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Introduction. Throughout this paper, B will mean a ring with iden-
tity 1 and all ring extensions of B will be assumed with the (common)
identity 1. A ring extension A of B is called a free extension of B if A is
free as right B-module and as left B-module.

The purpose of this paper is to construct a semigroup and a group
consisting of B-ring isomorphism classes of free quadratic extensions (free
extensions of rank 2)of B, and moreover the study contains some characteri-
zation of these semigroup and group. In commutative case, such construc-
tions have been studied in [1], [2] and others. Indeed, K. Kitamura
proved that if B is commutative and @,(B) means the set of all B-algebra
isomorphism classes of free quadratic extensions of B then Q/B) forms
an abelian semigroup under a certain composition, and the set of all B-
algebra isomorphism classes of free quadratic separable extensions coin-
cides with U(Q,B)), the set of all invertible elements of @/(B) which is a
subgroup of Q/{B); in particular, if 2 is invertible in B then U(Q/{B)) is
isomorphic to U(B)/U(B)?, U(B)*= {u* | u= U(B)}.

In this paper, §0 is devoted to notations and terminologies for the
subsequent study. In §§1 and 2, we assume that 2 is invertible in B. In
§1, we shall study on the separability of free quadratic extensions of
automorphism type. In §2, we shall show that some isomorphism classes
of free quadratic extensions of B of automorphism type form an abelian
semigroup with identity, and we shall determine the structure of the
semigroup. Especially, for commutative rings, we see that the semigroup
is isomorphic to B/ U(B)? (cf. [2]). In §3, we assume that 2=0in B. In this
case, any cyclic extension of B with a Galois group of order 2 is obtained
as a free quadratic extension of derivation type (cf. [3]). We shall here
show that some isomorphism classes of free quadratic extensions of B of
derivation type form an abelian group, and we shall determine the
structure of the group. Especially, for commutative rings, the group is
isomorphic to (B, +-)/ {b*--b|bEB}.

0. Notations and terminologies. Let p and D be an automorphism
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and a derivation of B respectively. We use the following conventions :

Z =the center of B.

B,=B’= {b=B|p(b)=0b}, Z,=ZNB,.

B(p')= {6E B|cb=bp'(c) for all cEB}, By(p")=B,N B(p’).

L Nyb; n)=p*"(b)p" " X(B)-++++-p(b)b (bE B).

LN(B;n)={LNSb;n)| bEB}, LN(b;n)=LN,(b; n)=5".

b= b.b,7!, the inner automorphism generated by b= U(B).

I,=b.—b,, the inner derivation generated by s B.

B,=B’= {b=B | D(b)=0}, Z,=B,NZ.

B(a.D)={bEB | I,=D*-+a,D}, Ba.D)=B,N B(a.D).

B[X; p] (resp. B[X ; D])=the ring of all polynomials 3. X'b; (b, B)
in an indeterminate X whose multiplication is defined by bX=Xp(b)
(resp. 8X=Xb-+D(b)) for each b= B.

If e€B,(p) and b= B,(p*) then (X*—Xae—b)B[X; p] is a two-sided
ideal of B[X; p]. In this case, the ring extension of B, B[X; p]/(X*—
Xa—b)B[X; p] is called a free quadratic extension of p-automorphism
type. On the other hand, in case 2=0, if ¢e=Z, and b= B,(e,.D) then (X*—
Xa—b)B[X; D] is a two-sided ideal of B[X ; D], and conversely. In this
case, the ring extension of B, B[X ; D]/(X?*—Xa—5)B[X ; D] is called a
Jree quadratic extension of D-derivation type. Moreover, we use the
following notations :

2,B)={B[X; p]/(X*—Xa—b)B[X ; p] | aEB\(p), bEB,(p*)}.

24B)={B[X; p] (X*—b)B[X ; p] | bEB,(p?)}.

9%B)= {B[X;D]/(X*—Xa—b)B[X; D] | b=B.a.D)}, where ¢ is a
(fixed) element of U(Z,) and 2=0.

