ON s-UNITAL RINGS

Dedicated to Professor Mikao Moriya on his 70th birthday

Hisao TOMINAGA

The present paper attempts to generalize several results in [10],
[21], [22] and [24] obtained for rings with identity. In fact, we can
prove similar ones for left (and right) s-unital rings, where a ring R (70)
is called a left s-unital ring if Re=>«a for any e = R. Needless to say,
the class of left s-unital rings includes those of rings with identity and of
regular rings. In [6], [18] and [23] we treated with left s-unital rings
in the connection with regular rings. In the present paper, our attention
will be directed towards the classes of left V-rings, fully left idempotent
rings, and of almost commutative rings, those which are closely related
to the class of regular rings. §1 contains a fundamental proposition, a
characterization of prime ideals of a left s-unital ring in terms of its
right modules as in Beachy [3], and a slight generalization of a result of
Hansen [13]. The material of §2 comes from Fisher [10], Michler-
Villamayor [21], Ramamurthi [22] and Yue Chi Ming [25], and left
V-rings will be concerned in regular rings, left p-V-rings and fully left
idempotent rings. In §§ 3 and 4, almost all results of Wong [24] will be
carried over to s-unital rings.

For future reference, R (5= 0) will represent always a ring (with or
without identity), and C the center of R. The Jacobson radical and the
prime radical of R will be denoted by J(R) and P(R), respectively. As
for other notations, we follow [18] and [23].

1. s-unital rings. A left R-module M =~ 0 is defined to be s-unital
if Ru>u for any u&S M. For instance, every irreducible left R-module is
s-unital. Needless to say, if #xM is s-unital then it is unital, and in case
R contains 1 these notions are identical. We can define similarly an s-
unital right R-module.

Theorem 1. If M (% 0) és a left R-module then the following are
equivalent :

1) zM is s-unital.
2) For any u,, -+, u, =M there exists an element eE R such that eu;
=u; (=1, -+, n).
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3) For any positive integer n, every (R).submodule of the direct
sum "M of n copies of M is of the form N with some :NC M, where
(R). denotes the n X n matrix ring over R.

Proof., 1) <= 2). Assume that zM is s-unital. Choose an element
¢, SR such that e,u,=u,, and set v,=u;—e,u; (=1, ---, n—1). By induc-
tion method, there exists an element ¢'€R such that e'v;=v; (=1, ---,
n—1). Then, one will easily see that e=¢'-+e.,—¢'e, is an element with
the property requested in 2). The converse is trivial.

1) < 3). Given ¢=ER, E{a) will denote the element of (R), with
@ in the (4, j)-position and zeros elsewhere. If #;, -+, #,EM then

u1, " au;
. 0
Eli(a) = M
U,/ .0y
whence we can easily see that 1) implies 3). The converse is also easy
Ru + Zu

Ru
by the fact that . is an (R),-submodule of ™M for any #EM.

Ru

If 2R (resp. Rz) is s-unital, R issaid to be left (resp. right) s-unital.
To be easily seen, every (non-zero) homomorphic image of a left s-unital
ring is left s-unital, and any regular ring is left and right s-unital. (In
Ramamurthi [22], a left s-unital ring is cited as a left D-regular ring.)

Corollary 1. If R is left s-unital then so is (R), and conversely.

Proof. If A=(a,,)is an arbitrary element of (R),, then by Theorem 1
there exists an element ¢ R such that ea;;=a;, (¢, =1, :--, ), whence it
follows diag{e, :*+, e} - A= A. Conversely, if RaZ« then (R), diag{a, -, @}
does not contain diag{e, -, a}.

Proposition 1 (cf. [2, Proposition 5]). Let t be a non-zero right ideal
of R. Then the following are equivalent :

1) tis @ left s-unital ring.

2} tNl=1l for any left ideal | of R.
If R is right s-unital then 1) is also equivalent fo the following :
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3) tMNN=tN for any left R-modules xNC yM.
(In case R contains 1, it is known that 1) is nothing but to say that (R/t)z
is flat (see for instance[ 19, Proposition 3, p. 133]).)

Proof. 1) <= 2)is easy, and in case R is right s-unital 2) is obvi-
ously a special case of 3).

1) => 3). Let u=a,u,+ -+ +a.u, (&1, u,EM) be an arbitrary ele-
ment of tMN N, and choose et with ea;=a, for all ¢ (Theorem 1). Then
u=-eau,+ - ea,tt,= et ETN.

The next will play occasionally an important role in our subsequent
study.

Proposition 2. Lef R be a left (resp. right) s-unital ring.

(1) Ifais a proper ideal of R then ais contained in a proper prime
ideal.

