ON s-UNITAL RINGS

Dedicated to Professor Mikao Moriya on his 70th birthday

HISAO TOMINAGA

The present paper attempts to generalize several results in [10], [21], [22] and [24] obtained for rings with identity. In fact, we can prove similar ones for left (and right) s-unital rings, where a ring $R \neq 0$ is called a left s-unital ring if $Ra \ni a$ for any $a \in R$. Needless to say, the class of left s-unital rings includes those of rings with identity and of regular rings. In [6], [18] and [23] we treated with left s-unital rings in the connection with regular rings. In the present paper, our attention will be directed towards the classes of left V-rings, fully left idempotent rings, and of almost commutative rings, those which are closely related to the class of regular rings. § 1 contains a fundamental proposition, a characterization of prime ideals of a left s-unital ring in terms of its right modules as in Beachy [3], and a slight generalization of a result of Hansen [13]. The material of §2 comes from Fisher [10], Michler-Villamayor [21], Ramamurthi [22] and Yue Chi Ming [25], and left V-rings will be concerned in regular rings, left p-V-rings and fully left idempotent rings. In §§ 3 and 4, almost all results of Wong [24] will be carried over to s-unital rings.

For future reference, $R \neq 0$ will represent always a ring (with or without identity), and C the center of R. The Jacobson radical and the prime radical of R will be denoted by J(R) and P(R), respectively. As for other notations, we follow [18] and [23].

1. s-unital rings. A left R-module $M \neq 0$ is defined to be s-unital if $Ru \ni u$ for any $u \in M$. For instance, every irreducible left R-module is s-unital. Needless to say, if ${}_RM$ is s-unital then it is unital, and in case R contains 1 these notions are identical. We can define similarly an s-unital right R-module.

Theorem 1. If $M \neq 0$ is a left R-module then the following are equivalent:

- 1) _RM is s-unital.
- 2) For any $u_1, \dots, u_n \in M$ there exists an element $e \in R$ such that $eu_i = u_i \ (i=1, \dots, n)$.

3) For any positive integer n, every $(R)_n$ -submodule of the direct sum $^{(n)}M$ of n copies of M is of the form $^{(n)}N$ with some $_RN\subseteq_RM$, where $(R)_n$ denotes the $n\times n$ matrix ring over R.

Proof. 1) \iff 2). Assume that $_RM$ is s-unital. Choose an element $e_n \in R$ such that $e_n u_n = u_n$, and set $v_i = u_i - e_n u_i$ $(i = 1, \dots, n-1)$. By induction method, there exists an element $e' \in R$ such that $e'v_i = v_i$ $(i = 1, \dots, n-1)$. Then, one will easily see that $e = e' + e_n - e'e_n$ is an element with the property requested in 2). The converse is trivial.

1) \iff 3). Given $a \in R$, $E_{ij}(a)$ will denote the element of $(R)_n$ with a in the (i, j)-position and zeros elsewhere. If $u_1, \dots, u_n \in M$ then

$$E_{1i}(a) \begin{pmatrix} u_1 \\ \cdot \\ \cdot \\ \cdot \\ u_n \end{pmatrix} = \begin{pmatrix} au_i \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix},$$

whence we can easily see that 1) implies 3). The converse is also easy

If $_RR$ (resp. R_R) is s-unital, R is said to be *left* (resp. right) s-unital. To be easily seen, every (non-zero) homomorphic image of a left s-unital ring is left s-unital, and any regular ring is left and right s-unital. (In Ramamurthi [22], a left s-unital ring is cited as a *left D-regular ring*.)

Corollary 1. If R is left s-unital then so is $(R)_n$, and conversely.

Proof. If $A=(a_{ij})$ is an arbitrary element of $(R)_n$, then by Theorem 1 there exists an element $e \in R$ such that $ea_{ij}=a_{ij}$ $(i, j=1, \dots, n)$, whence it follows diag $\{e, \dots, e\} \cdot A=A$. Conversely, if $Ra \not\equiv a$ then $(R)_n \cdot \text{diag}\{a, \dots, a\}$ does not contain diag $\{a, \dots, a\}$.

Proposition 1 (cf. [2, Proposition 5]). Let \mathfrak{r} be a non-zero right ideal of R. Then the following are equivalent:

- 1) r is a left s-unital ring.
- 2) $r \cap l = rl$ for any left ideal l of R.

If R is right s-unital then 1) is also equivalent to the following:

- 3) $\mathfrak{r}M \cap N = \mathfrak{r}N$ for any left R-modules ${}_RN \subseteq {}_RM$. (In case R contains 1, it is known that 1) is nothing but to say that $(R/\mathfrak{r})_R$ is flat (see for instance [19, Proposition 3, p. 133]).)
- *Proof.* 1) \iff 2) is easy, and in case R is right s-unital 2) is obviously a special case of 3).
- 1) \Longrightarrow 3). Let $u = a_1u_1 + \cdots + a_nu_n$ ($a_i \in \mathbb{R}$, $u_i \in M$) be an arbitrary element of $\mathfrak{R}M \cap N$, and choose $e \in \mathbb{R}$ with $ea_i = a_i$ for all i (Theorem 1). Then $u = ea_1u_1 + \cdots + ea_nu_n = eu \in \mathbb{R}N$.

The next will play occasionally an important role in our subsequent study.

Proposition 2. Let R be a left (resp. right) s-unital ring.

- (1) If α is a proper ideal of R then α is contained in a proper prime ideal.
- (2) Let R'/R be a ring extension. If α' is an ideal of R' and $\alpha' \cap R \neq R$ then there exists a maximal left (resp. right) ideal m' of R' such that $m' \supseteq \alpha$ and $m' \cap R \neq R$. Especially, if α is a proper ideal of R then α is contained in a maximal left (resp. right) ideal of R (cf. [23, Lemma 1 (a)]).
- *Proof.* (1) Let $r \in R \setminus \alpha$, and choose $e \in R$ such that r = er. Then $E = \{e^i \mid i = 1, 2, \cdots\}$ is an *m*-system excluding α . If $\mathfrak{p} \supseteq \alpha$ is an ideal of R which is maximal with respect to excluding E, then \mathfrak{p} is a proper prime ideal.
- (2) Let $r \in R \setminus (\alpha' \cap R)$, and choose $e \in R$ such that r = er. By Zorn's lemma, there exists a maximal member \mathfrak{m}' in the family of left ideals \mathfrak{b}' of R' with $\mathfrak{b}' \supseteq \{x' \in R' \mid x'r \in \alpha'\}(\supseteq \alpha')$ and $\mathfrak{b}' \not\supseteq e$. Obviously $\mathfrak{m}' \cap R \not= R$, and one will easily see that \mathfrak{m}' is a maximal left ideal of R'.