Finally, a ring extension A of B is called separable over B if the A-
A-homomorphism ¢ Q ¢'——aa’ of AR A onto A splits. If A is a Galois
extension of B then A/B is separable (cf. [5, Th.1.5]).

1. Separability of a free quadratic extension of p-automorphism
type. In this section, we assume that 2 is invertible in B. If A=
B[X; p]/(X*—b)B[X ; p] =£%(B) then we denote X+(X?—b)B[X ; p] and
A by x, and B[x,] respectively. Firstly, we shall prove the following

Lemma 1.1. If A€ Q,(B) then Ais B-ring isomorphic to some A'E
5(B).

Proof. Let A=B[X;pl/(X*—Xa—b)B[X ;p] and x=X+(X*—Xa
—b)B[X ; p] where a=B,(p) and bEB,(p?). Then {1, y=x—a/2) is a
free B-basis for A. For each cEB, cy=c(x—a/2)=xp(c)— (a/2) p(c)=
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yole) and y*=a*—xa+a’/4=b+a’/4=B,(p*). Hence, if we set c=b-+a?/4
then A is B-ring isomorphic to B[x.] E2(B).

Now, asin [4], an extension A/B in £,(B) will be called strongly
cyclic if A/ B is (¢)-Galois and A contains a unit ¢ with ¢(g)= —a. Next,
we shall prove the following

Theorem 1.2. Let ASQ,(B). Then, the extension A/B is separable
if and only if it is strongly cyclic. In case A=B[x,]E9(B), A/B is
separable if and only if b is invertible in B.

Proof. By Lemma 1.1, we may assume that A=B[x,]=2:(B). If b
is invertible in B then, as in [4], there exists an automorphism ¢ of A
mapping x, into —x, and A/ B is a Galois extension with a Galois group (o)
of order 2. If A/B is Galois then it is separable by [5, Th. 1.5]. For the
remainder of the proof, we assume that A/B is separable, and we set z=
%,. Then there exist elements xay+ @y, b +0y (@1, @y, by, buEB, i=
1,2,. -, m) such that

20 (xay Faw) (b +by)=1,

0 (y(xan -+ a) @by + b)) = 207 (2@ + @) Qb + b)) ¥) (yE A).
The first equation implies 1= 2% x(@bs +p (@a)bys) + 211 (b (@) by +
aub.). Hence we have
(1) ™ (bo(@)by + @oibo) = 1.

While, the second equation implies 37, (x(x2y + @) @ (b + by)) =
PR ((bdu -+ xaoz) ® (26, + bo«:))= Z;"-l((x® x)p(al)i)bli —+ (x ® 1)“0iboi + (1 ® x)
p(ba )by +(1 @ 1)baby) and this is equal to 2%, (2@ + @) Q (b +boi) x) =
2 ((xan + dof) ® (bP(bu) + xP(bot)) =3 ((x® x)P(dutboi) —+ (1 ® x)f’(ﬂuibm:) +
z® 1)alib)0(bli) +(1 & l)dlbe(bh—)).

Comparing the coefficents of # X 1, we have

(2) 20e 1 @oibo= 214, alibp(bli) =21k .02(alz')p(bli)-
By (1) and (2),
1=, (bP(au)bu + @ybo)

=3 (bp(a!z')bh‘ + bpz(dii)P(bh'))
=", (P(a\z‘)bli + Pz(alz')no(bli))-

Hence #*=10 is invertible. This completes the proof.

2. A classification of free quadratic extensions of p-automorphism
type. Throughout the present section, we assume that 2 is invertible in
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B and p is an automorphism of B such that p?="%""' for some u< U(B,).

Lemma 2.1. Let B(x,] and B[x.] be elements of 2,(B). Then Blx) is
B-ring isomorphic to B(x.] if and only if b=cs for some s€ L N,(U(Z); 2),
and in this case, if s=LN, («; 2) with « = U(Z) then there exists a Bring
isomorphism B[ x,] —> Blx.] mapping %, into z..

