ALMOST COMMUTATIVE RINGS AND THEIR
INTEGRAL EXTENSIONS

EDWARD T, WONGY

Recently reduced rings (rings without nonzero nilpotent elements),
especially reduced regular rings, draw considerable attention. In many
ways, this type of rings behaves very much like commutative rings. It
is the purpose of this paper to investigate some general properties of
such class of rings.

Throughout, R will represent a ring with identity element 1, and C
the center of R.

Definition 1. R is said to be almost commutative (AC-ring), if for
any prime ideal P(5=R) of R and e P, there exists x such that ax&C—P.

For a prime ideal P, C— P is maultiplicatively closed. Thus if exE
C— P and xy=C— P then («*y)a=zra(xy)=(ax)(xy)=C— P. The notion of
A C-ring is right-left symmetric.

Commutative rings and reduced regular rings are AC-rings. Finite
direct sum of AC-rings is an AC-ring and a homomorphic image of an
AC-ring is again an AC-ring.

Theorem 1. In an AC-ring R, every prime (semi-prime) ideal is com-
pletely prime (completely semi-prime).

Proof. Let P be a prime ideal in R. If b¢cE P and ¢& P, then let
2=R, cz€C— P. Since bczR=5bRczC P, we have b€ P. Since a semi-prime
ideal N is the intersection of all prime ideals that contain N, if a&ZN
then a& P for some prime ideal P containing N and &"¢& P for all n.
Hence, ¢"& N and N is completely semi-prime.

For an ideal A in an AC-ring R, its prime radical P(4)={xER |2"
€ A for some #}, the same as in the commutative case. Consequently,
the prime radical P of the ring R is just the set of nilpotent elements.
An AC-ring is reduced if and only if it is semi-prime; a domain if and
only if it is prime ; and a division ring if and only if it is simple.

Theorem 2, Let R be an ACring and I be a submodule of R, con-
sidering R as a left or right R-module. The following statements are

b The author sincerely thanks Professor H. Tominaga for valuable suggestions and comments.
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equivalent :
1) Iis a maximal right ideal.
1) Iis a maximal left ideal.
2) Iis a maximal ideal.
3) Iis aright primitive ideal.
3" Iis aleft primitive ideal.

Proof. By the symmetry of an AC-ring, it suffices to prove the
equivalence of 1), 2), and 3). Obviously, 2) implies 3). Assume 1), and
let A=(I:R)={x€R|RxC I}, which is the largest ideal of R contained
in I. If there exists a maximal ideal M containing A properly then there
exists e I—M and xR such that ex=(CN I)—M. But this contradicts
axE ACM. Hence, R/A is a division ring and I= A, proving 2). Finally,
assume 3). Then there exists a maximal right ideal I’ of R containing J
such that (I'/I: R/I)=0. As it was shown just above, I'/I=(I'/I: R/I)
=0. I=1TI.

Thus as in the commutative case, the Jacobson radical J of an AC-
ring is the intersection of all maximal ideals.

Corollary 1. A semi-simple AC-ring ts a subdirvect product of divi-
ston rings.

Theorem 3. The following statements are equivalent :

1) R is a direct sum of finite number of division rings.

2) R is a semisimple AC-ring with minimum condition on ideals.
3) Ris areduced AC-ring with minimum condition on ideals.

Proof. If Ris an AC-ring with minimum condition on ideals then
every prime ideal P is maximal for R/P is a division ring. Using the
same technique as in commutative case, R has a finite number of maximal
ideals only. By the Chinese Remainder Theorem, R is a direct sum of
division rings if either R is reduced or semisimple.

Theorem 4. If R is an AC-ring then the following statements are
equivalent :

1) R is a regular ring.

2) Every ideal in R is semi-prime.

3) Risreduced and R} P is a regular ring (in fact a division ring)
JSor every prime ideal P of R,

Proof. Every ideal in a regular ring is semi-prime. Thus an AC-
regular ring must be reduced. This shows 1) implies 2) and 3). If 2) then
R/ P is a division ring for every prime ideal P. Hence P is a maximal
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right ideal. If 3) then R/ P is also a division ring, since R/ P is a domain.
Both cases imply R is a regular ring by Theorem 3 [4].

As we expect it, we can use the same definitions for primary ring,
primary ideal, and local ring as in the commutative case for AC-rings.
Recall a ring is primary if every zero divisor is nilpotent and is Jocal if
it has exactly one maximal ideal.

Theorem 5. The following statements are equivalent for an AC-ring
R:

1) R is primary.

2) Every right zero divisor of R is nilpotent.

2" Every left zero divisor of R is nilpotent,

3) R has a minimal prime ideal P which contains all zero divisors.