For a right R-module M_R , we set $\tau(M_R) = \sum_r fM$ ($f \in \text{Hom } (M_R, R_R)$) and Ann $(M_R) = \{x \in R \mid Mx = 0\}$. To be easily seen, $\tau(M_R)$ is an ideal of R and Ann $(M_R) \subseteq \text{Ann}(\tau(M_R)_R)$.

Now, let M_R and M'_R be non-zero right R-modules. If for each $u \neq 0$ in M there exists $f \in \operatorname{Hom}(M_R, M'_R)$ such that $fu \neq 0$, then we write $M_R > M'_R$. If $M_R > M'_R$ and $M'_R > M_R$, then we write $M_R \sim M'_R$. It is easy to see that the relations > and \sim are transitive. Obviously, $M_R > R_R$ is nothing but to say that M_R is torsionless, and then we have $\operatorname{Ann}(M_R) = \operatorname{Ann}(\tau(M_R)_R)$. If M_R is faithful then $R_R > M_R$, and in case R is left s-unital the converse is also true.

In what follows, we shall present a characterization of proper prime ideal of a left s-unital ring in terms of its right modules. If R is a prime ring and $M_R > R_R$ then $\tau(M_R)$ is non-zero and $\operatorname{Ann}(M_R) = \operatorname{Ann}(\tau(M_R)_R) = 0$, namely, M_R is faithful. Conversely, if every torsionless right R-module is faithful then R is seen to be prime. Hence, for a left s-unital ring R, we see that R is prime if and only if $M_R > R_R$ implies always $M_R \sim R_R$.

Theorem 2 (cf. [3, Theorem 2]). If \mathfrak{p} is a proper ideal of a left s-unital ring R then the following are equivalent:

- 1) p is a prime ideal.
- 2) $M_R > (R/\mathfrak{p})_R$ implies always $M_R \sim (R/\mathfrak{p})_R$.

Proof. If $M_R > (R/\mathfrak{p})_R$ then $\operatorname{Ann}(M_R) \supseteq \operatorname{Ann}((R/\mathfrak{p})_R) = \mathfrak{p}$, and so M_R may be regarded as $M_{R/\mathfrak{p}}$. Hence, R/\mathfrak{p} is a prime ring if and only if $M_R \sim (R/\mathfrak{p})_R$ for any $M_R > (R/\mathfrak{p})_R$.

Corollary 2 (cf. [3, Theorem 3]). Let R be a left s-unital ring. If $N_R \neq 0$ is a unital module then the following are equivalent:

- 1) $M_R > N_R$ implies always $M_R \sim N_R$.
- 2) $N_R \sim (R/\mathfrak{p})_R$ for a proper prime ideal \mathfrak{p} .

Proof. 1) \Longrightarrow 2). Let $\mathfrak{p}=\mathrm{Ann}(N_R)$ ($\neq R$). Since $N_{R/\mathfrak{p}}$ is faithful, we have $(R/\mathfrak{p})_{R/\mathfrak{p}} > N_{R/\mathfrak{p}}$, and hence $(R/\mathfrak{p})_R \sim N_R$. If $M_R > (R/\mathfrak{p})_R$ then $M_R > N_R$, and $M_R \sim N_R \sim (R/\mathfrak{p})_R$, whence it follows that \mathfrak{p} is a prime ideal (Theorem 2).

2) \Longrightarrow 1). Since $M_R > N_R \sim (R/\mathfrak{p})_R$ and \mathfrak{p} is prime, Theorem 2 shows that $M_R \sim (R/\mathfrak{p})_R \sim N_R$.

As was shown in [13], every left Noetherian, left s-unital ring has a left identity. The next is a slight generalization of the result.

Theorem 3. If a left Goldie ring R is left s-unital then R contains a left identity.

Proof. To be easily seen, the left singular ideal $Z_l(R)$ is contained in P(R) that is nilpotent by Lanski's theorem (cf. [16, p. 24]). By [9, Theorem 1.3], $R/Z_l(R)$ satisfies the maximum condition for right annihilators. Then $R/Z_l(R)$ has a left identity by [14, Proposition 2.1], and hence the semi-prime ring R/P(R) has the identity. Now, we shall proceed by the induction with respect to the nilpotency index n of P(R). The case n=1 is obvious by the above. Assume n>1. Since $R/P(R)^{n-1}$ has a left identity by the induction hypothesis and R/P(R) has the identity,

a result of Herstein (cf. [15, p. 31]) shows that R has a left identity.

Corollary 3. If R is left s-unital then the following are equivalent:

- 1) R is a left Artinian ring.
- 2) R is a left Noetherian π -regular ring.
- 3) R is a fully left Goldie π -regular ring.

Proof. If R is left Artinian then R is left Noetherian by Hopkins' theorem (cf. [17, Theorem 34, p. 134]). Moreover, R being of bounded index, R is π -regular by [1, Theorem 5]. Since 2) implies 3) obviously, it remains only to prove that 3) implies 1). As was claimed in the proof of Theorem 3, P(R) is nilpotent and $\overline{R} = R/P(R)$ has the identity. Now, let \overline{a} be an arbitrary regular element of \overline{R} , and $\overline{a}^n \overline{x} \overline{a}^n = \overline{a}^n$. Then, $\overline{a}^n (1 - \overline{x} \overline{a}^n) = 0$ implies $\overline{x} \overline{a}^n = 1$, and similarly $\overline{a}^n \overline{x} = 1$. Hence, every regular element of \overline{R} is a unit, which means that \overline{R} coincides with its left quotient ring that is Artinian semiprimitive. Recalling here that $R/P(R)^{k+1}$ is a left s-unital, left Goldie ring, one will easily see that $\overline{a}(P(R)^k/P(R)^{k+1})$ is completely reducible and of finite length. It follows therefore that R has a composition series.

Corollary 4. Let R be a left s-unital, fully left Goldie ring whose prime factor rings are π -regular. If α is an ideal of R and $_R\alpha_R$ is of finite length, then $_R\alpha$ is of finite length.

Proof. To our end, it suffices to prove the assertion for a minimal ideal α . Obviously, $I(\alpha)$ is a prime ideal of R and $S=R/I(\alpha)$ is Artinian simple by Corollary 3. Since R is left Goldie and s^{α} is completely reducible, R^{α} is of finite length.

The next is perhaps in the same vein as Corollary 4, and can be proved in the same way as in the proof of [20, Proposition].