Proof. We write x=x, and y=x.. If b=cLN,(«;2) for some a
U(Z) then (9a)*=y’LN,(a;2)=4* d(ya)=(ya)p(d) for all dEB, and
hence, the mapping #x-+v — uya-+v (¥, v=EB)is a B-ring isomorphism
of B[x] onto B[y]. Conversely, we assume that there exists a B-ring
isomorphism ¢ : B[x] >B[y]. Then ¢(x)=ya-+7 for some o, JEB.
If d€ B then yp(d)a+di=d(ya+73)=¢(dx)=¢(xp(d))= yae(d)+3p(d).
This shows that a=Z and 3= B(p). Since y=(ya+7j) d,+d, for some
dy, d: € B, « is contained in U(Z). Further &’ =¢(2*) = (ya+p)’=
v o(a)a+yalB+p(?))+ 74 yields 3+0(5)=0. Noting that 3 < B(p), we
have 0=p(3+p(3))=25%, and hence #*=0. Therefore #*=3%p(a) «, that
is, b=cLN,(a; 2), aESU(Z).

Lemma 2.2. B,(p)=uZ,, and Z, 2 LN,(U(Z); 2) as a multiplicative
subgroup. Moreover, if b= B,(p*) then so is beu™" for all ¢=B,(p%), and b
€ By(p®) N U(B) if and only if bdu ' SuLN,(U(Z); 2) for some d< B,(p?).

Proof. Let bEB,(p?). If d=B then db=>0bp*(d)=bu"'du, and so,
dbu'=bu"'d. This shows that bu '&Z N B,=Z,, and hence b€uZ,. Con-
versely, if b&uZ, then it is clear that b= B(p?). Thus we obtain B,(p?)
=uZ,. The other assertions will be easily seen.

Now, by P,(B), we denote the set of all B-ring isomorphism classes
in 2,(B), and if CE P,(B) and AEC then we write C=<{A). By Lemma
1.1, each CE P,(B) meets £5(B), and hence, if CE P,(B) then C=<{A) for
some AE 2(B). Under this situation, we shall prove the following

Theorem 2.3. P,(B) forms an abelian semigroup with 1=<{B[x.]>
under the composition {B[x.)) (Bl[x.]1>={B[%wn-1]). Moreover, for an
element {B[x]> of Py(B), {B[x:]>E U(P,(B)) if and only if b€ U(B).

Proof. Let {B[xy]>={B[%]) and {B[x.]>=<B[x.-]>. Then by Lem-
ma 2.1, there exist elements s, tSLN,(U(Z); 2) with b=b's and c=c't.
Hence beu'=b'c'u"'st € By(p?), and st € LN,(U(Z) ; 2) (Lemma 2.2).
This means that {B[%w.-1]> = {B[%we«-1]D, that is, the composition is
well defined. The other assertion follows immediately from Lemma 2. 2.
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Theorem 2.4. P,(B) is isomorphic to the factor semigroup Z,/LN,
(U(Z); 2). In particular, U(P,(B)) is isomorphic to U(Z,)]LN,(U(Z);2),
and U(P,B)) coincides with the subset of P,B) consisting of the elements
{A> with A separable over B.

Proof. By Lemma 2.2, the mapping
f: 2 — <B[xm]> (ZEZI)

is a semigroup epimorphism of Z, onto P,(B). For elements z,2’EZ,, f(2)
=f(2") if and only if z=2z's for some s&L N, (U(Z) ; 2) (Lemma 2.1). This
implies that Z,/LN,(U(Z) ; 2) is isomorphic to P,(B). Moreover, since
U(Z,/LN,(U(Z) ; 2))=U(Z,)| LNXU(Z) ; 2), U(Z,)| LN(U(Z) ; 2) is isomor-
phic to U{(P,(B)). The last assertion is a direct consequence of Ths. 1.2
and 2. 3.

