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In his papers [5], [6] and [7], F. Szasz considered several generaliza-
tions of strongly regular rings: A ring R is called a P,7ing (resp. gsr-
ring) if aR=aRa (resp. aRa=a’Ra?) for any ¢ € R. As was shown in
[5, Theorem 6], [6, Theorem 9] and [7, Theorem 9], there holds the
following :

(I) A ring R is strongly regular if and only if one of the following
equivalent conditions is satisfied :

1) R is a semi-prime P,-ring.

2) R is semi-prime and aR=¢’R for any ¢ER.

3) R is a semi-prime gsr-ring.

More recently, S. Ligh and Y. Utumi [4, Theorems 1, 3] and K. Chiba
and H. Tominaga [2, Theorem 2] have characterized a P,-ring R as
follows :

(II) R is a P,-ring if and only if one of the following equivalent con-
ditions is satisfied :

1) R is a direct sum of a strongly regular ring and a zero ring.

2) aRC Ra? for any ¢ER.

3) I(R)=7r(R) and R/I(R) is strongly regular.

4) aR=a’R and Ra=Ra’ for any a=R.

5) R/I(R) and R/r(R) are strongly regular.

Concening gs7-rings, by the aid of Nagata-Higman theorem, F. Szasz
[7, Theorem 7] proved also the following :

(III) If a gsr-ring R with prime radical N is an algebra over a field
whose characteristic is O or a prime p > 5, then N'=0.

In this note, we shall introduce the notion of a P,-ring (resp. @,ring)
as a generalization of that of a P,ring (resp. gsr-ring), and prove three
theorems which contain (I), (II) and (III) respectively.

Throughout R will represent an associative ring (with or without 1),
and » a positive integer. As for notations and terminologies used here,
we follow [2].

If aR*"=aR"a (resp. aR"a=a’R"a*) for any =R, R is called a P.-ring
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(resp. @,-7ing). Obviously, the notion of a P[-ring (resp. Q,-ring) coin-
cides with that of a P,ring (resp. gsr-ring). If R is a P,-ring or if aR"=
a’R" for any ¢ =R, then it is easy to see that the set N of all nilpotent
elements of R equals /(R"). While, if aR"C R"a? for any ¢ =R, then one
can prove N=/(R*™) (cf. the proof of [4, Theorem 3]). Finally, in case
R is a Q,ring, for any a=N we have aR"2=0, so that (gR)**C(aR")*=0,
which means that N coincides with the prime radical of R.
Our first theorem is a generalization of (I).

Theorem 1. The following are equivalent :

1) R is strongly regular.

2) R is a semi-prime P,-ring.

3) R is semi-prime and aR"=a'R" for any a=R.
4) R is semi-prime and aR"C R*a® for any a=R.
5) R is a semi-prime Q,-ring.

Proof. It is easy to see that 1) implies 2)—5). Suppose 2). In any
rate, R is a reduced ring. Given ¢=R, ¢"*'—ab,a=0 for some b,ER".
Since (a"—ab,)*=0, it follows ¢"—ab;=0 and &"—ab,a=0 for some b, E
R". Repeating the same procedure, we obtain eventually ¢—ab.a=0 for
some b,ER", proving 1). Next, noting that in a reduced ring xy=0 if
and only if yx=0, the implications 3)=—=1) and 4) —=>1) will be shown
quite similarly. Finally, suppose 5). If ¢ is an arbitrary element of R
then

a‘n+ZEaRna=a2Rn 2: .._ZaZ(n*Q)R"aZ(n—FE)-
Hence, by [1, Lemma 1] there exists an element bR such that ¢* =
@"*Pp and ab=ba. Then it is easy to see that (¢—a""5)"**=0. Since R
is seen to be a reduced ring, we obtain ¢=a*(e¢""'b), which proves 1) (cf.
also [1, Lemma 4]).