Corollary 5. Let R be a left s-unital, left Noetherian ring. If a is an ideal of R and a_R is of finite length, then a_R is of finite length, too.

Remarks. (1) Every s-unital left R-module is a homomorphic image of a direct sum of copies of $_{R}R$.

(2) Let M be an s-unital left R-module over a left s-unital ring R. We consider the map $f: M \longrightarrow R \otimes_R M$ defined by $u \longmapsto e' \otimes u$, where e'u=u. If e''u=u ($e'' \in R$) then there exists an element $e \in R$ such that ee'=e' and ee''=e'' (Theorem 1) and we have $e' \otimes u=ee' \otimes u=e \otimes e'u$

- $=e\otimes e''u=e''\otimes u$. Hence, f is well-defined and is an R-homomorphism. Now, let $\sum_i a_i\otimes u_i$ be an arbitrary element of $R\otimes_R M$. Again by Theorem 1, we can find an element $a\in R$ such that $aa_i=a_i$ for all i. We have then $(\sum_i a_iu_i) f=a\otimes \sum_i a_iu_i=\sum_i aa_i\otimes u_i=\sum_i a_i\otimes u_i$. This proves that $_RR\otimes_R M$ is canonically isomorphic to $_RM$. Similarly, if R is commutative then we can prove the same for any s-unital module $_RM$.
- (3) An s-unital module M_R will be defined to be s-flat if for each pair of s-unital left R-modules $A \subseteq B$ (with the inclusion map ι) $1 \otimes \iota : M \otimes_R A \longrightarrow M \otimes_R B$ is a monomorphism. As a consequence of (2), one will easily see that if R is left and right s-unital then R_R is s-flat. Moreover, we can prove the following: Let R be a left and right s-unital ring, and I a left ideal of R. If M_R is s-flat then $M \otimes_R I$ is canonically isomorphic to MI.
- 2. V-rings. An s-unital left R-module M is defined to be s-injective if M has the property that for each pair of s-unital left R-modules $A \subseteq B$ each $f \in \text{Hom } (_RA,_EM)$ can be extended to an element of $\text{Hom } (_RB,_EM)$. If $_EM$ is s-injective then $_EM < \bigoplus_EM'$ for any s-unital $_EM' \supseteq_EM$. Moreover, the proof of [8, Theorem 1.6] enables us to obtain the following:

Proposition 3 (Baer Criterion). Let R be a left s-unital ring, and M an s-unital left R-module. Then $_RM$ is s-injective if and only if for each left ideal I of R each $f \in Hom (_RI, _RM)$ can be extended to an element of $Hom (_RR, _RM)$.

An s-unital left (resp. right) R-module M is called a V-module if every R-submodule of M is an intersection of maximal R-submodules. If $_RR$ (resp. R_R) is a V-module, R is called a *left* (resp. right) V-ring (cf. [5]). As was mentioned in [18, Remark], we obtain the following which corresponds to [21, Theorem 2.1]:

Theorem 4. The following are equivalent:

- 1) R is a left V-ring.
- 2) R is left s-unital and every irreducible left R-module is s-injective.
- 3) R is left s-unital and every s-unital left R-module is a V-module.
- 4) R is left s-unital, and for any s-unital left R-module M the intersection of all maximal R-submodules is 0; rad $_{\rm R}M=0$.
 - 5) For any positive integer n, $(R)_n$ is a left V-ring.

Proof. First, we shall prove the equivalence of 1)—4). Obviously, $4 \implies 1$.

2) \Longrightarrow 4). Let M be an arbitrary s-unital left R-module. If $0 \neq u \in$

M, then there exists an R-submodule Y of M which is maximal with respect to $Y \not \supseteq u$. Let S be the set of R-submodules of M properly containing Y, and $D = \bigcap_{X \in S} X \ (\supseteq u)$. Since D/Y is an irreducible R-module, by 2) there exists an R-submodule K of M containing Y such that $M/Y = D/Y \oplus K/Y$. Then $u \not \subseteq K$, and hence Y = K, namely, M = D. This means that Y is a maximal R-submodule of M and rad R M = 0.

1) \Longrightarrow 2). Let M be an irreducible left R-module, and \mathfrak{l} a left ideal of R. If f is a non-zero element of $\mathrm{Hom}(_{\mathbb{R}}\mathfrak{l},_{\mathbb{R}}M)$, then $\mathfrak{l}'=\mathrm{Ker}\ f\subset \mathfrak{l}$. By 1), there exists a maximal left ideal \mathfrak{m} such that $\mathfrak{m}\supseteq \mathfrak{l}'$ and $\mathfrak{m}\not\supseteq \mathfrak{l}$. Since $_{\mathbb{R}}M\cong _{\mathbb{R}}(\mathfrak{l}/\mathfrak{l}')$ is irreducible and $\mathfrak{l}\supset \mathfrak{m}\cap \mathfrak{l}\supseteq \mathfrak{l}'$, we have $\mathfrak{m}\cap \mathfrak{l}=\mathfrak{l}'$. Now, taking this into mind, we can well-define an extension $g\in \mathrm{Hom}\ (_{\mathbb{R}}R,_{\mathbb{R}}M)$ of f by $l+m\longmapsto lf\ (l\in \mathfrak{l},\ m\in \mathfrak{m})$. Hence $_{\mathbb{R}}M$ is s-injective by Proposition 3.

Next, we shall prove $1) \Longrightarrow 5) \Longrightarrow 4$).

- 1) \Longrightarrow 5). The direct sum $R^{(n)}$ of n copies of R is an s-unital left R-module (Theorem 1), and we have seen that ${}_{R}R^{(n)}$ is a V-module. Again by Theorem 1, every $(R)_{n}$ -submodule of $(R)_{n}={}^{(n)}(R^{(n)})$ is of the form ${}^{(n)}N$ with some ${}_{R}N\subseteq {}_{R}R^{(n)}$. Since ${}_{R}R^{(n)}$ is a V-module, $N=\bigcap_{\alpha}M_{\alpha}$ with maximal submodules ${}_{R}M_{\alpha}\subseteq {}_{R}R^{(n)}$. Hence ${}^{(n)}N=\bigcap_{\alpha}{}^{(n)}M_{\alpha}$, and $(R)_{n}$ is a left V-ring.
- 5) \Longrightarrow 4). Again by Theorem 1, given an s-unital $_RM$, the left $(R)_n$ -module $^{(n)}M$ is s-unital and rad $_{(R)_n}^{(n)}M=0$, whence it follows rad $_RM=0$.

