(\phi) = \{g \in G \mid (1 \otimes \phi) \ \Delta_{G}(g) = g \otimes 1 \text{ in } G \otimes H\}$, $X^{\ker(\phi)} = \{x \in X \mid gx = \varepsilon_{G}(g)x \text{ for all } g \in \ker(\phi)\}$, and the action of $H = \phi(G)$ on $X^{\ker(\phi)}$ is given by $\phi(g)(x) = g(x)$.

Proof. Let g be in ker (ϕ) . Then an easy computation show that $\phi(g) = \varepsilon_G(g)$. We define the maps $j: X^{\ker(\phi)} \longrightarrow \phi(X)$ and $j': \phi(X) \longrightarrow X^{\ker(\phi)}$ by $j(x) (\phi(g)) = g(x)$ and j'(f) = f(1), respectively. It is easy to verify that j, j' are morphisms in \mathbf{A}_0^H and jj' = 1, j'j = 1.

By Lemmas 2. 5 and 2. 6, we have the following

Corollary 2.7. Let $\phi: G \longrightarrow H$ be an epimorphism of Hopf algebras and let X, Y be Galois G^* -objects in \mathbf{A}_o . Then $\phi(x) = (\widetilde{\phi}(X^*))^*$ in \mathbf{A}_o^H and

$$(X)+(Y)=(\mu(X\otimes Y))=((X\otimes Y)^{\ker(\mu)})$$
 in $E_{A_0}(G^*)$.

Lemma 2.8. Let $\phi_i: G_i \longrightarrow H_i$ be homomorphisms of finite, commutative, cocommutative Hopf algebras and let X_i be Galois G_i^* -objects (i = 1, 2). Then $(\phi_1 \otimes \phi_2)(X_1 \otimes X_2) \cong \phi_1(X_1) \otimes \phi_2(X_2)$ in $\mathbf{A}_0^{n_1 \otimes n_2}$.

Proof. Note that $(\widetilde{\phi_1 \otimes \phi_2})$ $(X_1^* \otimes X_2^*) \cong \widetilde{\phi}_1(X_1^*) \otimes \widetilde{\phi}_2(X_2^*)$ and $(\widetilde{\phi}_1(X_1^*))^* = \phi(X_1)$.

Recently, M. Takeuchi has pointed out the following lemma which is useful in our study, and he kindly permitted us to cite it here.

Lemma 2.9. Let X be a Galois H^* -object. Then $X^H = R$.

Proof. Let x be an arbitrary element in X^H . Then it is easy to see that $\alpha_X(x) = x \otimes 1$ in $X \otimes H^*$. Since $X \otimes X \cong X \otimes H^*$ as right H-modules (H acts on the second factor), we have $X \otimes X^H \cong X \otimes H^{*H} \cong X \otimes R$. Now the faithful flatness of X shows that $X^H = R$.

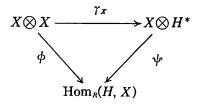
Theorem 2.10. Let X be a Galois H^* -object in A_\circ and let H be a finite, commutative, cocommutative Hopf algebra. Then

$$(\lambda(X))+(X)=(H^*)$$

where λ is the antipode of H. That is, $E_{A_0}(H^*)$ is an abelian group.

Proof. By Cor. 2.7, we have

 $(\lambda(X))+(X)=(\mu(\lambda(X)\otimes X))=(\mu(\lambda\otimes 1)\ (X\otimes X))=((X\otimes X)^{\ker(\mu(\lambda\otimes 1)}).$ First, we assume that H is a free R-module with the basis $\{h_1=1,\ h_2, \cdots, h_n\}$, and consider the following commutative diagram



where $\phi(x \otimes y)$ (h) = x(hy) and $\psi(x \otimes h^*)$ $(h) = h^*(h)x$ $(x, y \in X, h \in H, h)$

 $h^* \in H^*$). Since X is a Galois H^* -object, there exist elements x_{ij} and y_{ij} in X such that

$$\gamma_x(\sum_{i=1}^n x_{i,j} \otimes y_{i,j}) = 1 \otimes h_j^* \qquad (j=1, 2, \dots, m)$$

and thus

$$\sum_{i=1}^{n} x_{ij}(h_k y_{ij}) = \phi(\sum_{i=1}^{n} x_{ij} \otimes y_{ij}) (h_k) = (\psi \gamma_x (\sum_{i=1}^{n} x_{ij} \otimes y_{ij})) (h_k)$$
$$= \psi(1 \otimes h_j^*) (h_k) = h_j^*(h_k) = \delta_{j,k} \text{ (Kronecker's delta)}.$$