(2) Let R'/R be a ring extension. If o' is an ideal of R' and o' N R
R then there exists a maximal left (resp. right) ideal m' of R' such that
m'Saand WNR%R. Especially, if ais a proper ideal of R then a is
contained in a maximal left (resp. right) ideal of R (cf. [23, Lemma 1
(@)l).

Proof. (1) Let rER\a, and choose e R such that y=e¢r. Then E
={¢' | i=1,2, -} is an m-system excluding a. If pDa is an ideal of R
which is maximal with respect to excluding E, then p is a proper prime
ideal.

(2) Let r=R\(a'NR), and choose ¢eER such that r=er. By Zorn’'s
lemma, there exists a maximal member m' in the family of left ideals b’
of R' with b' 2 {s'€ER' | x'r=a’'}(20a’) and b'Be. Obviously m'NR+#4R,
and one will easily see that m’ is a maximal left ideal of R'.

For a right R-module Mg, we set t(Mz)=2., fM (f=Hom (Mz, Rz))
and Ann (Mz)={*xER | Mx=0}. To be easily seen, 7(Mz) is an ideal of
R and Ann(Mz)C Ann(t(Mz)z).

Now, let My and M'; be non-zero right R-modules. If for each » =% 0
in M there exists f € Hom(Mz, M's) such that fu 5~ 0, then we write
Me>M'y, If Mg>M'; and M'ys>>Mz, then we write Mz~ v M';. It is easy
to see that the relations > and ~v are transitive. Obviously, M; > R:
is nothing but to say that My is torsionless, and then we have Ann(Mz)=
Ann(e(Mz)z). If My is faithful then BR;>>Mj, and in case R is left s-unital
the converse is also true.
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In what follows, we shall present a characterization of proper prime
ideal of a left s-unital ring in terms of its right modules. If R is a prime
ring and M;>>Ry then (M) is non-zero and Ann(Mz)= Ann(t(Mg)z)=0,
namely, M; is faithful. Conversely, if every torsionless right R-module
is faithful then R is seen to be prime. Hence, for a left s-unital ring R,
we see that R is prime if and only if Mz > R; implies always Mr" Rg.

Theorem 2 (cf. [3, Theorem 2]). Ifpisa proper ideal of a left s-
unital ring R then the following are equivalent :

1) bis a prime ideal.

2) Mz > (R/p)r implies always Mz "o (R/9)z.

Proof. TIf My,> (R/p)z then Ann(Mz) 2 Ann((R/p)r)=), and so M,
may be regarded as Mz;y. Hence, R/p is a prime ring if and only if Mz~
(R/p)z for any Mz > (R/)z.

Corollary 2 (cf. [3, Theorem 3]). Let R be a left s-unital ring. If
Nz (5= 0) is @ unital module then the following are equivalent :

1) Mz > N implies always My ~v Nx.

2) Nz~ (R]D)r for a proper prime ideal p.

Proof. 1)=>2). Let p=Ann(N;z) (5 R). Since Ny is faithful, we
have (R/P)zyy > Nrjp, and hence (R/p)s™ Np. If My > (R/p)z then Mp>
Nz, and Mz"uN"V(R/P)r, whence it follows that p is a prime ideal (The-
orem 2).

2) =>1). Since Mz > Np " (R/P)r and p is prime, Theorem 2 shows
that M; v (R/P)r v Nz

As was shown in [13], every left Noetherian, left s-unital ring has
a left identity. The next is a slight generalization of the result.

Theorem 3. If a left Goldie ring R is left s-unital then R contains
a left identity.

Proof. To be easily seen, the left singular ideal Z,(R) is contained
in P(R) that is nilpotent by Lanski’s theorem (cf. [16, p. 24]). By [9,
Theorem 1. 3], R/Z.(R) satisfies the maximum  condition for right annihi-
lators. Then R/Z(R) has a left identity by [14, Proposition 2.1], and
hence the semi-prime ring R/ P(R) has the identity. Now, we shall pro-
ceed by the induction with respect to the nilpotency index » of P(R).
The case n=1 is obvious by the above. Assume 2 > 1. Since R/ P(R)"™’
has a left identity by the induction hypothesis and R/ P(R) has the identity,
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a result of Herstein (cf. [15, p. 31]) shows that R has a left identity.

Corollary 3. If R is left s-unital then the following are equivalent :
1) R is a left Ariintan ving.

2) R is a left Noetherian m-regular ring.

3) Ris a fully left Goldie wregular ring.