A left R-module M is said to be p-injective if for any principal left ideal $(a \mid of R \text{ and } f \in \text{Hom}(_R(a \mid _R M) \text{ there exists an element } u \in M \text{ such that } xf=xu \text{ for all } x\in (a \mid . \text{ As was noted in [6]}, R \text{ is regular if and only if every left } R\text{-module is } p\text{-injective (cf. also [25])}. In connection with Theorem 3, a left s-unital ring <math>R$ is defined to be a left p-V-ring if every irreducible left R-module is p-injective. We can define a right p-V-ring in an obvious way. In case R contains 1, a left R-ring is a left R-ring. More generally we have

Proposition 4. If R is a right s-unital, left V-ring then it is a left p-V-ring.

Proof. Let $_RM$ be irreducible, and $(a \mid (=Ra))$ an arbitrary principal left ideal of R. Choose an element $e \in R$ with ae = a. If $f \in \text{Hom}(_R(a \mid ,_RM))$ and $g \in \text{Hom}(_RR,_RM)$ is an extension of f, then for any $x \in R$ there holds $(xa)f = (xae)g = xa \cdot eg$.

If every left (resp. right) ideal of R is idempotent, R is said to be fully left (resp. right) idempotent. (In [22], a fully left idempotent ring is cited as a left weakly regular ring.) On the other hand, R is said to be fully idempotent if every ideal of R is idempotent.

Proposition 5. (1) The following are equivalent:

- 1) R is fully left idempotent.
- 2) $(Ra)^2 \ni a \text{ for any } a \in R$.
- 3) For each pair of left ideals $\subseteq I'$ of R, there holds I'I = I.
- 4) For any positive integer n, $(R)_n$ is fully left idempotent.

If R is right s-unital then 1) is also equivalent to each of the following:

- 5) For each ideal a and each left ideal I of R there holds a \cap I = aI.
- 6) For each ideal α of R and each pair of left R-modules $_RN\subseteq _RM$ there holds $\alpha M\cap N=\alpha N$.
 - (2) The following are equivalent:
 - 1) R is fully idempotent.
 - 2) $(RaR)^2 \ni a \text{ for any } a \in R$.
 - 3) Every ideal of R is semiprime.
 - 4) For each pair of ideals α , α' of R there holds $\alpha \cap \alpha' = \alpha \alpha'$.
 - 5) For any positive integer n, $(R)_n$ is fully idempotent.

Proof. The assertion (2) is given in [7]. Concerning (1), the equivalence of 1)-3 is given in [22, Proposition 1] and $4) \Longrightarrow 1$) is trivial. Moreover, the latter part will be obvious by Proposition 1.

1) \Longrightarrow 4). We shall modify slightly the proof of [12, Theorem 4]. At first, we consider the case n=2. Let $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be an arbitrary element of $\Re=(R)_2$. If $a=\sum_i w_i a w_i' a$ $(w_i, w_i' \in R)$, then $A-X=\begin{pmatrix} 0 & b' \\ c & d \end{pmatrix}$ for $X=\sum_i \begin{pmatrix} w_i & 0 \\ 0 & 0 \end{pmatrix} A \begin{pmatrix} w_i' & 0 \\ 0 & 0 \end{pmatrix} A$. Next, if $d=\sum_j x_j dx_j' d$ $(x_j, x_j' \in R)$, then $A-X-Y=\begin{pmatrix} 0 & b' \\ c' & 0 \end{pmatrix}$ for $Y=\sum_j \begin{pmatrix} 0 & 0 \\ 0 & x_j \end{pmatrix} (A-X) \begin{pmatrix} 0 & 0 \\ 0 & x_j' \end{pmatrix} (A-X)$. Finally, if $b'=\sum_k y_k b' y_k' b'$ and $c'=\sum_k z_k c' z_k' c' (y_k, y_k', z_k, z_k' \in R)$ then $A-X-Y=\sum_k \begin{pmatrix} y_k & 0 \\ 0 & z_k \end{pmatrix} (A-X-Y) \begin{pmatrix} 0 & z_k' \\ y_k' & 0 \end{pmatrix} (A-X-Y)$. We obtain therefore $A=(A-X-Y)+Y+X\in (\Re(A-X-Y))^2+(\Re(A-X))^2+(\Re(A)^2=(\Re A)^2$, namely, \Re is fully left idempotent.

Since $(R)_{2^k} \cong (R_{2^{k-1}})_2$, one will easily see that $(R)_{2^k}$ is fully left idempotent. Given arbitrary n, we choose k so that $2^k \geq n$. If $A \in (R)_n$, we choose $A' \in (R)_{2^k}$ with A in the upper left-hand corner and zeros elsewhere. Now, $A' \in ((R)_{2^k}A')^2$ and a brief computation gives $A \in ((R)_n A)^2$.

Proposition 6. Every left p-V-ring is fully left idempotent, and so every right s-unital, left V-ring is fully left idempotent.

Proof. If not, there exists a non-zero element $a \in R$ such that $(a|^2 \neq (a| (=Ra))$. Let m be a maximal member in the family of left ideals I of R such that $(a|^2 \subseteq I \subseteq (a|)$. Since the irreducible left R-module (a|/m) is p-injective, there exists an element $b \in (a|$ such that x+m=xb+m for all $x \in (a|)$. But this implies a contradiction (a|=m). The latter part is evident by Proposition 4.

As a direct consequence of Proposition 6 and [11, Theorem 1.1], we obtain the following:

Corollary 6 (cf. [10, Theorem 13]). If R is a left V-ring then the following are equivalent:

- 1) R is a regular ring.
- 2) R is right s-unital and every prime factor ring of R is a regular ring.

Proposition 7 (cf. [21], [22]). Let R be fully left idempotent.

- (1) R is right non-singular; $Z_r(R) = 0$.
- (2) R is semiprimitive; J(R) = 0.
- (3) If $a \in R$ is left regular then R = RaR.
- (4) C is a regular ring. 1)
- *Proof.* (1) Let $z \in Z_r(R)$, and choose an element $y \in Z_r(R)$ such that z=yz (Proposition 5 (1)). If nz+zx (n an integer and $x \in R$) is an arbitrary element of $|z| \cap r(y)$, then 0=y(nz+zx)=nyz+yzx=nz+zx. Hence, $|z| \cap r(y)=0$, which means z=0.
- (2) Let $z \in J(R)$, and choose $y \in J(R)$ such that z = yz. Since $\{xy x \mid x \in R\} = R$, it follows Rz = 0, namely, z = 0.
 - (3) This is evident by Ra = RaRa.
- (4) If c is an arbitrary element of C then $c \in (Rc)^2 = Rc^2$ by Proposition 5 (1). Hence, C is regular by [1, Lemma 1].

