NOTE ON FULLY IDEMPOTENT IDEALS AND s-UNITAL IDEALS

To Professor R. Takekuma on his sixteenth birthday February 29, 1976

MOTOSHI HONGAN and HISAO TOMINAGA

Throughout the present note R will represent a ring (with or without identity). R is said to be fully left idempotent (or left weakly regular) if every left ideal of R is idempotent or equivalently if $a \in (Ra)^2$ for any $a \in R$ (cf. [4]). R is said to be fully idempotent if every ideal of R is idempotent or equivalently if $a \in (RaR)^2$ for any $a \in R$ (cf. [2]). Finally, R is said to be left (resp. right) s-unital (or D-regular) if $a \in Ra$ (resp. $a \in aR$) for any $a \in R$ (cf. [5]). If an ideal I of R is a fully left idempotent ring (resp. fully idempotent ring), then I is called a fully left idempotent ideal (resp. fully idempotent ideal). Similarly, I is called an s-unital ideal if I is a left and right s-unital ring. We shall denote by W(R), W'(R) and $W^*(R)$ the sum of all fully left idempotent ideals of R, the sum of all fully idempotent ideals of R, respectively.

In this note we shall prove the following:

Theorem 1. (1) W(R) is the unique maximal fully left idempotent ideal of R.

- (2) W(R/W(R)) = 0.
- (3) Let $(R)_n$ be the $n \times n$ matrix ring over R. Then $W((R)_n) = (W(R))_n$.
- (4) If I is an ideal of R then $W(I) = W(R) \cap I$.

Theorem 2. (1) W'(R) is the unique maximal fully idempotent ideal of R.

- (2) W'(R/W'(R)) = 0.
- (3) $W'((R)_n) = (W'(R))_n$.
- (4) If I is an ideal of R then $W'(I) = W'(R) \cap I$.

Theorem 3. (1) $W^*(R)$ is the unique maximal s-unital ideal of R.

- (2) $W^*(R/W^*(R)) = 0$.
- (3) $W^*((R)_n) = (W^*(R))_n$.

Borrowing the idea from B. Brown and N. H. McCoy [1], V. Gupta

[3] has proved Theorem 1 for rings with identity. Moreover, the W-radical class and the W'-radical class are considered in [4] and [2], respectively. In case R is an integral domain, it is easy to see that R is left s-unital if and only if R contains 1. Accordingly, if R is an integral domain with 1 and I is an ideal of R with $R \supset I \supset 0$ then $W^*(I) = 0 \neq I = W^*(R) \cap I$, which shows that the W^* -radical class is not hereditary. Moreover, one may remark that if R is the subring of $(GF(2))_2$ consisting of 0, $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ then $eW(R)e = eW'(R)e = eW^*(R)e = 0 \neq eRe = W(eRe) = W'(eRe) = W^*(eRe)$.

In advance of proving our theorems we shall state three lemmas.

Lemma 1. Let I be an ideal of R.

- (1) I is a fully left idempotent ideal if and only if $a \in (Ra)^2$ for any $a \in I$.
- (2) I is a fully idempotent ideal if and only if $a \in (RaR)^2$ for any $a \in I$.
- *Proof.* (1) If $a \in I$ and $a \in (Ra)^2$ then $(Ra)^2 = (Ra)^4 = (Ia)^2$. The converse is trivial.
- (2) If $a \in I$ and $a \in (RaR)^2$ then $(RaR)^2 = (RaR)^6 = (IaI)^2$. The converse is trivial.

Lemma 2 (cf. [3, Lemma 2]). (1) If $x \in (Ra)^2$ and $a-x \in (R(a-x))^2$ then $a \in (Ra)^2$.

(2) If $x \in (RaR)^2$ and $a-x \in (R(a-x)R)^2$ then $a \in (RaR)^2$.

Proof. We shall prove only (1). Since $x \in (Ra)^2$, it follows $R(a-x) \subseteq Ra$. Hence, $a-x \in (Ra)^2$, which together with $x \in (Ra)^2$ implies $a \in (Ra)^2$.

The next is given in [5, Proposition 5 (1)], [2, Theorem 2.5] and [5, Corollary 1].

Lemma 3. (1) R is fully left idempotent if and only if so is $(R)_n$.

- (2) R is fully idempotent if and only if so is $(R)_n$.
- (3) R is left s-unital if and only if so is $(R)_n$.

Proof of Theorem 1. (1) By Lemma 1 (1), it suffices to show that if the principal ideals (u) and (v) are fully left idempotent then $u+v \in (R(u+v))^2$. Let a=u+v and $x=\sum_i x_i ay_i a$, where $u=\sum_i x_i uy_i u$ $(x_i, y_i \in R)$. Then $a-x=v-\sum_i x_i uy_i v-\sum_i x_i vy_i a \in (v)$, whence it follows $a-x \in R$

 $(R(a-x))^2$. Hence $a \in (Ra)^2$ by Lemma 2 (1).