Proof. 1If R is left Artinian then R is left Noetherian by Hopkins’
theorem (cf. [17, Theorem 34, p. 134]). Moreover, R being of bounded
index, R is m-regular by (1, Theorem 5]. Since 2) implies 3) obviously,
it remains only to prove that 3) implies 1). As was claimed in the proof
of Theorem 3, P(R) is nilpotent and R=R/P(R) has the identity. Now,

let z be an arbitrary regular element of f?, and g"xa@"=¢g=. Then, @" (1—
za")=0 implies ¥a"=1, and similarly ¢"x=1. Hence, every regular ele-
ment of R is a unit, which means that R coincides with its left quotient
ring that is Artinian semiprimitive. Recalling here that R/P(R)**'is a
left s-unital, left Goldie ring, one will easily see that z(P(R)*/ P(R)**) is
completely reducible and of finite length. It follows therefore that zR has
a composition series.

Corollary 4. Let R be a left s-unital, fully left Goldie ring whose
prime factor rings are m-regular. If a is an ideal of R and 0y is of finite
length, then g0 is of finite length.

Proof. To our end, it suffices to prove the assertion for a minimal
ideal a. Obviously, /(a) is a prime ideal of R and S=R/I!(a) is Artinian
simple by Corollary 3. Since R is left Goldie and sa is completely redu-
cible, za is of finite length.

The next is perhaps in the same vein as Corollary 4, and can be prov-
ed in the same way as in the proof of [20, Proposition].

Corollary 5. Let R be a left s-unital, left Noetherian ring. If ais
an tdeal of R and ay is of finite length, then za is of finite length, too.

Remarks. (1) Every s-unital left R-module is a homomorphic image
of a direct sum of copies of zR.

(2) Let M be an s-unital left R-module over a left s-unital ring R.
We consider the map f: M—> RQr M defined by »+— ¢'@u, where
e'u=u. If e'u=u (¢"ER) then there exists an element ¢ <= R such that
ee'=¢' and ee''=¢'" (Theorem 1) and we have ¢/Qu=¢e'Qu=eRe'u
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=eQ@e'u=e"Qu. Hence, f is well-defined and is an R-homomorphism.
Now, let X a;: Q@ u; be an arbitrary element of R M. Again by
Theorem 1, we can find an element ¢=R such that agg;=a; for all 2.
We have then (O aiu:) f=a @2 aqsus=2 aa;@Qui=>; a;Qu;. This
proves that R QM is canonically isomorphic to M. Similarly, if R is
commutative then we can prove the same for any s-unital module M.

(3) An s-unital module My will be defined to be s-flat if for each pair
of s-unital left R-modules AC B (with the inclusion map () 1 ® :: M@ A
—> M@ :B is a monomorphism. As a consequence of (2), one will easily
see that if R is left and right s-unital then Ry is s-flat. Moreover, we can
prove the following : Let R be a left and right s-unital ring, and [ a left
ideal of R. If My is s-flat then M Q) sl is canonically isomorphic to MI.

2, V-rings. An s-unital left R-module M is defined to be s-injective
if M has the property that for each pair of s-unital left R-modules ASB
each f € Hom (34, :M) can be extended to an element of Hom (3B, :M).
If xM is s-injective then M << zM' for any s-unital .M' 2 M. More-
over, the proof of [8, Theorem 1. 6] enables us to obtain the following :

Proposition 3 (Baer Criterion). Let R be a left s-unital ring, and
M an s-unital left R-module. Then M is s-injective if and only if for
each left ideal | of R each f = Hom (3|, :M) can be extended to an element
of Hom (3R, :M).

An s-unital left (resp. right) R-module M is called a V-module if
every R-submodule of M is an intersection of maximal R-submodules. If
=R (resp. Rz) is a V-module, R is called a lef? (resp. right) V-ring (cf.
[5]). As was mentioned in [18, Remark], we obtain the following which
corresponds to (21, Theorem 2.1] :

Theorem 4. The following are equivalent :

1) Ris aleft V-ring.

2) R is left s-unital and every trreducible left R-module is s-injective.

3) R is left s-unital and every s-unital left R-module is @ V-module.

4) R is left s-unital, and for any s-unital left R-module M the inter-
section of all maximal R-submodules is 0; rad M=0.

5) For any positive integer n, (R). is a left V-ring.

Proof. First, we shall prove the equivalence of 1)—4). Obviously,
4) <= 3)=>1).
2)=>4). Let M be an arbitrary s-unital left R-module. If 0 %« €



ON s-UNITAL RINGS 123

M, then there exists an R-submodule Y of M which is maximal with re-
spect to YA %. Let S be the set of R-submodules of M properly contain-
ing Y, and D= N yes X (D u). Since D/Y is an irreducible R-module, by
2) there exists an R-submodule X of M containing Y such that M/Y=
D/Y®DK/Y. Then u £K, and hence Y=K, namely, M=D. This means
that Y is a maximal R-submodule of M and rad ;M=0.