Theorem 5 (cf. [10, Theorem 14]). If R is right s-unital then the following are equivalent:

1) R is a left V-ring.

- 2) R is fully left idempotent and every left primitive factor ring of R is a left V-ring.
 - *Proof.* 1) \Longrightarrow 2). This is a consequence of Proposition 6.
- 2) \Longrightarrow 1). Let M be an irreducible left R-module, and I a left ideal of R. Let f be a non-zero element of $\operatorname{Hom}(_RI,_RM)$. Obviously $\alpha = \operatorname{Ann}(_RM)$ is a left primitive ideal of R. Noting that $\alpha \cap I = \alpha I$ (Proposition 5 (1)), one will easily see the map defined by $l+a \longmapsto lf(l \in I, a \in \alpha)$ is an extension of f in $\operatorname{Hom}(_R(I+\alpha),_RM)$. Now, the rest of the proof proceeds in the same way as for $1) \Longrightarrow 2$ of Theorem 4.

Corollary 7 (cf. [10, Corollary 15]). If R is a regular ring then the following are equivalent:

- 1) R is a left V-ring.
- 2) Every left primitive factor ring of R is a left V-ring.

A left (resp. right) s-unital ring is said to be *left* (resp. right) semiartinian if every s-unital left (resp. right) R-module contains an irreducible R-submodule.

Theorem 6 (cf. [10, Theorem 17]). If R is left semiartinian then the following are equivalent:

- 1) R is a regular ring.
- 2) R is fully idempotent.
- 3) R is fully left idempotent.
- 3') R is fully right idempotent.
- 4) R is a left p-V-ring.
- 4') R is a right p-V-ring.

When this is the case, R is right semiartinian.

- *Proof.* 1) \Longrightarrow 4) (resp. 4')) \Longrightarrow 3) (resp. 3')) \Longrightarrow 2). These are obvious by the remark mentioned before Proposition 4 and Proposition 6.
- 2) \Longrightarrow 1). Let $S \not= 0$ be the left socle of R. If I is a left ideal of S then it is easy to see that $RI = RI \cdot RI \subseteq SI \subseteq I$, namely, I is a left ideal of R. (Note that R is semiprime.) Hence S is completely reducible. Since S is also semiprime, each homogeneous component of S is (non-trivial) simple and regular. Hence S is regular. Now, let I (I S) be the maximal regular ideal of I (cf. [4]). Suppose I I Then I is fully idempotent and has non-zero left socle. By the above argument, we see that the maximal regular ideal of I is non-zero, which contradicts the maximality of I We have seen thus I I Finally, noting that I coincides with the right socle of I one will easily see that I has a right

socle sequence, namely, R is right semiartinian.

3. AC-rings. R is called an AC-ring (almost commutative ring) if for any proper prime ideal \mathfrak{p} of R and $a \not\in \mathfrak{p}$ there exists x such that $ax \in C \setminus \mathfrak{p}$. Any P_1 -ring is obviously an AC-ring (cf. [6]), and the next will be easily seen (cf. [24, Theorem 1]).

Proposition 8. Let R be an AC-ring.

- (1) Every homomorphic image of R is an AC-ring.
- (2) Every prime ideal of R is completely prime. In particular, R is a prime ring if and only if it is a domain.
- (3) Every semiprime ideal of R is completely semiprime. In particular, R is a semiprime ring if and only if it is a reduced ring.
- (4) For any proper prime ideal p of R and $a \notin p$ there exists y such that $ya \in C \setminus p$. (The notion of AC is right-left symmetric.)

By Proposition 8 (3), the prime radical of an AC-ring coincides with the set of all nilpotent elements. If R is an AC-ring and $R \neq P(R)$ then $(R)_n$ cannot be an AC-ring for n > 1.

Proposition 9. The following are equivalent:

- 1) R is a division ring.
- 2) aR = R for any $a \neq 0$ in R.
- 2') Ra=R for any $a\neq 0$ in R.
- 3) R is a (non-trivial) simple A C-ring.
- 4) R is a prime AC-ring with minimum condition on ideals.
- 5) R is a fully idempotent, prime AC-ring.
- 6) R is a regular, prime AC-ring.

Proof. Obviously, 1) implies each of 2)—6) and 6) implies 5). Next, assume 2). Since R is strongly regular, there exists x such that axa=a and ax=xa. By axR=aR=R, we see that the central idempotent ax is the identity of R, and 1) is obvious. Similarly, $1) \Longrightarrow 2') \Longrightarrow 1$). Finally, assume one of 3)—5). For any $a \ne 0$ there exists x such that ax is a non-zero central element. Since R is a domain (Proposition 8), one will easily see R=axR=aR.

Corollary 9 (cf. [24, Theorem 3]). The following are equivalent:

- 1) R is a finite direct sum of division rings.
- 2) R is a semiprime AC-ring with minimum condition on ideals.
- 3) R is a semiprimitive AC-ring with minimum condition on ideals.

Proof. It suffices to prove $2) \Longrightarrow 1$). For any proper prime ideal \mathfrak{p} , R/\mathfrak{p} is a division ring (Proposition 9). Hence, R is a subdirect sum of division rings. As is well known, by the minimum condition on ideals, R is then a finite direct sum of division rings.

Theorem 7 (cf. [24, Theorem 2]). If R is a left (resp. right) s-unital AC-ring and n is a submodule of R, then the following are equivalent:

- 1) n is a maximal right (resp. left) ideal.
- 2) n is a maximal ideal.
- 3) n is a right (resp. left) primitive ideal.

Proof. Since R is left s-unital, $R^2 = R$ and any maximal ideal of R is a prime ideal. Moreover, if \mathfrak{n} is a right ideal of R then $(\mathfrak{n}; R) = \{x \in R \mid Rx \subseteq \mathfrak{n}\}$ coincides with the largest ideal contained in \mathfrak{n} .

- 1) \Longrightarrow 2). If $\alpha = (n:R)$ ($\subseteq n \neq R$) is not maximal, then α is properly contained in a proper prime ideal \mathfrak{p} (Proposition 2 (1)). Evidently, there exists an element $a \in \mathfrak{n} \setminus \mathfrak{p}$, and $ax \in (C \cap \mathfrak{n}) \setminus \mathfrak{p}$ for some x. But this is impossible by $ax \in \alpha \subseteq \mathfrak{p}$. This proves that α is a maximal ideal. Hence, R/α is a division ring (Proposition 9), and $\mathfrak{n} = \alpha$.
 - 2) \Longrightarrow 3). Since R/π is a division ring (Proposition 9), π is primitive.
- 3) \Longrightarrow 1). There exists a maximal right ideal m of R such that $\mathfrak{m}\supseteq\mathfrak{n}$ and $(\mathfrak{m}/\mathfrak{n}; R/\mathfrak{n})=0$. Since R/\mathfrak{n} is a left s-unital AC-ring, as was shown in 1) \Longrightarrow 2), we obtain $\mathfrak{m}/\mathfrak{n}=(\mathfrak{m}/\mathfrak{n}; R/\mathfrak{n})=0$, i. e., $\mathfrak{m}=\mathfrak{n}$.

