REMARKS ON MANIFOLDS OF NEGATIVE
CURVATURE
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§ 1. Statement of results

Let M be an n(=2)-dimensional, connected and complete Rieman-
nian manifold. A non-empty subset C of M is called fotally convex if it
contains every geodesic segment of M whose endpoints are in C.

Let M be a Riemannian covering manifold of M. If M contains a
proper totally convex subset C, then = *(C) is a proper totally convex
subset of 117, where = is the covering map. Generally, the converse
of this property does not hold. In the present note, we consider this
problem when M is of negative sectional curvature. We prove, in § 2,
the following

Proposition 1. Let M be a connected and complete Riemannian
manifold of negative sectional curvature. Let M be the rvegular Rieman-
nian covering manifold of M corresponding to a proper normal subgroup
of the fundamental group = (M) of M. If M contains a proper closed
totally convex subset and at least one closed geodesic, then there exists a
proper closed totally convex subset in M.

Let M be a connected and complete Riemannian manifold of non-
positive sectional curvature. We say that a continuous function on M
is convex if its restriction to any geodesic of M is convex. M admits
a non-trivial convex function if and only if M contains a proper closed
totally convex subset [1]. Furthermore, we suppose that M is compact.
Then every convex function on M is constant. Hence M does not con-
tain any proper closed totally convex subset. For any aE=,(M), a1,
a closed path belonging to « is freely homotopic to a closed geodesic.
Thus every non simply connected regular Riemannian covering manifold

of M contains closed geodesics. By these facts and Proposition 1, we
have

Proposition 2. Let M be a connected and compact Riemannian
manifold of negative sectional curvature. Then every non simply con-
nected regular Riemannian covering manifold of M does not admit any
non-trivial convex function.
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Let M be a connected and complete Riemannian manifold of non-
positive sectional curvature. Then the square of the length of a Killing
vector field on M is a convex function on M. We see that a Killing
vector field on M with bounded length is a parallel vector field and each
sectional curvature for plane containing it is zero. Therefore, if M is
of negative sectional curvature, every Killing vector field on M with
bounded length vanishes identically. By the above facts and Proposition
2, we have

Corollary. Under the condition of Proposition 2, every non simply
connected regular Riemannian covering manifold of M does not admit
any Killing vector field.

Remark. There is a connected and compact Riemannian manifold
of negative sectional curvature which has a non simply connected regular
Riemannian covering manifold whose volume is infinite.

Finally, in § 3, we prove the following

Proposition 3. Let M be a connected and complete Riemannian
manifold of negative sectional curvature. Let ¢ be an isometry of M.
If the displacement function d(p, ¢(p)), PEM, is constant on an open
subset of M, then ¢ is the identity transformation.

This result is a generalization of the following known fact: Let M
be a simply connected and complete Riemannian manifold of negative
sectional curvature, and ¢ an isometry of M. If ¢ is a Clifford trans-
lation, then ¢ is the identity transformation. Here an isometry of a
metric space is called a Clifford translation if the distance between a
point and its image is constant for every point,

Remark. After the author had proven the above results, he knew
P. Eberlein and B. O’'Neill’s paper [2]. