NOTE ON EXCHANGE PROPERTY

Dedicated to Professor Kiiti Morita on his 60th birthday

JIRO KADO

Every module concerned in the present note will be a unital right module over a ring R with 1. Let η be a cardinal number. Then, a module M is said to have the η -exchange property, if for any direct sum $A = \bigoplus_{B \in \mathfrak{B}} B$ such that $\eta > |\mathfrak{B}|$ (the cardinal of the set \mathfrak{B}) and $A = M \oplus M'$ there exist submodules $B' \subseteq B$ such that $A = M \oplus (\bigoplus_{n \in \mathfrak{D}} B')$. We say that M has the finite exchange property if M has the η -exchange property for any finite η . These properties were defined and investigated by Crawley and Jónnson [1], and also studied by Harada [3] in connection with Krull-Schmidt-Azumaya theorem. Finally, M is said to have the η -exchange property w. r. t. completely indecomposable modules, if for any direct sum A of completely indecomposable modules $B \in \mathfrak{B}$ such that $\eta > |\mathfrak{B}|$ and $A = M \oplus M'$ there exist some $B' \subseteq B$ such that $A = M \oplus (\bigoplus_{B \in \mathfrak{B}} B')$.

In our subsequent study, $\mathfrak R$ will represent always a set of completely indecomposable modules. We consider a sequence $\{N_i\}_1^{\mathfrak R}$ of modules N_i in $\mathfrak R$ and non-isomorphisms $f_i: N_i \longrightarrow N_{i+1}$ ($i=1, 2, \cdots$). The sequence $\{f_i\}_1^{\mathfrak R}$ will be called a sequence of non-isomorphisms in $\mathfrak R$. Such a sequence is said to be proper if $N_i \neq N_j$ for $i \neq j$. If for any $m \in N_1$ there exists a natural number n (depending on m) such that $f_n \cdots f_1(m) = 0$, then the sequence $\{f_i\}_1^{\mathfrak R}$ is said to be locally T-nilpotent. If every sequence (resp. proper sequence) of non-isomorphisms in $\mathfrak R$ is locally T-nilpotent then $\mathfrak R$ is defined to be locally T-nilpotent (resp. locally semi-T-nilpotent). Let $\mathfrak R = \bigcup_{p \in P} \mathfrak R(p)$ be the partition of $\mathfrak R$ into the isomorphism classes. Moreover, let $\mathfrak R' = \bigcup_{p \in P'} \mathfrak R(p)$ and $\mathfrak R'' = \bigcup_{p \in P''} \mathfrak R(p)$ where $P' = \{\rho \in P \mid |\mathfrak R(p)| \leq \mathfrak R_0\}$ and $P'' = \{\rho \in P \mid |\mathfrak R(p)| \geq \mathfrak R_0\}$. In their paper [4] Harada and Ishii proved that if $\mathfrak R'$ is locally T-nilpotent then $\bigoplus_{N \in \mathfrak R'} N$ has the $\mathfrak R_0$ -exchange property. The purpose of this note is to prove the following theorems.

Theorem 1. If \mathfrak{N}' is locally semi-T-nilpotent then $\bigoplus_{N \in \mathfrak{N}'} N$ has the \mathfrak{K}_0 -exchange property.

Theorem 2. If \Re is locally semi-T-nilpotent and every N in \Re is finitely generated, then $\bigoplus_{N\in\Re} N$ has the \Re_0 -exchange property.

In advance of proving our theorems, we claim that the statement of

154 J. KADO

[4, Lemma 8] is obscure and should be read as follows:

Lemma 1. Assume that a module M has the finite exchange property. If $M \oplus M' = \bigoplus_{i=1}^{\infty} A_i$ and $K_i = \bigoplus_{i=1}^{\infty} A_i$, then there exist respective direct summands A'_i and K'_{i+1} of A_i and K_{i+1} such that $M \oplus M' = M \oplus (\bigoplus_{i=1}^{n} A'_i) \oplus K'_{n+1}$ for any n.