Now, it is easily seen that for any A€2,(B), A=B & A’ for some
A'€£,(Z), where 1 is the identity map of B onto B. Moreover, as an
easy consequence of Th. 2.4, we obtain the following

Corollary 2.5. If p | Z (the restriction of p on Z)=1 then Z]U(Z)*
=P, (B)=P,(B)=P,(Z)=QAZ). In particular,

(1) if p is inner then P,(B) = P,(B).

(2) (Kitamura [2]) If B is commutative then P,(B)=B/U(B)’.

Next, we consider some free quadratic extensions of B[X ; e] of auto-
morphism type. The automorphism p can be extended to an automorphism
e of B[X; p] by o(32:X'8,)=2.X"p(b;). Then ¢*="%"" and u=U(B[X ; p]°).
By C, we denote the center of B[X ; p]. Then we have the following

Theorem 2.6, P,(B[X ; p]) is isomorphic to C/U(C)*. If UB[X ; pl)
=U(B) then U(P.(B[ X ; p])) =U(P\(Z)) = U(Z,)] U(Z,)* ~ U(Z,)/LN,
(U(Z) ; 2) = U(P,(B)) where ~ is the canonical epimorphism 2U(Z,)* —>
2LN(U(Z) ;2), and in case p=1, thisis an isomorphism.

Proof. As is easily seen, B[X ; p]° coincides with the centralizer
of Xin B[X ; p]. This implies that B[X ; p]2C, and so, C’=C. Hence
by Th. 2.4, P,(B[X: p]) is isomorphic to C/U(C)’.. Next, we assume
that U(B[X ; p])=U(B). Then U(C)SUB)NU(CHSU(BNC’) S U(BN
CYYS U(Z")=U(Z,). Since C2Z,, it follows that U(C)=U(Z,). Hence
UC)/ U(C)? = U(Z)] U(Z,)?. Noting that U(Z)2LNAU(Z) ; 2) 2 U(Z,)?,
we obtain the other assertion by Th. 2. 4.

Next, for rings B = R, we shall consider the groups P,(B), P,(R).
Let R be a ring with an automorphiem 7 such that »*=7%"" for some v&
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U(R) with 7(2)=v. Further, by W we denote the center of R, and we set
W= W", Under this situation, we shall prove the following

Theorem 2.7. If there exists a ring isomorphism ¢ of B onto R with
¢p=yg, then P,(B) = P,(R). In particular,if B=R, then P,(B)=P(R).

Proof. Since ¢ is an isomorphism, »(Z)= W is clear. If z&Z, then
¢(2)=¢(p(2))=7%(¢(2)). This shows that ¢(Z,)S W,. Symmetrically, we
have ¢ (W,)SZ,. Thus we obtain ¢(Z,)= W,. By a similar method, we
also obtain ¢ (L N,(U(Z) ; 2))=LN,(U(W) ; 2). Hence Z,/LN,(U(Z).; 2) is
isomorphic to W,/LN,(U(W);2). From this and Th. 2.4, our assertion
follows immediately.

3. A classification of free quadratic extensions of D-derivation
type. Throughout the present section, we assume that 2=0in B, Dis a
derivation of B, and that ¢ is a (fixed) element of U(Z,). Further, we set

B(B)={3€B | #+D(A)+3a=Z, and I,=D-+a.D

for some o€ U(Z) with a*=1 and a(1+a)=D(a)} .

De(B)= {#+D(@)+7a | AEBB)}.

If we take =1 and 3=0 then « € U(Z), a’*=1 and a(l+a)=2a=0
=D(1)=D(a). Further 0=3+D(8)+pa=Z, and 0=I;=2D=D-+D=D+
1,D. Thus B,(B) 3 0. This shows that B,(B)7* @, and hence D.(B)#* J.

First, we shall prove the following

Lemma 3.1. (1) If 36=063 for all 3, 6EB.(B) then Du(B) is an ad-
ditive subgroup of (Z,, +).
(2) If D(2) 5~ az for each zEZ— {0} then B,(B)SZ.