Proof. First, assume 2), and let xy=0, y40. If v+ &£ Pthen x& P
for some prime ideal P. Choose #= R such that ux& C— P. By the hypo-
thesis, O0=wuxy=2yux implies ux= P. It contradicts ux& P. This proves
2) implies 1). Similarly, 2’) implies 1). If R is primary then P consists
of all zero divisors of R and is the unique minimal prime ideal. Finally
assume 3), and let P be a minimal prime ideal containing all zero divi-
sors. Let xR be not nilpotent. The theorem follows if we can show
xZP. Let T={x*s | k>0, s¢ P}, Obviously, | and « are in 7. But 0T,
otherwise x*s=0 for some % which implies s€ P. If £™s and x*s'in T,
let =R where suC— P. Then (x™s) u (4" s')=x™*"(sus') and sus'& P.
Hence, T is an m-system and there exists a prime ideal P’ with PPCR—T.
Since P is minimal and R—TC P, we have x&& P'=P,

Anideal I is primary if R/I is a primary ring. If I is a primary
ideal of an AC-ring then P(I) is a prime ideal.

Theorem 6. In an AC-ring R, the following statements are equiva-
lent :

1) R has a unique prime ideal P,

2) R islocal and P=J.

3) Every nonunit is nilpotent.

4) R is primary and all nonuits are zero divisors.

Proof. Clearly 1) implies 2). If 2) then P=J is the unique ma-
ximal ideal in R. Suppose  is not nilpotent. Then ¢& J, and aR+ J
=R. Hence ¢ is a unit (cf. Theorem 2). Assume 3). Then every zero
divisor is nilpotent and hence 4). If 4) holds then P is the set of all
nonunits in R and hence the unique prime ideal of R.

As in the commutative case, if Q,, -+, @, are P-primary ideals then
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N ; is also P-primary.

Definition 2. A ring R is said to be a strongly ACring (SACving)
if for any ideal I of R and a@& I, there exists x such that ex=C—1.

An AC-ring in which every ideal is semi-prime, namely, a reduced
regular ring (Theorem 4), is an SAC-ring. Any finite direct sum and
homomorphic images of SA C-rings are SAC-rings. In an SAC-ring R, an
ideal A is prime (semi-prime) if and only if AN C is prime (semi-prime).
Consequently, an SAC-ring is regular if and only if its center is regular
(Theorem 4). Also (ANC)R=A. Hence for ideals A and B, A=RB if
andonly if ANC=BnNC.

Hereafter, let R be an SAC-ring and R’ be an infegral extension of
R with center C’, i.e., R’ is an overring of R such that CC C' and for
each xE R’ there exist a, '+, @,_, in R such that x"+a, 2" '+ +aq,=
0. Many properties in commutative integral extensions hold similarly
in this situation. If P’ is a prime (semi-prime) ideal in R’ then it is easy
to verify P'NR is a prime (semi-prime) ideal in K. Using similar tech-
niques as in the commutative case [2, 3], we obtain the following theorem.

Theorem 7. If Pis a prime ideal of R and P' is an ideal in R which
is maximal among the ideals having null intersection with M=R— P, then
P'is a prime ideal itn R' and PPNR=P.

Proof. Since Mis a multiplicatively closed system in R/, P! does
exist and is a prime ideal with P’NRC P. If P'N R+ P then there exists
a central element c€ P—(P'NR). By (cR'+-PYNM+#Q, cx+p'=m, xE
R, p'eP' and meM. Suppose &'+ d, &'+ -+ ayxt+a,=0, @.ER.
Then 2"¢*+a@,_, 5" ¢*+  + a1z + aot” =(m—p") +a,_, (m—p')y" e+ 4
alm—pc* '+ ayc"=0. There exist therefore »ER and ¢'€ P’ such
that m"+rc+¢'=0. This shows ¢’€P’'N R, and hence m"& P, which is
a contradiction.

Corollary 2. Let I' be a proper tdeal in R' and I=I'NR. If Pisa
prime tdeal in R such that I1C P then there exists a prime ideal P' in R’
such that I'C P and P'NR =P.

Proof. Let‘M=R——P and P’ be an ideal of R’ which is maximal
with respect to P'DI" and P'NM=@. By the ahove theorem P'NR=P.

Corollary 3. Let I be a proper ideal in R. Then IR' is also a proper
tdeal in R'.

Proof. Let P be a prime ideal in R containing 7/, By Theorem 7
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there exists a prime ideal P’ in R’ such that P’NR=P. IR'=(IN C) RR'
=(INC)R'C P'+#R".

Theorem 8. Let N' be a left ideal in R' and P' be a completely prime
ideal in R' contained in N'. If NNR=P' HR then N'= P/,

Proof. Suppose there exists xEN'— P/, Let n be the smallest in-
teger such that x*+a, 2" '+ - +a,=p'E P" (@;ER). This implies @,
N'NR=P'NR. Since P'is completely prime, (" '+---+a,) *E P’ yields
a contradiction "'+ - 4-a, E P'. !