1)=>2). Let M be an irreducible left R-module, and [ a left ideal
of R. If fis a non-zero element of Hom (3!, M), then I'=Ker fC 1. By 1),
there exists a maximal left ideal m such that m2l’ and m21. Since
aM == (/1) is irreducible and [DmNI DV, we have mNI=l". Now, tak-
ing this into mind, we can well-define an extension g € Hom (xR, M) of f
by I-+m+——If { €1, m € m). Hence M is s-injective by Proposition 3.

Next, we shall prove 1) = 5) =>4).

1)=>5). The direct sum R™ of » copies of R is an s-unital left R-
module (Theorem 1), and we have seen that K™ is a V-module. Again
by Theorem 1, every (R).-submodule of (B),=™(R™) is of the form N
with some N C zR™. Since xR™ is a V-module, N= N, M, with maximal
submodules M, C xR™. Hence “N=, ™M,, and (R), is a left V-ring.

5)=>4). Again by Theorem 1, given an s-unital M, the left (R),-
module ®M is s-unital and rad (s PM=0, whence it follows rad zM=0.

A left R-module M is said to be p-injective if for any principal left
ideal (¢| of R and f< Hom (z(z|, :M) there exists an element # € M such
that xf=xu for all x&(z|. As was noted in [6], R is regular if and only
if every left R-module is p-injective (cf. also [25]). In connection with
Theorem 3, a left s-unital ring R is defined to be a left p-V-ving if every
irreducible left . R-module is p-injective. We can define a right p-V-ring in
an obvious way. In case R contains 1, a left V-ring is a left p-V-ring.
More generally we have

Proposition 4. If R is a right s-unital, left V-ring then it is a left
pV-ring.

Proof. Let xM bte irreducible, and (¢|(=Ra) an arbitrary principal
left ideal of R. Choose an element eE R with ee=a. If fEHom (z(2|, M)
and g € Hom (xR, M) is an extension of f, then for any xER there holds
(2a)f=(xa)g=(xaec)g==xa-eg.

If every left (resp. right) ideal of R is idempotent, R is said to be
Sully left (resp. right) idempotent. (In [22], a fully left idempotent ring
is cited as a left weakly regular ring.) On the other hand, R is said to be
Sully idempotent if every ideal of R is idempotent.
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Proposition 5. (1) The following are equivalent :

1) R is fully left idempotent.

2) (Re)’Da for any a=R.

3) For each pair of left ideals |V of R, there holds l'l=I.

4) For any positive integer n, (R), is fully left idempotent.
If R is right s-unital then 1) is also equivalent to each of the following :

5) For each ideal a and each left ideal | of R there holds aNl=al.

6) For each ideal a of R and each pair of left R-modules xNC :M
there holds aM N N=aN.

(2) The following are equivalent :

1) R is fully idempotent.

2) (RaR)’>a for any a=R.

3) Every ideal of R is semiprime.

4) For each pair of ideals a, o of R there holds aNa'=aaq,
5) For any positive integer n, (R). is fully idempotent.

Proof. The assertion (2) is given in[7]. Concerning (1), the equiva-
lence of 1)—3) is given in [22, Proposition 1] and 4) =—> 1) is trivial. More-
over, the latter part will be obvious by Proposition 1.

1)=>4). We shall modify slightly the proof of [12, Theorem 4].

At first, we consider the case n =2, Let A= (f g) be an arbitrary ele-

ment of R=(R),. If =3, wiaw;a (w;,, w;ER), then A—X= (0 bl)for

cd
X=3, (% 0) A w; O) A. Next, if d=3; x,dx,d (x;, x;=R), then A—
‘N0 O 00 . XL, i X50%) 5 X5 )
(U (00 00 . .
X—-Y= (C, 0 ) for Y=23(¢ x,) (A—-X) (O x3) (A—X). Finally, if b'=

S Y b'yid and ¢'=3", zic'zic! (Fe, Ve 2%, 2c ER) then A—X—-Y=
2 g" gk) (A—X-Y) 2; g") (A—X—-Y). We obtain therefore A=
(A—X—-Y)+ Y+ XENRA-X-Y)*+(N(A—X))*+(RA)*=(RA)?, namely,
R is fully left idempotent.

Since (R).;x == (Ry-1),, one will easily see that (R)» is fully left idem-
potent. Given arbitrary », we choose % so that 2 >#n. If AE(R),, we

choose A’ = (R),x with A in the upper left-hand corner and zeros elsewhere.
Now, A'€((R)+A")? and a brief computation gives A=((R),A)%.

Proposition 6. Every left p-V-ring is fully left idempotent, and so
every right s-unital, left V-ring is fully left idempotent.
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Proof. If not, there exists a non-zero element ¢ =R such that («]*
+# (a] (=Ra). Let m be a maximal member in the family of left ideals [
of R such that (¢|?CIc(e]|. Since the irreducible left R-module (e|/m is
p-injective, there exists an element & (z]| such that x--m=xb-+m for all
xE(e|. But this implies a contradiction (¢|=m. The latter part is evi-
dent by Proposition 4.