Proof. (1) Let 3, & be elements of B.(B). Then there exist elements
«, v in U(Z) such that a*=1r’=1, a(l+a)=D(x), a(l+7)=D(), I,=D
“+a,D and Iy=D+y,D. Since f0=43, we have (3+7)?=3+7r% Hence (%
+ D) +Fa)+ (3 + D(8)+8a)=(3-+8)* -+ D(3+8) +(3+4d)a, which is in Z,.
We set here e=1+a+7. Then £’=1+a’+i?=1, x€U(Z), lp:s=Is+Is
=(a+7),D=(.—1),D=D+«.D, and e(l+&)=ala+7)=al+a)+a(l+7)
=D(a+7)=D(xr—1)=D(x). Therefore, it follows that ®,(B) is an addi-
tive subgroup of (Z., +). '

(2) Let 3 be an element of B,(B). Then I[,=D+ D for some a E
U(Z) with a*=1, and a(l1+a)=D(x). Hence a(l+a)= D{a)=D(Q+a).
Since 1+ aE=Z, we have 1+a=0, and so, a=1. Hence I;=2D=0, which
implies A€ Z. This completes the proof.

In the rest of this section, we assume that D*+ ¢.D is an inner deriva-
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tion determined by an element of B,. Then we have B,z.D) = @, and so
25(B) %= @. Moreover, we set
Pg(B)=the set of all B-ring isomorphism classes in £,*(B),
(A>=Cif Ce P;(B) and A=C.
Further, if A=B[X;D]/(X?*—Xa—b) B[X : D] 2,(B) then we denote
. X+ (X*—~Xa—b)B[X ; D] and A by x, and B[] respectively.

Lemma 3.2. Let b be an element of BJ(a.D). Then
(1) BJaD)={b+z | zE€Z,}.
(2) If ¢ and d are elements of B{a.D), then so is c+d-+b.

Proof. Let ¢ be an element of B,(az.D). Then I.=D*+a,D=1,. This
implies ¢=b+z for some z&Z,. Conversely, for each 2z&7Z,, it is obvious
that I,,,=I,=D*+a.D, and hence b+2EB,(a.D). Thus we obtain (1).
The assertion (2) will be easily seen from (1).

Lemma 3.3. Let B[x,] and B[x.] be elements of 2,(B). Then B[x,]
is B-ring isomorphic to Blx.] if and only if b+ cEDu(B).

Proof. We write x=x, and y=2x.. First, we assume that b+cE
Da(B). Then there exist elements aE U(Z) and < B such that b+c¢=3*+
D(9+pa, I,=D+a.D, o*=1, and a(1+a)=D(a). Since I;(a)=0 and I,
(9)=0, we have D{a)a=D(«) and D(3)a=D(3). We set here y.=ya+73.
Then y.:= y(aa’+ D(a)a)+ ca*+ D(F)a+ #=y(a + D(a))+ ¢ + D(I) + F#*=
yaa+b+3a=y.a+b, and moreover, for each dEB, dy.,=yda+ D(d)a+
di=yad +D(d)+3d=y.d +D(d). Hence, the mapping ux+v —> uy.+v
(x, vEB) is a B-ring isomorphism of B{x] to B[y]. To see the converse,
we assume that there exists a B-ring isomorphism B[x] —> B[ y], which
will be denoted by ¢. Then $(x)=ya+ for some o, 3EB, P$(dx)=dd(x)
for all dEB, and ¢(x*)=¢(x)’. Since, for d=B, P(dx)= P(xd +D(d)) =
yad +3d +D(d) and dp(x)=d(ya+3)=yda+D(d)a-+dj, it follows that o
€Z and Izg=D-a,D. Noting that y=(ya+3)d,~+d, for some d,,d, € B,
we see that « € U(Z). Moreover, since p(x*)=d(xa-+b)=yaa-+3a+b and
O(2)* = (ya+3)?=y(aa’ + D(a)a) +ca® +- D(Ha+ 7, it follows that a(l-+«)
=D(a) and b+ca’=73 + D(a-+~Pa. The derivation a,.D=D—1I; gives
D(a)a=D(a) and D(%)a=D(x). Hence we obtain a*=(z"'D(a)—1)a=a™"
D(@)a—a=a 'D(a)—a=1 and b+c=3+D(3)+%2. By Lemma 3.2 (1),
the sum b+c¢ is contained in Z,. We have therefore that b-+-c=<.(B), the
desired conclusion. ‘