Then it is easy to see that

$$\sum_{(h)} \sum_{i=1}^{n} h_{(1)} x_{ij} \otimes h_{(2)} y_{ij} = \varepsilon(h) \sum_{i=1}^{n} x_{ij} \otimes y_{ij}$$

for all $h \in H$. Noting that $\operatorname{im}(\Delta) = \ker (\mu(\lambda \otimes 1))$, we have

$$\sum_{i=1}^{n} x_{ij} \otimes y_{ij}$$
 in $(X \otimes X)^{\ker(\mu(\lambda \otimes 1))}$.

By Lemma 2.9, we can define a map

$$\tau: (X \otimes X)^{\ker(\mu(\lambda \otimes 1))} \longrightarrow \operatorname{Hom}_R (H, R)$$

by $\tau = \phi$. Then τ is an H-module and algebra homomorphism. Moreover $\tau(\sum_{i=1}^n x_{ij} \otimes y_{ij}) = h_j^*$, τ is an epimorphism. A counting of ranks then yields that τ is an isomorphism. In general, using the localization argument, we have $(X \otimes X)^{\ker(\mu(\lambda \otimes 1))} \cong \operatorname{Hom}_R(H, R)$ in $\mathbf{A}_{\circ}^{H^*}$.

The next theorem is a generalization of [3, Prop. 2].

Theorem 2.11. Let H be a finite, commutative, cocommutative Hopf algebra. Then the direct sum $E_{\land \circ}(H^*) \oplus E_{\land \circ}(H^*)$ is a direct summand of $E_{\land \circ}(H^* \otimes H^*)$.

Proof. Let $i, j: H \otimes H \longrightarrow H$ be homomorphisms defined by $i(h \otimes k) = (1 \otimes \epsilon) \ (h \otimes k), \ j(h \otimes k) = (\epsilon \otimes 1) \ (h \otimes k), \ \text{respectively.}$ Let $f: E_{c_o}(H) \oplus E_{c_o}(H) \longrightarrow E_{c_o}(H \otimes H)$ and $g: E_{c_o}(H \otimes H) \longrightarrow E_{c_o}(H) \oplus E_{c_o}(H)$ be homomorphisms defined by

 $f((X), (Y)) = (X \otimes Y)$ and $g((Z)) = ((\widetilde{i}(Z)), (\widetilde{j}(Z)))$, respectively. Then by Lemma 1.8 (a), we have $\widetilde{i}(X \otimes Y) \cong (1 \otimes \varepsilon)$ $(X \otimes Y) \cong X \otimes \widetilde{\epsilon}(Y) \cong X$ and $\widetilde{j}(X \otimes Y) \cong Y$ in \mathbf{C}_{o}^{H} . Thus gf = 1. The rest of the proof will be clear.

3. Throughout this section we assume again that H is a finite Hopf algebra.

Theorem 3.1 (cf. [2, Th. 9. 6]). Every Galois H*-object X is a projective H-module.

Proof. Noting that H^* is a left H-module via (hf)(k) = f(kh) $(h, k \in H, f \in H^*)$, $\gamma_X \colon X \otimes X \longrightarrow X \otimes H^*$ is a left H-module isomorphism, where the left H-module structure of $X \otimes X$ is given by $h(x \otimes y) = x \otimes hy$. Since X is a projective R-module, we can apply [5, Lemma 2 and Prop. 3] to obtain that $X \otimes X$ is a projective left H-module. Also, by Th. 2. 2, X is a direct summand of $X \otimes X$ as left H-modules, and therefore X is a projective H-module.

Now let H be a commutative Hopf algebra, and S an H-module algebra. Then for the smash product $S \not\equiv H$, we consider the following condition:

(#) If $\sum_{i=1}^{n} s_i \sharp hh_i = (1 \sharp h)$ ($\sum_{i=1}^{n} s_i \sharp h_i$) for all $h \in H$, then every s_i is in R. If H is a such a Hopf algebra as in [4, Remark 1.6 (1) or (3)] and if S is an H-module algebra, then the smash product $S \not\equiv H$ satisfies the condition (#).