As a direct consequence of Proposition 6 and [11, Theorem 1.1], we
obtain the following :

Corollary 6 (cf. [10, Theorem 13]). If R is a left V-ring then the
following are equivalent :

1) Ris aregular ring.

2) R is right s-unital and every prime factor ring of R is a regular
ring.

Proposition 7 (cf. [21], [22]). Let R be fully left idempotent.
(1) R is right non-singular; Z.(R)=0.

(2) R is semiprimitive; J(R)=0.

(3) If a=R is left regular then R=RaR.

(4) Cis a regular ring.V

Proof. (1) Let 2&Z,.(R), and choose an element y=Z,(R) such
that z=yz (Proposition 5 (1)). If nz-+zx (» an integer and zER) is
an arbitrary element of |2) N7 (y), then O=3y(nz-+zx)=nyz-+yzx=nz-+zx.
Hence, [2)N#7(y)=0, which means z=0.

(2) Let z€J(R), and choose »< J(R) such that z=yz. Since
{xy—x|x=R} =R, it follows Rz=0, namely, z=0.

(3) This is evident by Ra=RaRa.

(4) 1If ¢ is an arbitrary element of C then ¢E(Rc)*=Rc* by Proposi-
tion 5 (1). Hence, C is regular by [1, Lemma 1].

Theorem 5 (cf. [10, Theorem 14]). If R is right s-unital then the
Jollowing are equivaient :
1) Ris aleft V-ring.

L If R is fully idempotent then it is almost evident that C is still regular and the cen-
troid € of R is commutative, Moreover, as was shown by R. Courter [Prcc. Amer. Math.
Scc. 43 (1974), 293—295], € is a regular ring. In fact, given an arbitrary element 7 of G,
one will easily see that Ry?= (R?)72=(R7)*=R7 and RYNKer v=(RYNKer 7)2=0. Hence,
R=RY @ Ker 7 and 7 induces an automorphism of gkRYr. We can find then an element ¥ of
€ such that y="7"7".
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2) R s fully left idempotent and every left primitive factor ring of
Ris a left Vring.

Proof. 1)=>2). This is a consequence of Proposition 6.

2)=>1). Let M be an irreducible left R-module, and ! a left ideal
of R. Let f be a non-zero element of Hom (z!, xM). Obviously a=Ann(zM)
is a left primitive ideal of R. Noting that an!=al (Proposition 5 (1)), one
will easily see the map defined by /+a —— If (€], ¢=a) is an exten-
sion of f in Hom (z(I+a), zM). Now, the rest of the proof proceeds in the
same way as for 1) = 2) of Theorem 4.

Corollary 7 (cf. [10, Corollary 15]). If R is a regular ring then the
following are equivalent :

1) Ris aleft V-ring.

2) Every left primitive factor ring of R is a left V-ring.

A left (resp. right) s-unital ring is said to be left (resp. right) semi-
artinian if every s-unital left (resp. right) R-module contains an irreduc-
ible R-submodule.

Theorem 6 (cf. [10, Theorem 17]). If R is left semiartinian then the
Sollowing are equivalent :

1) Ris a regular ring.

2) R is fully idempotent.

3) R is fully left idempotent.

3 R is fully right idempotent.

4) Ris aleft p-V-ring.

4) Ris a right p-V-ring.
When this is the case, R is right semiariinian.

Proof. 1)==>4)(resp. 4')) =>3)(resp. 3')) => 2). These are obvious
by the remark mentioned before Proposition 4 and Proposition 6.

2Y=1). Let S (5~0) be the left socle of R. If lis a left ideal of S
then it is easy to see that RI=R!:-RICSICI namely, [is a left ideal of
R. (Note that R is semiprime.) Hence S is completely reducible. Since
S is also semiprime, each homogeneous component of sS is (non-trivial)
simple and regular. Hence S is regular. Now, let m (2S5) be the maximal
regular ideal of R (cf. [4]). Suppose m %= R. Then R/m is fully idem-
potent and has non-zero left socle. By the above argument, we see that
the maximal regular ideal of R/m is non-zero, which contradicts the
maximality of m. We have seen thus R=m. Finally, noting that S co-
incides with the right socle of R, one will easily see that R has a right
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socle sequence, namely, R is right semiartinian.

3. AC-rings. R iscalled an AC-7ing (almost commutative ring) if
for any proper prime ideal p of R and ¢ & p there exists x such that exE
C\p. Any P,ring is obviously an AC-ring (cf. [6]), and the next will be
easily seen (cf. [24, Theorem 1]).

Proposition 8. Let R be an AC-ring.

(1) Every homomorphic image of R is an AC-ring.