Theorem 3.4. Assume that 36=63 for all 3, FEB.(B), and let b be
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an element of B(a.D). Then P;}(B) forms an abelian group of exponent 2
under the composition (B[x:.]) {B[x4])> = B[ %cras» 1> (with the identity
element {B[%,]>), and this group is isomorphic to (Z, +)/Du(B).

Proof. Let {B[%.]1>=<{B[#~]> and {B[x.])> ={Blx.1) (¢, ¢, d, d'
& B,(a.D)). Then by Lemma 3. 3, the sums ¢-+¢’ and d +d' are contained
in ©4(B). By Lemma 3. 1(1), D,(B) is an additive subgroup of (Z,, +).
Hence we have (¢ +c¢')+(d-+d)ED.(B), that is, (c+d+b)+('+d'+b)E
D(B). By Lemma 3. 2(2), c-+d—+b and ¢'--d’+b are in B,(e,D). There-
fore, it follows from Lemma 3.3 that {B[%cias» 1> ={B[%csar+»]p. This
means that the composition is well defined. Clearly, the composition is
associative and commutative. Moreover, we have that {B[#.]> {B[%:])=
(B[ %e+v4]) =<B[%.1), and {B[%.1>{B[%.1> ={B[%esce+s]>=<{B[%,])>. Thus
our composition makes P (B) into a group of exponent 2 with the identity
element {B[x,])). Now, if {B[z.])>E P;(B) then ¢E B,(e.D), and converse-
ly. Moreover, cE B.(a.D) if and only if ¢=b--z for some 2zEZ,(Lemma
3.2(1)). Hence the mapping

f:z2—>{Bl®:.1) (2€2,)

is a group epimorphism of Z, to P,(B). For an element zEZ,, the result
of Lemma 3. 3 enables us to see that f(2)=<{B[x,]> (identity element) if
and only if z=({(+2)+b=D(B). This implies that (Z,, +)/DB) is
isomorphic to P,*(B).

Remark. We assume that 36=473 for all 8, 6€8B.(B), and by (P
(B), b) we denote the group P; (B) given in Th. 3.4 whose group compo-
sition is related to b, an element of B,(¢,D). Then, for each element vE
B.(a.D), we have a group (P/(B), v). If b, v=B,(a.D) and b+veéED(B)
then, by Lemma 3.3, we see that the group composition in (Py(B), b) is
different from that in (Pf(B), v). However, we have (Z,, +)/DB)=(Ps
(B), v) for each v=B.(ea.D) (Th. 3.4). In the rest of this section, we shall
understand P} (B) a group (P,*(B), b) where b is an element of B,(a.D).

Lemma 3.5. The following conditions are equivalent.
(@) D(2)  az for each z=Z— {0} .
(b) D|Z (the restriction of D on Z)=0.

Proof. Clearly (b) implies (a). Conversely, assume (a), and let z be
an arbitrary element of Z. Then, for each ¢ B, D(z)c=D(zc)—zD(c)=
D(cz) — D(c)z=cD(z2) + D(c)z — D(c)z = ¢D(z), and this shows D(z) EZ.
Now, for an element b = B,(2.D) (= @), 0= L(2)=D*2)—a.D(z)=D*2)+
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D(2)a=D%2)+ aD(z), thatis, D(D(z))=aD(z). Since D(z)=Z, it follows
that D(z)=0. Thus we obtain (b).