Corollary 4. Let P' be a completely prime ideal in R'. Then P' is a
maximal left ideal in R' if and only if P'ﬂlé is a maximal ideal in R,

Proof. Suppose P'NR is a maximal (left) ideal in R (cf. Theorem
2) and N’ is a maximal left ideal in R’ containing P’. Then N'= P’ by the
aktove theorem. Conversely suppose P’ is a maximal left ideal in R'. If
P, is an arbitrary prime ideal in R containing P'N R, then by Corollary 2
there exists a prime ideal P; in R’ such that P'C P, and P,NR= P,. But
P,= P’ and hence P,= P'NR.

In [4], this author proved that if R is a/reduced regular ring and R’
is an integral extension of R, then R’ is also regular if R’ is reduced.
The following theorem includes this result. |

Theorem 9. If R' is reduced, then R’ is‘ regular if and only if R is
regular.

Proof. If R is regular then every prime ideal in R is maximal
(Theorem 4). Let P! be a completely prime ideal in B, Since P'NRis
maximal in R, P'is a maximal left ideal in R. By Theorem 3 [4], R’
is a regular ring. Conversely, if R’ is regular then R’ is an SAC-ring.
For a prime ideal Pin R, let P/ be a prime ideal in R’ such that P=P/'NR
(Theorem 7). Since P'is a maximal left ideal, P is a maximal ideal in
R (Corollary 4). R is regular again by Theorem 4.

For the remaining part of this paper, let R be a reduced regular
ring (hence an SAC-ring). For any ¢E R there exists a unit » such that
au=wua=e where ¢ is a (central) idempotent. If ¢is a nonzero idempotent
of R then eR’ is also an integral extension of the reduced regular ring
eR.

Theorem 10. For each xR’ there exist yER' which can be express-
ed as a polynomial in x over R and a natural number n such that yx"'=
x" (hence R' is a left n-regular ring).
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Proof. Let A(x)= {p(x)|p(x) is a monic polynomial in x over R and
p(x)a™=0 for some m}. The theorem holds trivially for nilpotent ele-
ments. Let x be nonnilpotent in R’. In A(x), we choose p(x)=x"+a,_, !
=+ -+ ax+a, of least degree. p(x)ax"'=0 for some »>1. Since x is non-
nilpotent, @, < 0. Let # be a unit in R such that guu=ua,=1—e, ¢’=e.
If k=1 then (x+ a,)x*'=0 implies (ux+(1—e))x"'=0, whence it follows
uex"=eux"=0, Hence, ex"=0 and —us""'=x". If k>>1 then uep(x)" =
eup(x)x" =0 implies ep(x)"'=p(ex)(ex)"'=0. Since eup(x)=u{(ex)* '+
4+ (ea))}(ex), A(ex), considered as in e¢R', contains a polynomial of
degree k—1. By inductive method, there exists a polynomial T(ex)
over eR such that T(ex) (ex)""'=(ex)" for some m. From up(x)x"'=0,
we obtain (—#)(x* '+ -+ +a)x"+(ex)"'=2""". Multiplying on the right
by x™"', we obtain (—#)(&* '+ - +a)x"" " +(ex)**"=4""", whence it
follows {(—#)(x*7'+ -+ -+a,)+eT(x)} 4™+ = 2"+,

Actually to show R’ is merely left =-regular is rather simple. J. W.
Fisher and R. Snider [1] prove that a ring is left #-regular if and only if
each of its prime factor ring is left =-regular. Let P’ be a prime ideal in
R'and P=P'NR. Since R is a reduced regular ring, R/P is a division
ring. R/ P'is left n-regular, for it is algebraic over the division ring
R/ P.

Theorem 11. If R is commutative then for each xS R’ there exists a
unit u which can be expressed as a polynomial in x over R such that x™u
=4" for some n.

Proof. By Theorem 10, there exists y=p(x), a polynomial in % over
R such that yx**'=4". Let z=3" and ¢e=1—2"2. Then it is easy to verify
that zx"=x", e’=e¢, and ex"=2x"¢=0. Finally, let u=2(1—¢)+e¢. Then
% is a polynomial in x over R, and u#4™=2". If vu=0 then vz(l—e)+ve=
0 implies vz(1—e)=0 and ve=0. Hence, vz"z=vzx"=v2(1—e)x"=0 and v
=9(1—4x"z)=ve=0. Since R’ is left n-regular, # is a unit.

Corollary 5. If R is commutaiive and R' is semi-prime then R' is
isomorphic to a subdirvect sum of prime algebraic algebras over fields:
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