(2) Ewvery prime ideal of R is completely prime. In particular, R is
a prime ring if and only if it is @ domain.

(3) Every semiprime ideal of R is completely semiprime. In parti-
cular, R is a semiprime ring if and only if it is a reduced ring.

(4) For any proper prime ideal Y of R and a & p there exists y such
that ya€ C\p. (The notion of AC is right-left symmetric. )

By Proposition 8 (3), the prime radical of an AC-ring coincides with
the set of all nilpotent elements. If R is an AC-ring and R=~ P(R) then
(R), cannot be an A C-ring for n>1.

Proposition 9. The following are equivalent :

1) R is a division ring.

2) aR=R for any a5~0 in R.

2" Ra=R for any a0 in R.

3) R is a (non-trivial) simple AC-ring.

4) R is a prime AC-ring with minimum condition on ideals.

5) R is a fully idempotent, prime AC-ring.

6) R is aregular, prime ACring.

Proof. Obviously, 1) implies each of 2)—6) and 6) implies 5). Next,
assume 2). Since R is strongly regular, there exists # such that exa=«
and eax=xa. By axR=aR=R, we see that the central idempotent ax is
the identity of R, and 1) is obvious. Similarly, 1) =>2/)=—>1). Finally,
assume one of 3)—5). For any @ 5 0 there exists x such that ¢x is a non-
zero central element. Since R is a domain (Proposition 8), one will easily
see R=axR=aR.

Corollary 9 (cf. [24, Theorem 3]). Thke following are equivalent :
1) R is a finite direct sum of division rings.

2) R is a semiprime AC-ring with minimum condition on ideals.

3) R is a semiprimitive AC-ring with minimum condition on ideals.
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Proof. 1t suffices to prove 2)=>1). For any proper prime ideal p,
R/y is a division ring (Proposition 9). Hence, R is a subdirect sum of
division rings. As is well known, by the minimum condition on ideals, R
is then a finite direct sum of division rings.

Theorem 7 (cf. [24, Theorem 2]). If R is a left (resp. right) s-unital
AC-ring and © is a submodule of R, then the following are equivalent :

1) nis @ maximal right (resp. left) ideal.

2) nis a maximal ideal.

3) wis a right (resp. left) primitive ideal.

Proof. Since R is left s-unital, R*=R and any maximal ideal of R
is a prime ideal. Moreover, if 1t is a right ideal of R then (n: R)= {xER|
Rx S n} coincides with the largest ideal contained in 1.

1)=2). If a=(: R) (&Sn+R) is not maximal, then a is properly
contained in a proper prime ideal p (Proposition 2 (1)). Evidently, there
exists an element ¢< n\p, and ax € (CNn)\p for some x. But this is impos- .
sible by ax= aC p. This proves that a is a maximal ideal. Hence, R/a is
a division ring (Proposition 9), and n=a.

2)=>3). Since R/n is a division ring (Proposition 9), 1t is primitive.

3)=>1). There exists a maximal right ideal m of R such that m2n
and (m/u: R/n)=0. Since R/nis a left s-unital AC-ring, as was shown in
1)=>2), we obtain m/n=(m/n: R/n)=0, i.e., m=n.

By Theorem 7, if R is a left (resp. right) s-unital AC-ring then J(R)
is the intersection of maximal ideals, and so a left (resp. right) s-unital
semiprimitive AC-ring is a subdirect sum of division rings.

Theorem 8. The following are equivalent :

1) R is a strongly vegular ring.

2) Ris aregular ACring.

3) Risan ACring and a left (or right) p-V-ring.

4) R is a fully idempotent AC-ring.

5) R is an AC-ring whose ideals are semiprime.

6) R is areduced ring such that R|p is regular (in fact a division
ring) for any proper prime ideal p.

7Y Ris a reduced ring whose proper completely prime ideals are
maximal left ideal.

Proof. 1)<=6)<=>7) are given in [5] (and also in [11]), 1)—=

2) = 3) are trivial, 3)=>4) by Proposition 6, and 4)=>6) is a conse-
quence of Propositions 8 and 9. Finally, 4) <=>5) is contained in Propo-
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sition 5 (2).

Following [24], R is primary if every zero-divisor is nilpotent, and
is Jocal if it has exactly one maximal ideal.

Theorem 9 (cf. [24, Theorem 5]). (1) If R is an AC-ring then the
Jollowing are equivalent :

1) R is primary.

2) Every right zero-divisor is nilpotent.

3) Euvery left zero-divisor is nilpotent.

4) There exists a minimal prime ideal Y of R which contains all
zero-divisors.

(2) If R is aleft s-unital AC-ring then the following are equivalent :

1) R has a unique prime ideal p # R.

2} R islocal and P(R)=J(R).