For such a Hopf algebra, we have the following

Theorem 3.2. Let H be a finite, commutative, cocommutative Hopf algebra, and X a Galois H^* -object. If X # H satisfies the condition (#), then X is a rank 1 projective H-module.

Proof. By Th. 2. 2, $f: X \# H \longrightarrow \operatorname{End}_R(X)$ is an isomorphism and f(H) is in $\operatorname{Hom}_H(X, X)$. Let g be an arbitrary element in $\operatorname{Hom}_H(X, X)$. Since f is an isomorphism, there exists an element $\sum_{i=1}^n x_i \# h_i$ in X # H such that $f(\sum_{i=1}^n x_i \# h_i) = g$. Then an easy computation shows that (1 # h) $(\sum_{i=1}^n x_i \# h_i) = \sum_{i=1}^n x_i \# h h_i$ for all $h \in H$. Therefore by the condition (#), we have $x_i \in R$ for all i. Hence $H = \operatorname{Hom}_H(X, X)$. Since X is finitely generated projective H-module by Th. 3. 1, we have $X \otimes_H X^* \cong \operatorname{Hom}_H(X, X) \cong H$.

In case H is a commutative Hopf algebra, we can consider the abelian group Pic(H) of isomorphism classes of projective H-modules of rank 1, where cl(P)+cl(Q) is defined to be $cl(P\bigotimes_{H}Q)$ (cl(P), $cl(Q) \in Pic(H)$). The inverse element -cl(P) is $cl(Hom_{H}(P,H))([1, \S 5, no. 4])$.

Theorem 3.3. Let H be a finite, commutative, cocommutative Hopf algebra such that $H\cong H^*$ as H-module. Assume that for any Galois H^* -object X, $X \sharp H$ satisfies the condition (\sharp) . Then the map $\theta: E_{\land}(H^*) \longrightarrow \operatorname{Pic}(H)$ defined by $\theta((X)) = \operatorname{cl}(X)$ is a homomorphism of abelian groups and

$$0 \longrightarrow \operatorname{Harr-}H^2(R, H) \longrightarrow E_{\wedge_n}(H^*) \longrightarrow \operatorname{Pic}(H)$$

is an exact sequence of abelian groups, where $Harr-H^2(R, H)$ is the generalized Harrison cohomology group of second order defined in [4].

Proof. By. Th. 3. 2, θ is well defined. If (X), (Y) are in $E_{\land_{\circ}}(H^*)$, then we can define $f: (X \otimes Y) \otimes_{H \otimes H} H \longrightarrow X \otimes_{H} Y$ by $f(x \otimes y \otimes h) = xh \otimes y (= x \otimes hy)$. Then f is well defined and the map $g(x \otimes y) = x \otimes y \otimes 1$ is the inverse map of f. Thus f is an isomorphism. Hence θ is a homomorphism of abelian groups. The rest of the proof will be clear by [4, Th. 2. 8].

4. The statement of [4, Lemma 2.4] is incorrect, and should be read as follows:

Lemma. Let H be a finite Hopf algebra, and S a faithfully flat R-module. Then S is a Galois H^* -object in the sense of Def. 2. 4 (in this paper) if and only if S is an H-module algebra such that the mapping Φ defined in [4, p. 142] is a $\otimes^2 H$ -module isomorphism.

By the way, we claim that as was mentioned in [4, p. 138, lines 12-14] Th. 2.6, and Prop. 2. 7 of [4] were stated under the hypotheses that H is a finite, commutative, cocommutative Hopf algebra which is isomorphic to H^* as H-modules.

Finally, if we replace the definition of Galois objects in [4] by Def. 2. 4 in this paper, then the results in [4, §2] are still valid.

REFERENCES

- [1] N. BOURBAKI: Algèbre commutative, Chap. I-II, Hermann, Paris (1962).
- [2] S. U. Chase and M. E. Sweedler: Hopf algebras and Galois theory, Lecture note in Mathematics 97, Springer-Verlag, Berlin (1969).
- [3] G. Garfinkel and M. Orzech: Galois extensions as modules over the group ring, Canad. J. Math. 22 (1970), 242—248.
- [4] A. Nakajima: On generalized Harrison cohomology and Galois object, Math. J. Okayama Univ. 17 (1975), 135—149.
- [5] B. Pareigis: When Hopf algebras are Frobenius algebras, J. Alg. 18 (1971), 588-596.
- [6] M. E. SWEEDLER: Hopf algebras, Benjamin, New York, 1969.

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received February 28, 1976)