By Theorem 7, if R is a left (resp. right) s-unital AC-ring then J(R) is the intersection of maximal ideals, and so a left (resp. right) s-unital semiprimitive AC-ring is a subdirect sum of division rings.

Theorem 8. The following are equivalent:

- 1) R is a strongly regular ring.
- 2) R is a regular AC-ring.
- 3) R is an AC-ring and a left (or right) p-V-ring.
- 4) R is a fully idempotent AC-ring.
- 5) R is an AC-ring whose ideals are semiprime.
- 6) R is a reduced ring such that R/p is regular (in fact a division ring) for any proper prime ideal p.
- 7) R is a reduced ring whose proper completely prime ideals are maximal left ideal.

Proof. 1) \Longleftrightarrow 6) \Longleftrightarrow 7) are given in [5] (and also in [11]), 1) \Longrightarrow 2) \Longrightarrow 3) are trivial, 3) \Longrightarrow 4) by Proposition 6, and 4) \Longrightarrow 6) is a consequence of Propositions 8 and 9. Finally, 4) \Longleftrightarrow 5) is contained in Propo-

sition 5 (2).

Following [24], R is *primary* if every zero-divisor is nilpotent, and is *local* if it has exactly one maximal ideal.

Theorem 9 (cf. [24, Theorem 5]). (1) If R is an AC-ring then the following are equivalent:

- 1) R is primary.
- 2) Every right zero-divisor is nilpotent.
- 3) Every left zero-divisor is nilpotent.
- 4) There exists a minimal prime ideal $\mathfrak p$ of R which contains all zero-divisors.
 - (2) If R is a left s-unital AC-ring then the following are equivalent:
 - 1) R has a unique prime ideal $p \neq R$.
 - 2) R is local and P(R) = J(R).
 - 3) R/P(R) is a division ring.
- *Proof.* (1) 2) \Longrightarrow 3). Let xy=0, $y\neq 0$. If $x\not\in P(R)$ then $x\not\in \mathfrak{p}_0$ for some prime ideal \mathfrak{p}_0 . Choose $u\in R$ such that $ux\in C\setminus \mathfrak{p}_0$ (cf. Proposition 8). But, by 2), 0=uxy=yux yields a contradiction $ux\in P(R)$. Similarly, we have 3) \Longrightarrow 2). Obviously, P(R) is a prime ideal.
 - 1) \Longrightarrow 2) \Longrightarrow 4). Trivial.
- 4) \Longrightarrow 1). It suffices to show that if x is non-nilpotent then $x \not\in \mathfrak{p}$. To be easily seen, $T = \{x^k s \mid k \geq 0, s \in R \setminus \mathfrak{p}\} \cup \{x^k \mid k > 0\}$ is an m-system such that $x \in T$ and $0 \not\in T$. Then there exists a prime ideal \mathfrak{p}_0 such that $\mathfrak{p}_0 \cap T = \emptyset$. Since \mathfrak{p} is a minimal prime ideal and $\mathfrak{p}_0 \subseteq R \setminus T \subseteq \mathfrak{p}$, we have $\mathfrak{p} = \mathfrak{p}_0 \not\ni x$.
- (2) 1) \Longrightarrow 2). Every maximal ideal of R is a prime ideal. If \mathfrak{p} is not maximal then it is properly contained in a proper prime ideal (Proposition 2 (1)), a contradiction.
- 2) \Longrightarrow 3). Since P(R) = J(R) is a unique maximal ideal, R/P(R) is a division ring (Proposition 9).
 - $3) \Longrightarrow 1$). Trivial.
- 4. Integral extensions of s-AC-rings. In [24], R with 1 is called an SAC-ring if for any proper ideal α and $x \notin \alpha$ there exists y such that $xy \in C \setminus \alpha$. However, in our present study, we shall employ a somewhat weaker (but right-left symmetric) definition: An AC-ring is called an s-AC-ring if for any non-prime ideal α and $x \notin \alpha$ there holds $RxR \cap C \not\subseteq \alpha$. To be easily seen, every s-AC-ring has the following property:
- (*) For any proper ideal a and $x \not\equiv a$ there holds $RxR \cap C \not\subseteq a$.

Any strongly regular ring is s-AC, and conversely any P_1 -ring with the property (*) is strongly regular.

For a while, we assume that R is a ring with the property (*). By a routine manner, we can show that an ideal α is prime (resp. semiprime) if and only if $\alpha \cap C$ is prime (resp. semiprime) in C. Accordingly, a ring is strongly regular if and only if it is an s-AC-ring whose center is regular (Theorem 8). We assume further that R'/R is a ring extension such that C is contained in the center C' of R'. Then we can easily see that if α' is a prime (resp. semiprime) ideal of R.

In what follows, R'/R will mean a ring extension, and C' the center of R'. R'/R is called a *left integral extension* if $C \subseteq C'$ and for each $x \in R'$ there exist a_0, \dots, a_{n-1} in R such that $x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$.

Concerning "going up" we have the following:

Theorem 10 (cf. [24, Theorem 7 and Corollary 2]). Let R be an s-AC-ring, R' a left (or right) s-unital ring, and let R'/R be a left integral extension. If α' is an ideal of R' and $\mathfrak p$ is a proper prime ideal of R containing $\alpha' \cap R$, then there exists a proper prime ideal $\mathfrak p'$ of R' such that $\mathfrak p' \supseteq \alpha'$ and $\mathfrak p' \cap R = \mathfrak p$.