3) R/P(R)is a division ring.

Proof. (1) 2)=>3). Let zy=0, y5=0. If x& P(R) then x&b, for
some prime ideal p,. Choose # <R such that #xEC\p, (cf. Proposition 8).
But, by 2), 0=wuxy=yux yields a contradiction 2= P(R). Similarly, we
have 3) = 2). Obviously, P(R) is a prime ideal.

1) = 2)=>4). Trivial.

4)=1). It suffices to show that if x is non-nilpotent then x&p. To
be easily seen, T= {x*s|k>0, sER\p} U {#*|k>>0} is an m-system such
that ¥=T and 0 & T. Then there exists a prime ideal p, such that p,N T
= . Since p is a minimal prime ideal and p, S R\T<p, we have p=p, D
.

(2) 1)=>2). Every maximal ideal of R is a prime ideal. If p is not
maximal then it is properly contained in a proper prime ideal (Proposition 2
(1)), a contradiction.

2)=>3). Since P(R)=J(R) is a unique maximal ideal, R/ P(R) is a
division ring (Proposition 9).

3)=1). Trivial.

4. Integral extensions of s-AC-rings. In [24], R with 1 is called
an SAC-ring if for any proper ideal a and x & a there exists y such that
xyEC\a. However, in our present study, we shall employ a somewhat
weaker (but right-left symmetric) definition: An AC-ring is called an s-
AC-ring if for any non-prime ideal a and x & a there holds RxRNCZa.
To be easily seen, every s-AC-ring has the following property :

(*) For any proper ideal a and xZa there holds RxRNC&a.
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Any strongly regular ring is s-AC, and conversely any P,ring with
the property (*) is strongly regular.

For a while, we assume that R is a ring with the property (*). By a
routine manner, we can show that an ideal a is prime (resp. semiprime)
if and only if aNC is prime (resp. semiprime) in C. Accordingly, a ring
is strongly regular if and only if it is an s-AC-ring whose center is regular
(Theorem 8). We assume further that R'/R is a ring extension such that
C is contained in the center C' of R. Then we can easily see that if ¢’ is
a prime (resp. semiprime) ideal of R’ then a/N R is a prime (resp. semi-
prime) ideal of R.

In what follows, R'/R will mean a ring extension, and C’ the center
of R. R!'/R is called a left integral extension if CCSC’ and for each xER’
there exist a,, ***, @,—, in R such that 2"+ @, 2" '+ +a,=0.

Concerning “going up” we have the following :

Theorem 10 (cf. [24, Theorem 7 and Corollary 2]). Let R be an s-
AC-ring, R' aleft (or right) s-unital ring, and let R'[/R be a left integral
extension. If o' is an ideal of R' and p is @ proper prime ideal of R con-
taining o' N R, then there exists a proper prime ideal ' of R' such that p'
2a' and pYNR=p.

Proof. Let M be the non-empty m-system R\p, and p'=>a’ an ideal
of R’ which is maximal with respect to excluding M. Then b’ is a proper
prime ideal and p' N RCp. If p' N RCp then there exists c(CNP)\(P' N R).
Since (cR'+Y)N M=~ @, cx+p'=m withsome xER!, p'EyY, meE M.
Suppose £*+a,_ 18" '+ +a,=0 (@&;ER). Then O0=x"c*-+a,_x" "+ +
ayc*=m—p ) +a,_, (m—p)" 'c+-+a,c”. There exist therefore rER
and ¢'€p' such that m"+rc+¢'=0. This shows ¢'Ep'N RSP, and hence
m™<yp, whence it follows a contradiction mEp (Proposition 8).

Corollary 9. Let R be a left s-unital s-AC-ring, R' a left s-unital
ring, and let R'|R be a left integral extension. If ais a proper ideal of R
then aR! is a proper ideal of R'.

- Proof. By Proposition 2 (1), ais contained in a proper prime ideal
p of R, and then there exists a proper prime ideal p’ of R’ such that p'NR
=p (Theorem 10). Hence aR'Cp's~R'. Next, to be easily seen, R(aNC)
=a. It follows therefore R'(aR)=R'R(aNC)R'CaR’. '

Lemma 1. Let R'/R be a left integral extension. If a completely
prime ideal v’ of R' is contained in a left ideal v and W N R=Pp'NR, then
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nl=pl'

Proof. Suppose there exists xtEn’\P’. Let n be the smallest integer
such that " +@,_, 2" '+ +ay=p'Ep' (&;ER). This implies ¢, EWNR=
p'NR and »>1. Since p'is completely prime, (#* '+ @a,.18" *++a)x
=p'—q, EP' yields a contradiction 5" '+« +a, EP'.