Proof. For the sake of completeness, we shall give here the proof. Assume that we have found A'_i and K'_{i+1} $(i=1, 2, \cdots, n)$ such that $M \oplus M' = M \oplus (\bigoplus_{i=1}^m A'_i) \oplus K'_{m+1}$ for all $m \leqslant n$. We may set $K_{n+1} = K'_{n+1} \oplus K''_{n+1}$ with $K''_{n+1} \subseteq M \oplus (\bigoplus_{i=1}^n A'_i)$. Then, $M \oplus (\bigoplus_{i=1}^n A'_i) = K''_{n+1} \oplus L$ with some L. Let $A_i = A'_i \oplus A''_i$. Since $M \approx (\bigoplus_{i=1}^n A'_i) \oplus K''_{n+1}$, K''_{n+1} has the finite exchange property by [1, Lemma 3.10]. Then, by $K_{n+1} = A_{n+1} \oplus K_{n+2}$ there exist respective direct summands A'_{n+1} and K'_{n+2} of A_{n+1} and K_{n+2} such that $K_{n+1} = K''_{n+1} \oplus A'_{n+1} \oplus K'_{n+2}$. Thus, $M \oplus M' = M \oplus (\bigoplus_{i=1}^n A'_i) \oplus K'_{n+1} = K''_{n+1} \oplus L \oplus K'_{n+1} = K''_{n+1} \oplus A'_{n+1} \oplus K'_{n+2} \oplus L = M \oplus (\bigoplus_{i=1}^n A'_i) \oplus K'_{n+2}$.

Proof of Theorem 1. Let $M = \bigoplus_{N \in \mathfrak{N}'} N = \bigoplus_{\rho \in P'} (\bigoplus_{N \in \mathfrak{N}(\rho)} N)$. Then M has the finite exchange property by [6, Prop. 1. 7]. Assume $A = \bigoplus_{i=1}^{\infty} A_i = M \oplus M'$, and put $K_i = \bigoplus_{i=1}^{\infty} A_i$. By Lemma 1, there exist some A_i' and K_{i+1}' such that $A_i = A_i' \oplus A_i''$, $K_{i+1} = K_{i+1}' \oplus K_{i+1}''$ and $A = M \oplus (\bigoplus_{i=1}^n A_i') \oplus K_{n+1}'$ for any n. Since $(\bigoplus_{i=1}^n A_i') \oplus K_{n+1}'' \approx M$, by Kanbra theorem and Krull-Schmidt-Azumaya theorem we have

$$A_i^{\prime\prime} = \bigoplus_{\rho \in P^{\prime}} \left(\bigoplus_{B \in \mathfrak{B}(i,\rho)} B \right)$$

where every $B \in \mathfrak{B}(i, \rho)$ is isomorphic to $N \in \mathfrak{N}(\rho)$ and $\sum_{i} |\mathfrak{B}(i, \rho)| < |\mathfrak{N}(\rho)| | < \mathfrak{N}_{0}$. Suppose $M^{*} = M \oplus (\bigoplus_{i=1}^{\infty} A'_{i}) \neq A$. Then, noting that $A = (\bigoplus_{i=1}^{\infty} A'_{i}) \oplus (\bigoplus_{i=1}^{\infty} A''_{i})$, we can find i_{1} and ρ_{1} such that $\mathfrak{B}(i_{1}, \rho_{1})$ contains some B_{1} which is not contained in M^{*} . Now, let $a_{1} \in B_{1} \setminus M^{*}$, and consider the projection $p: A \longrightarrow K'_{m+1}$ with respect to the decomposition $A = M \oplus (\bigoplus_{i=1}^{m} A'_{i}) \oplus K'_{m+1}$ where $m = i_{1}$. Then $x_{1} = p(a_{1}) \notin M^{*}$. Writing x_{1} in $K_{m+1} = (\bigoplus_{i=m+1}^{\infty} A'_{i}) \oplus (\bigoplus_{i=m+1}^{\infty} A''_{i})$, we have $x_{1} = \sum_{i} x'_{i} + \sum_{i} x''_{i}$. There exists then some $i_{2} > i_{1}$ such that $x''_{i_{2}} \notin M^{*}$. From (*) we can find some $\mathfrak{B}(i_{2}, \rho_{2})$ which contains B_{2} such that $q(x_{1}) \in B_{2} \setminus M^{*}$, where $q: A \longrightarrow B_{2}$ is the projection with respect to the decomposition $A = (\bigoplus_{i=1}^{\infty} A'_{i}) \oplus (\bigoplus_{\rho \in P'} (\bigoplus_{B \in \mathfrak{R}(i,\rho)} B)$. Putting $g_{1} = qp \mid B_{1}: B_{1} \longrightarrow B_{2}$, we have $a_{2} = g_{1}(a_{1}) \in B_{2} \setminus M^{*}$. Repeating the same argument to a_{2} and so on, we can find $g_{k}: B_{k} \longrightarrow B_{k+1}$ ($B_{k} \in \mathfrak{B}(i_{k}, \rho_{k})$, $i_{k} < i_{k+1}$) such that $g_{k} \cdots g_{1}(a_{1}) \notin M^{*}$. Since $\sum_{i} |\mathfrak{B}(i, \rho_{1})| < \mathfrak{K}_{0}$, there exists a natural number k_{1} such that $f_{1} = g_{k_{1}} \cdots g_{1}: B_{1} \longrightarrow B_{k_{1}+1}$ is a non-isomorphism. Repeating the same procedure, we can