Corollary 1. (1) If D(2) = az for each zE Z — {0} (which is equivalent
to that D|Z=0) then P/(B)=(Z,+)] ¥+ za|za|zE Z} = PB)=
P(Z).

(2) If D is inner then Py (B)= P,(B).

(3) If Bis commutative then P,"(B) = (B, +)/ {b*+ba|bEB}.

(4) Ifa=1 and D(z) 5 z for eachzE Z— {0} (. e., D*—D is an inner
derivation determined by an element of B, and D|Z=0) then P, (B) =
(Z, +)/ {Z#+z| z€ Z} = P,*(B) and for each {A> € P,(B), A is a Galois
extenston of B.

Proof. (1) By Lemma 3.1(2), we have B,(B)SZ. On the other
hand, since Z=2,, it follows that B,(B)=Z. Hence D,(B)= {*+za | zE
Z}. The rest is obvious from Th. 3. 4. (2) Since D|Z=0, this is a direct
consequence of (1). (3) This is also an easy consequence of (1). Moreover,
(4) follows immediately from (1) and the result of [3. Cor. 1.1].

Finally we shall prove the following

Theorem 3.5. Let : B—R be a ring isomorphism, and W the center
of R. Then R has a derivation E with D= E¢, which is uniquely deter-
mined. If 30 7 63 for all 3, 6EB.(B) (resp. if D(2) 5~ az for each 2€Z
—{0}) then P.{(B)== P!“(R) (resp. Py (B)= Pf“(R)= (W, +)/{w*+
wdP(a) | we W}). In particular, P,'(B)= P, (R).

Proof. Clearly the map E=¢D¢~! of R into itself is a derivation of
R. This implies the first assertion. Since ¢ is a ring isomorphism, we have
$(Z)=W. Moreover, E($(B,))=¢(D(B,)=0 and D (R,)=¢ (E(R,))
=0 where K,=R". Hence ¢(B.)CR, and ¢ (R,)=B,. Thus we obtain
d(B,)=R,, and $(Z,)=¢P(ZNB.)=HZ)NP(B.)= WNR,= W,. For any bE
Bya.D) (@), I,=D*+a.D, and hence, I,u,=E*’+¢(a).E where d(b) is
in R,. Now, let 3&%B,(B). Then ¥+ D(3)+ ‘a=Z,, I,=D-+a.D for some
a€U(Z) with a*=1 and a(l1+a)=D(a). Hence $(7)*+ E(P(3))+ ¢(F)d(a)
E(Z,)=W,, Lin=E+da).E, p(@)EU(W), $(a)’=1, and $(a)(1l+d(a))
= E($(a)). Therefore, it follows that $(3) E R, (R)= {¢ | £+ E(12) + pp(a)
eW, I.=E+4v,E for some vE U(W) with »*=1 and ¢(@)(1+v)=
E(v)}. Moreover, we have that ¢(5*+ D(5)+ &) =P(3)2+ E(D(D)) + d()p(a)
EC, w(R)= {/2+ E(1t)+ 1ra | pER,,,(R)}. Thus, we obtain that ¢(B.(B))
C R,@(R) and H(Du(B)) € Cyop(R) ; symmetrically ¢~ (R,w(R)) S Bu(B)
and ¢7'(C,,(R))=2.(B). Hence ¢(B.(B)) =R,y(R) and P(D(B))= @ﬂ(a)(R)-
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Consequently, if 3d=473 for all 3, 6EB.(B) then up=ppu for all p, p=
Cw(R), and hence Theorem 3.4 enables us to obtain that P,¥(B) =
(Z,o, +)/Du(B) = (W,, +)/Cya(R) = PL(R). Moreover, if D(2) 5 az for
each z € Z— {0} then E(¢(2))=¢(D(2)) # ¢(a)p(z) for each z € Z— {0},
which implies. E(w) = ¢(a)w for each wE W— {0}; and whence, by Cor. 1
(of Th. 3.4) we obtain P{“(R) = (W, +)/ {w*+uwd(a) | w e W}. The
other assertion will be easily seen.
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