Theorem 11 (cf. [24, Corollary 4]). Let R be a right and left s-
unital s-AC-ring, R' a left s-unital ring, and let R'/R be a left integral
extension. Let p' be a completely prime ideal of R'. Then Y’ is a maximal
left ideal if and only if Y N\ R is @ maximal ideal of R.

Proof. Suppose p'N R is a maximal ideal. By Proposition 2 (2),
there exists a maximal left ideal m’ of R’ such that m/2p’ and m' N R==R.
Since p' N R is a maximal left ideal by Theorem 7, we have m'NR=p'NR,
whence it follows m'=p’ (Lemma 1). Conversely, suppose b’ is a max-
imal left ideal. We claim here p'NR+#=R. In fact, if xER\Y' and ™+
Gy '+ o+ a2,=0 (2= R) then Y DR gives a contradiction s*=p'. Now,
suppose PN R is not maximal. Then pP'NR is properly contained in a
proper prime ideal p, of R (Proposition 2 (1)), and we can find a proper
prime ideal p} 2 p’ of R' such that p{ N R=p, (Theorem 10). Since P} has
to be equal to P/, we have a contradiction p' N R=p)N R=p,.

Theorem 12 (cf. [24, Theorem 9]). Let R be a left and right s-unital
s-AC-ring, R' a left and right s-unital reduced ring, and let R'/R be a
left intergral extension. Then, R is regular if and only if so is R'.

Proof. If R is (strongly) regular then every proper prime ideal of R
is a maximal left ideal (Theorem 8). By the proof of Theorem 11, for any
proper completely prime ideal ' of R', P’ R is a proper prime ideal of
R, and so it is a maximal left ideal. Hence p' is a maximal left ideal by
Theorem 11, and again by Theorem 8 R’ is a regular ring. Conversely,
if R' is a regular ring, then for any proper prime ideal b of R there exists
a proper prime ideal p’ of R’ such that p'NR=p (Theorem 10) and p’ is a
maximal left ideal (Theorem 8). Hence, p is a maximal ideal by Theorem
11, and so it is a maximal left ideal (Theorem 7). Theorem 8 proves there-
fore that R is regular.

Theorem 13 (cf. [24, Theorem 10]). Let R'/R be a left integral
extension. If R is strongly regular then for each xS R’ there exist yER'
which can be expressed as a (left) polynomial in x over R*=R<+2Z and a
natural number n such that yx"*'=x"
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Proof. Let A(x)= {p(x) | p(x) is a monic polynomial of positive de-
gree in x over R such that p(x)x™=0 for some m}. In A(x) we choose p(x)
=x+ a8+ +axt+a, of the least degree; p(x)2*'=0 (» >1). By
[1, Lemma 1], there exists (uniquely) an element =R such that g,z=
aa,, aia=a, and a’a,=a. Obviously, e=a.a is a central idempotent with
eay=ay, and eg=a. If k=1 then £*-+aex" '=0 implies 0=4"+as" ' —
(2" +apx" )=2"—ex", i.e., ex’=x". Hence, 0=a(x*+ax" Nrx=ax""'+
ex*=ax""'+4", whence it follows —ax"*'=2". Next, we shall consider
the case #>1, and set x,=x—ex. Since 0=p(x)2" '—ep(x)s" '=(¥*+
G X @) — (A g T b g ) = (e e
a1 %0)2" = (2t '+ @2t i oo+ a@y)xs, A(x,) contains a polynomial of degree
k—1. By induction method, there exists a polynomial f(x,) over R* such that
Flxp)ar =47 for some m. Since 2" '=(—a)p(x)2" '+4" "' =(—a) (z* '+
@1 X0 o+ a)x" + 47", we obtain 2" = (—a) (£* '@+ ay)
2™ 440%™, whence it follows 2™ "= {(—a) (4" '+ @ 82+ -+ + ;) +

f(xo)—ef (x)} ™™+,

Finally, we shall prove the following, which will enable us to read-
ily obtain [24, Theorem 11].

Corollary 10. Let R'/R be a left and right integral extension. If R
is strongly regular then for any xER' there exists a quasi-regular element
u in R[x] such that ™ —ux"=x" and ux"=x"u for some n.

Proof. By Theorem 13, there exist s and ¢ in R[] such that sz™*'

n .20

=x"=2x"""¢ for some n. To be easily seen, s"s"=x"=a"¢". If we set a=
x" and b=s"2" then it is known that g¢b=be, a’b=a and ab®*=>b (cf. the
proof of [1, Lemma 1]). Obviously, e=gb is an idempotent and z=e—b
is a quasi-regular element in R[x] with quasi-inverse e—a. Now, it is
easy to see that a*—uae’=a.
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Added in proof. Recently, Theorem 3 has been proved also by F.
Hansen [Proc. Amer. Math, Soc. 55 (1976), 281—286].