find natural numbers $k_1 < k_2 < \cdots$ such that $f_n = g_{k_n} \cdots g_{k_{n-1}+1}$ are non-isomorphisms. Obviously, $\{f_n\}_1^\infty$ may be regarded as a sequence of non-isomorphisms in $\mathfrak N$ and $f_n \cdots f_1(a_1) \neq 0$ for any n. This contradiction shows that $M \oplus (\bigoplus_{i=1}^\infty A_i') = A$, namely, M has the $\mathfrak X_0$ -exchange property.

Corollary 1. If \mathfrak{N} is locally semi-T-nilpotent and $|P''| < \aleph_0$, then $M = \bigoplus_{N \in \mathfrak{N}} N$ has the \aleph_0 -exchange property.

Proof. For every $\rho \ni P''$, $\mathfrak{N}(\rho)$ is locally (semi-) T-nilpotent, and so $M_{\rho} = \bigoplus_{N \in \mathfrak{N}(\rho)} N$ has the \mathfrak{K}_0 -exchange property by [4, Lemma 4]. Hence, by [1, Lemma 3. 10], $\bigoplus_{\rho \in P''} M_{\rho}$ has the same property. Combining this with Theorem 1, we see that $M = (\bigoplus_{N \in \mathfrak{N}'} N) \bigoplus (\bigoplus_{\rho \in P''} M_{\rho})$ has the \mathfrak{K}_0 -exchange property again by [1, Lemma 3. 10].

Proof of Theorem 2. Let $A = \bigoplus_{i=1}^{\infty} A_i = M \oplus M'$. As in the proof of Theorem 1, we can find A'_i and K'_{i+1} such that $A_i = A'_i \oplus A''_i$, $\bigoplus_{i=l-1}^{\infty} A_i = K_{i+1} = K'_{i+1} \oplus K''_{i+1}$ and $A = M \oplus (\bigoplus_{i=1}^{n} A'_i) \oplus K'_{n+1}$ for any n. Let $p: A \longrightarrow \bigoplus_{i=1}^{\infty} A''_i$ be the projection with respect to the decomposition $A = (\bigoplus_{i=1}^{\infty} A'_i) \oplus (\bigoplus_{i=1}^{\infty} A'_i)$. First we claim that if \mathfrak{F} is an arbitrary finite subset of \mathfrak{N} then $p(\bigoplus_{N \in \mathfrak{F}} N)$ is a direct summand of $\bigoplus_{i=1}^{\infty} A'_i$. Since $M^* = \bigoplus_{N \in \mathfrak{F}} N$ is finitely generated, $M^* \subseteq (\bigoplus_{i=1}^{m} A'_i) \oplus (\bigoplus_{i=1}^{m} A'_i)$ for some m. Accordingly, if $q: A \longrightarrow (\bigoplus_{i=1}^{m} A''_i) \oplus K''_{i+1}$ is the projection with respect to the decomposition $A = (\bigoplus_{i=1}^{m} A'_i) \oplus K''_{m+1} \oplus (\bigoplus_{i=1}^{m} A''_i) \oplus K''_{m+1}$ then $p(M^*) = q(M^*)$. Since $q \mid M$ is a monomorphism, $q(M) = q(M^*) \oplus L = p(M^*) \oplus L$ with some L, and so $p(M^*)$ is a direct summand of $(\bigoplus_{i=1}^{m} A''_i)$ and hence) $\bigoplus_{i=1}^{m} A''_i$. Next, as in the proof of Theorem 1, we have

$$A_{i}^{\prime\prime} = \bigoplus_{\rho \in P} \left(\bigoplus_{B \in \mathfrak{B}(i,\rho)} B \right)$$