If ¢ is an idempotent of R such that eg=ae for any a=R wth 2*=0
then e is central. To see this, it is enough to recall that (ex—exe)’=0=
(xe—exe)? for any x=R. Following A. Kertész and O. Steinfeld [3], R is
called a Z-ring if every idempotent of R is central. For instance, any
ring whose nilpotent elements are central is a Z-ring (cf. [4, Theorem

10).

Lemma 1. (1) If Ris a P,-ring then it is a Z-ring.

(2) If aR"C Ra® for any a=R then R is a Z-ring.

() IFUR)=r(R") and R]I(R") is strongly regular, then R is a Z-
ring.
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Proof. (1) Lete=¢® and a®=0 in R. Obviously, ge=ae"=0 and es
=¢ - ¢ 'gq=eR’e, whence it follows ez=eae=0. Hence, R is a Z-ring.
Similarly, we can prove (2).

(3) Lete=e?in R. Since R/I(R") is strongly regular, ae—ea<I(R")
for any ¢ER, so that gae—eae=(ae—ea)e"=0, and similarly ez—eae=0.
Hence ae=eae=ca.

Now, we are at the position to prove our principal theorem, which
contains (II).

Theorem 2. The following are equivalent :

1) R is a divect sum of a strongly regular ring and a nilpotent rving
of nilpotency index at most n+1.

2) Risa P,ring.

3) aR"CRa® for any a=R.

4) Ris a Z-ring and R]I(R") is regular.

5) I(R)=r(R") and R[I(R") is strongly regular.

6) aR"=a’R" and R"a=R"a® for any a=R.

7) RJI(R™) and R/r(R") are strongly regular.

21 —4Y)  The left-right analogues of 2)—4).

Proof. It is easy to see that 1) implies 2)—7).

2)=—=4) By Lemma 1 (1) and Theorem 1.

6)—> 7)=>5)—>4) By Theorem 1 and Lemma 1 (3).

4)=—>1) By the regularity of R=R//(R") we have R=R"*'+I(R").
Now, let x= 3 x{Px®---2{**? be an arbitrary element of R**'NI(R"). Then,
by the regularity of R and the nilpotency of /(R*) we can find a central
idempotent e such that x{° —xPe<I(R™) for all . Hence,

=3 (2P —2Pe)xP - 4"V 3 a{PexP "V = re=x¢"=0,

whence it follows R=R"*! P I(R™).

3)=1) By Lemma 1 (2) and Theorem 1, R is a Z-ring such that
R/I(R™) is strongly regular. Hence, the proof of 4) —> 1) shows that R=
R B I(R™). Since R*™'=R"?, we readily see R=R""* P I(R*). If aR™
=0 then eR"C R"*'NI{(R*")=0, which means /(R*)=I(R"). Thus R=R"*!
@ (R*), proving 1).

Remark. By Theorem 2, any P,ring is a Q,ring. However, the
converse is not true in general : Let R be the subring of (GF(2)), consisting
of 0, ey, e, and e,,+e¢,;, where e;;'s are matrix units of (GF(2)),. Then,
aR=a’R and aRa=a’Rd® for any eER, Re,, # 0=Re}, I(R) # 0=r(R),
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and R/I(R) is isomorphic to GF(2).
Finally, we shall present a sharpening of (III).

Lemma 2, Let R be a Q,ring. If ay, a,, @, asEN and a;ER" then
2“1“2“3@4[35:0.

Proof. If @, bare in N then aR"a=0, bR*0=0 and (a+b)R"(a+b)
=0. Hence, one will easily see that eaxb= —bxa for any xER". By mak-
ing use of this relation, we obtain

B 23Q405= — Q405838102 = B1Q203C185= — G1Q2038,4Q5,
namely, 2a¢,a,a;a¢,a5;=0.

By Lemma 2, without making use of Nagata-Higman theorem, we
readily obtain the following :

Theorem 3. Let R be an algebra over e field of characteristic = 2.
If Ris a Q,ring then N***=0. Especially, if R is a gsr-ring then N°=0,
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