- (2) If $x \in (Ra)^2$ and $a-x \in W(R)$ then $a \in (Ra)^2$ by (1) and Lemma 2 (1). Now, (2) is obvious by Lemma 1 (1).
- (3) Since $(W(R))_n \subseteq W((R)_n)$ by (1) and Lemma 3 (1), it remains only to prove the converse inclusion. Given $x \in R$, $E_{\lambda\mu}(x)$ will denote the element of $(R)_n$ with x in the (λ, μ) -position and zeros elsewhere. Let $A = (a_{ij})$ be an arbitrary element of $W((R)_n)$. Since $A \in ((R)_n A)^2$, there exist some $X_k = (x_{ij}^{(k)})$ and $Y_k = (y_{ij}^{(k)})$ such that $A = \sum_k X_k A Y_k$. Then by a brief computation we have

$$W((R)_n) \ni \sum_{k,\lambda,\mu} E_{1\lambda}(x_{p\lambda}^{(k)}) A E_{\mu 1}(y_{\mu q}^{(k)}) = E_{11}(\alpha_{pq}).$$

Hence $W((R)_n)=(I)_n$, where I is the ideal of R consisting of all the elements x which appear in the (1, 1)-position of some elements in $W((R)_n)$. Recalling that $E_{11}(a_{pq}) \in ((R)_n E_{11}(a_{pq}))^2$, one will easily see that $a_{pq} \in (Ra_{pq})^2$, namely, $I \subseteq W(R)$ (Lemma 1 (1)).

(4) By (1) and Lemma 1 (1), $W(R) \cap I \subseteq W(I)$. Conversely, if $a \in W(I)$ and $x \in R$ then $ax \in (Ia)^2x \subseteq IaI \subseteq W(I)$ and similarly $xa \in W(I)$. Hence, W(I) is an ideal of R and $W(I) \subseteq W(R) \cap I$ by (1).

Proof of Theorem 2. Although (1) and (2) are given in [2, Theorem 4.4], the proof is quite similar to that of Theorem 1 and may be left to readers.

Proof of Theorem 3. (1) Let I and J be s-unital ideals of R. If $a \in I$ and $b \in J$ then there exist some $f \in I$ and $g \in J$ such that fa = a and g(b-fb)=b-fb. Obviously, $e=f+g-gf\in I+J$ and e(a+b)=a+b, and similarly (a+b)e'=a+b for some $e'\in I+J$. Hence, $W^*(R)$ is s-unital.

- (2) Let $I \supseteq W^*(R)$ be an ideal of R such that for any $a \in I$ there exist e, $e' \in I$ with a-ea, $a-ae' \in W^*(R)$. Then by (1) there exist f, $f' \in W^*(R)$ such that f(a-ea) = a-ea and (a-ae')f' = a-ae'. Since a = (e+f-fe)a = a(e'+f'-e'f') and e+f-fe, $e'+f'-e'f' \in I$, it follows $I \subseteq W^*(R)$.
- (3) By (1) and Lemma 3 (3), $(W^*(R))_n \subseteq W^*((R)_n)$. If $A=(a_{ij}) \in W^*((R)_n)$ then there exist some $X=(x_{ij})$ and $Y=(y_{ij})$ such that A=XA=AY=XAY. It is easy to see that

$$W^*((R)_n) \ni \sum_{\lambda,\mu} E_{1\lambda}(x_{p\lambda}) A E_{\mu 1}(y_{\mu q}) = E_{11}(a_{pq}).$$

Hence $W^*((R)_n) = (I)_n$, where I is the ideal of R consisting of all the elements x which appear in the (1, 1)-position of some elements in $W^*((R)_n)$. Recalling that there exist $Z, Z' \in W^*((R)_n)$ such that $E_{11}(a_{pq}) = ZE_{11}(a_{pq}) = E_{11}(a_{pq})Z'$, one will easily see $a_{pq} = za_{pq} = a_{pq}z'$ for some $z, z' \in I$, and hence $I \subseteq W^*(R)$.

REFERENCES

- [1] B. Brown and N. H. McCoy: The maximal regular ideal of a ring, Proc. Amer. Math. Soc. 1 (1950), 165-171.
- [2] R.C. COURTER: Rings all of whose factor rings are semi-prime, Canad. Math. Bull. 12 (1969), 417—426.
- [3] V. Gupta: The maximal right weakly regular ideal of a ring, Glasnik Mat. (3) 9 (1974), 29-33.
- [4] V.S.RAMAMURTHI: Weakly regular rings, Canad. Math. Bull. 16 (1973), 317-321.
- [5] H. TOMINAGA: On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.

TSUYAMA TECHNICAL COLLEGE
OKAYAMA UNIVERSITY

(Received November 26, 1975)