where every $B \in \mathfrak{B}(i, \rho)$ is isomorphic to $N \in \mathfrak{N}(\rho)$. Since \mathfrak{N} is locally semi-T-nilpotent, p(M) itself is a direct summand of $\bigoplus_{i=1}^{\infty} A_i''$ by [3, Th. 3.2.5]. Combining this with the fact that p(M) has the \mathfrak{K}_0 -exchange property w.r.t. completely indecomposable modules (cf. [2, Cor. 2 of Prop. 1]), it follows $\bigoplus_{i=1}^{\infty} A_i'' = p(M) \oplus (\bigoplus_{i=1}^{\infty} A_i''')$ with some $A_i''' \subseteq A_i''$, and so $A = (\bigoplus_{i=1}^{\infty} A_i') \oplus p(M) \oplus (\bigoplus_{i=1}^{\infty} A_i''')$. Noting that $p \mid M$ is a monomorphism, we obtain eventually $A = M \oplus (\bigoplus_{i=1}^{\infty} (A_i' \oplus A_i'''))$.

Corollary 2. Let S be a direct sum of semi-perfect modules. Then, S is semi-perfect if and only if S has the \Re_0 -exchange property.

Proof. By [3, Cor. 5.1.13], S is the direct sum of indecomposable semi-perfect modules: $S = \bigoplus_{T \in \mathfrak{T}} T$. If S is semi-perfect then every T is

156 J. KADO

cyclic (cf. for instance [3, Th. 5.2.4']) and \mathfrak{T} is locally semi-T-nilpotent by [3, Cor. 5.1.13]. Hence, S has the \aleph_0 -exchange property by Theorem 2. Conversely, if S has the \aleph_0 -exchange property then \mathfrak{T} is locally semi-T-nilpotent by [8, Th. 1], and so S is semi-perfect by [3, Cor. 2.2.2].

Corollary 3 (cf. [7, Th. 8]). Assume that R is a direct sum of indecomposable right ideals. Then a projective module S is semi-perfect if and only if S has the \aleph_0 -exchange property.

Proof. By the validity of Corollary 2, it remains only to prove the "if" part. To our end, it suffices to prove that S is a direct sum of semi-perfect modules. By Kaplansky theorem, S is a direct sum of countably generated projective modules. In what follows, we may assume therefore that S is a direct summand of a countably generated free module $F=\bigoplus_{i=1}^{\infty}F_i$, where $F_{iR}\approx R_R$. Then $F=S\oplus(\bigoplus_{i=1}^{\infty}F_i')$, where $F_i=F_i'\oplus F_i''$. Since $S\approx\bigoplus_{i=1}^{\infty}F_i''$, each F_i'' has the \aleph_0 -exchange property by [1, Lemma 3.10], and then one will easily see that F_i'' is a direct sum of indecomposable modules. Hence, $S=\bigoplus_{j\in \Im}S_j$ with indecomposable S_j . Again by [1, Lemma 3.10], each S_j has the \aleph_0 -exchange property, and so S_j is completely indecomposable by [5, Prop. 1]. Therefore, S_j is semi-perfect by [3, Th. 5.2.4'].

Acknowledgement. The author is grateful to Professor M. Harada for his useful comments.

REFERENCES

- [1] P. Crawley and N. Jónnson: Refinements for infinite direct decompositions of algebraic systems, Pacific J. Math. 14 (1964), 797—855.
- [2] M. HARADA: Supplementary remarks on categories of indecomposable modules, Osaka J. Math. 9 (1972), 49-55.
- [3] M. HARADA: Applications of factor categories to completely indecomposable modules, Publ. Dep. Math. Lyon 11 (1974), 19—104.
- [4] M. Harada and T. Ishii: On perfect rings and the exchange property, Osaka J. Math. 12 (1975), 483—491.
- [5] R.B. WARFIELD, Jr.: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Nath. Soc. 22 (1969), 460—465.
- [6] K. YAMAGATA: The exchange property and direct sums of indecomposable injective modules, Pacific J. Math. 55 (1974), 301—317.
- [7] K. YAMAGATA: On projective modules with the exchange property, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A 12 (1974), 39—48.

[8] K. Yamagata: On rings of finite representation type and modules with the finite exchange property, Sci. Rep. Tokyo Kyoiku Daigaku, Sec. A 13 (1975), 1—6.

DEPARTMENT OF MATHEMATICS,
OKAYAMA UNIVERSITY

(Received February 28, 1976)