Proof. Let M be the non-empty m-system $R \setminus \mathfrak{p}$, and $\mathfrak{p}' \supseteq \mathfrak{a}'$ an ideal of R' which is maximal with respect to excluding M. Then \mathfrak{p}' is a proper prime ideal and $\mathfrak{p}' \cap R \subseteq \mathfrak{p}$. If $\mathfrak{p}' \cap R \subset \mathfrak{p}$ then there exists $c \in (C \cap \mathfrak{p}) \setminus (\mathfrak{p}' \cap R)$. Since $(cR'+\mathfrak{p}') \cap M \neq \emptyset$, cx+p'=m with some $x \in R'$, $p' \in \mathfrak{p}'$, $m \in M$. Suppose $x^n+a_{n-1}x^{n-1}+\cdots+a_0=0$ ($a_i \in R$). Then $0=x^nc^n+a_{n-1}x^{n-1}c^n+\cdots+a_0c^n=(m-p')^n+a_{n-1}$ $(m-p')^{n-1}c+\cdots+a_0c^n$. There exist therefore $r \in R$ and $q' \in \mathfrak{p}'$ such that $m^n+rc+q'=0$. This shows $q' \in \mathfrak{p}' \cap R \subseteq \mathfrak{p}$, and hence $m^n \in \mathfrak{p}$, whence it follows a contradiction $m \in \mathfrak{p}$ (Proposition 8).

Corollary 9. Let R be a left s-unital s-AC-ring, R' a left s-unital ring, and let R'/R be a left integral extension. If α is a proper ideal of R then $\alpha R'$ is a proper ideal of R'.

Proof. By Proposition 2 (1), α is contained in a proper prime ideal \mathfrak{p} of R, and then there exists a proper prime ideal \mathfrak{p}' of R' such that $\mathfrak{p}' \cap R$ = \mathfrak{p} (Theorem 10). Hence $\alpha R' \subseteq \mathfrak{p}' \neq R'$. Next, to be easily seen, $R(\alpha \cap C)$ = α . It follows therefore $R'(\alpha R') = R'R(\alpha \cap C)R' \subseteq \alpha R'$.

Lemma 1. Let R'/R be a left integral extension. If a completely prime ideal \mathfrak{p}' of R' is contained in a left ideal \mathfrak{n}' and $\mathfrak{n}' \cap R = \mathfrak{p}' \cap R$, then

 $\mathfrak{n}'=\mathfrak{p}'$.

Proof. Suppose there exists $x \in \mathfrak{n}' \setminus \mathfrak{p}'$. Let n be the smallest integer such that $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = p' \in \mathfrak{p}'$ ($a_i \in R$). This implies $a_0 \in \mathfrak{n}' \cap R = \mathfrak{p}' \cap R$ and n > 1. Since \mathfrak{p}' is completely prime, $(x^{n-1} + a_{n-1}x^{n-2} + \cdots + a_1)x = p' - a_0 \in \mathfrak{p}'$ yields a contradiction $x^{n-1} + \cdots + a_1 \in \mathfrak{p}'$.

Theorem 11 (cf. [24, Corollary 4]). Let R be a right and left s-unital s-AC-ring, R' a left s-unital ring, and let R'/R be a left integral extension. Let \mathfrak{p}' be a completely prime ideal of R'. Then \mathfrak{p}' is a maximal left ideal if and only if $\mathfrak{p}' \cap R$ is a maximal ideal of R.

Proof. Suppose $\mathfrak{p}' \cap R$ is a maximal ideal. By Proposition 2 (2), there exists a maximal left ideal \mathfrak{m}' of R' such that $\mathfrak{m}' \supseteq \mathfrak{p}'$ and $\mathfrak{m}' \cap R \neq R$. Since $\mathfrak{p}' \cap R$ is a maximal left ideal by Theorem 7, we have $\mathfrak{m}' \cap R = \mathfrak{p}' \cap R$, whence it follows $\mathfrak{m}' = \mathfrak{p}'$ (Lemma 1). Conversely, suppose \mathfrak{p}' is a maximal left ideal. We claim here $\mathfrak{p}' \cap R \neq R$. In fact, if $x \in R' \setminus \mathfrak{p}'$ and $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0$ ($a_i \in R$) then $\mathfrak{p}' \supseteq R$ gives a contradiction $x^n \in \mathfrak{p}'$. Now, suppose $\mathfrak{p}' \cap R$ is not maximal. Then $\mathfrak{p}' \cap R$ is properly contained in a proper prime ideal \mathfrak{p}_0 of R (Proposition 2 (1)), and we can find a proper prime ideal $\mathfrak{p}'_0 \supseteq \mathfrak{p}'$ of R' such that $\mathfrak{p}'_0 \cap R = \mathfrak{p}_0$ (Theorem 10). Since \mathfrak{p}'_0 has to be equal to \mathfrak{p}'_0 , we have a contradiction $\mathfrak{p}' \cap R = \mathfrak{p}'_0 \cap R = \mathfrak{p}_0$.

Theorem 12 (cf. [24, Theorem 9]). Let R be a left and right s-unital s-AC-ring, R' a left and right s-unital reduced ring, and let R'/R be a left intergral extension. Then, R is regular if and only if so is R'.

Proof. If R is (strongly) regular then every proper prime ideal of R is a maximal left ideal (Theorem 8). By the proof of Theorem 11, for any proper completely prime ideal \mathfrak{p}' of R', $\mathfrak{p}' \cap R$ is a proper prime ideal of R, and so it is a maximal left ideal. Hence \mathfrak{p}' is a maximal left ideal by Theorem 11, and again by Theorem 8 R' is a regular ring. Conversely, if R' is a regular ring, then for any proper prime ideal \mathfrak{p} of R there exists a proper prime ideal \mathfrak{p}' of R' such that $\mathfrak{p}' \cap R = \mathfrak{p}$ (Theorem 10) and \mathfrak{p}' is a maximal left ideal (Theorem 8). Hence, \mathfrak{p} is a maximal ideal by Theorem 11, and so it is a maximal left ideal (Theorem 7). Theorem 8 proves therefore that R is regular.

Theorem 13 (cf. [24, Theorem 10]). Let R'/R be a left integral extension. If R is strongly regular then for each $x \in R'$ there exist $y \in R'$ which can be expressed as a (left) polynomial in x over $R^1 = R + Z$ and a natural number n such that $yx^{n+1} = x^n$.

Proof. Let $A(x) = \{p(x) \mid p(x) \text{ is a monic polynomial of positive de$ gree in x over R such that $p(x)x^m=0$ for some m. In A(x) we choose p(x) $=x^{k}+a_{k-1}x^{k-1}+\cdots+a_{1}x+a_{0}$ of the least degree; $p(x)x^{n-1}=0$ (n>1). By [1, Lemma 1], there exists (uniquely) an element $a \in R$ such that $a_0 a =$ aa_0 , $a_0^2a=a_0$ and $a^2a_0=a$. Obviously, $e=a_0a$ is a central idempotent with $ea_0 = a_0$ and ea = a. If k = 1 then $x^n + a_0 x^{n-1} = 0$ implies $0 = x^n + a_0 x^{n-1} - a_0 x^{n-1}$ $e(x^n + a_0x^{n-1}) = x^n - ex^n$, i. e., $ex^n = x^n$. Hence, $0 = a(x^n + a_0x^{n-1})x = ax^{n+1} + a_0x^{n-1}$ $ex^n = ax^{n+1} + x^n$, whence it follows $-ax^{n+1} = x^n$. Next, we shall consider the case k>1, and set $x_0=x-ex$. Since $0=p(x)x^{n-1}-ep(x)x^{n-1}=(x^k+e^{-x})$ $a_{k-1}x^{k-1}+\cdots+a_1x)x^{n-1}-e(x^k+a_{k-1}x^{k-1}+\cdots+a_1x)x^{n-1}=(x_0^k+a_{k-1}x_0^{k-1}+\cdots+a_1x_0^{k-1}+\cdots+a_1x_$ $a_1x_0)x^{n-1} = (x_0^{k-1} + a_{k-1}x_0^{k-2} + \cdots + a_1)x_0^n$, $A(x_0)$ contains a polynomial of degree k-1. By induction method, there exists a polynomial $f(x_0)$ over R^1 such that $f(x_0)x_0^{m+1} = x_0^m$ for some m. Since $x^{n-1} = (-a)p(x)x^{n-1} + x^{n-1} = (-a)(x^{k-1} + a)$ $a_{k-1}x^{k-2} + \cdots + a_1)x^n + x_0^{n-1}$, we obtain $x^{n+m} = (-a)(x^{k-1} + a_{k-1}x^{k-2} + \cdots + a_1)$ $x^{n+m+1} + x_0^{n+m}$, whence it follows $x^{n+m} = \{(-a) (x^{k-1} + a_{k-1} x^{k-2} + \cdots + a_1) + a_{k-1} x^{k-1} + a_{k-1} x^{k-2} + \cdots + a_k \}$ $f(x_0)-ef(x_0) \} x^{n+m+1}$.

Finally, we shall prove the following, which will enable us to readily obtain [24, Theorem 11].

Corollary 10. Let R'/R be a left and right integral extension. If R is strongly regular then for any $x \in R'$ there exists a quasi-regular element u in R[x] such that $x^{2n} - ux^{2n} = x^n$ and $ux^n = x^nu$ for some n.

Proof. By Theorem 13, there exist s and t in R[x] such that $sx^{n+1} = x^n = x^{n+1}t$ for some n. To be easily seen, $s^nx^{2n} = x^n = x^{2n}t^n$. If we set $a = x^n$ and $b = s^{2n}x^n$, then it is known that ab = ba, $a^2b = a$ and $ab^2 = b$ (cf. the proof of [1, Lemma 1]). Obviously, e = ab is an idempotent and u = e - b is a quasi-regular element in R[x] with quasi-inverse e - a. Now, it is easy to see that $a^2 - ua^2 = a$.

REFERENCES

- [1] G. AZUMAYA: Strongly π -regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I, 13 (1954), 34–39.
- [2] G. AZUMAYA: Some properties of TTF-classes, Prcc. Conference on Orders, Group Rings and Related Topics, Lecture Notes in Math. 353, Springer-Verlag, Berlin, 1973, pp. 72—83.
- [3] J. A Beachy: A characterization of prime ideals, J. Indian Math. Soc. 37 (1973), 343 -345.
- [4] B. Brown and N. H. McCoy: The maximal regular ideal of a ring, Proc. Amer. Math.

- Soc. 1 (1950), 165-171.
- [5] K. Chiba and H. Tominaga: On strongly regular rings, Proc. Japan Acad. 49 (1973), 435—437.
- [6] K. Chiba and H. Tominaga: Note on strongly regular rings and P₁-rings, Proc. Japan Acad, 51 (1975), 259—261.
- [7] R. COURTER: Rings all of whose factor rings are semiprime, Canad, Math. Bull. 12 (1969), 417—426.
- [8] C. FAITH: Lectures on Injective Modules and Quotient Rings, Lecture Notes in Math. 49, Springer-Verlag, Berlin, 1967.
- [9] J. W. FISHER: Nil subrings with bounded indices of nilpotency, J. Algebra 19 (1971), 509-516.
- [10] J. W. FISHER: Von Neumann regular rings versus V-rings, Ring Theory: Proc. Univ. Oklahoma Conference, Dekker, New York, 1974, pp. 101—119.
- [11] J. W. FISHER and R. L. SNIDER: On the von Neumann regularity of rings with regular prime factor rings, Pacific J. Math. 54 (1974), 135—144.
- [12] V. GUPTA: The maximal right weakly regular ideal of a ring, Glasnik Mat. 9 (1974), 29-33.
- [13] F. HANSEN: Die Existenz der Eins in noetherschen Ringen, Archiv der Math. 25 (1974), 589-590.
- [14] F. HANSEN: On one-sided prime ideals, Pacific J. Math. 58 (1975), 79-85.
- [15] I. N. HERSTEIN: Non-Commutative Rings, Carus Math. Monographs 15, Amer. Math. Ass., New York, 1968.
- [16] A. V. JATEGAONKAR: Left Principal Ideal Rings, Lecture Notes in Math. 123, Springer-Verlag, Berlin, 1968.
- [17] I. KAPLANSKY: Fields and Rings, Chicago Lectures in Math., Univ. Chicago, Chicago, 1972.
- [18] K. KISHIMOTO and H. TOMINAGA: On decompositions into simple rings. II, Math. J. Okayama Univ. 18 (1975), 39—41.
- [19] J. LAMBEK: Lectures on Rings and Mcdules, Blaisdell, Waltham, 1966.
- [20] T. H. LENAGAN: Artinian ideals in Noetherian rings, Proc. Amer. Math. Soc. 51 (1975), 499-500.
- [21] G. MICHLER and O. VILLAMAYOR: On rings whose simple modules are injective, J. Algebra 25 (1973), 185—201.
- [22] V. S. RAMAMURTHI: Weakly regular rings, Canad. Math. Bull. 16 (1973), 317-321.
- [23] H. TOMINAGA: On decompositions into simple rings, Math. J. Okayama Univ. 17 (1975), 159—163.
- [24] E. T. Wong: Almost commutative rings and their integral extensions, Math. J. Okayama Univ. 18 (1976), 105—111.
- [25] R. Yue Chi Ming: On simple p-injective modules, Math. Japonicae 19 (1974), 173—176.

OKAYAMA UNIVERSITY

(Received November 15, 1975)

Added in proof. Recently, Theorem 3 has been proved also by F. Hansen [Proc. Amer. Math. Soc. 55 (1976), 281—286].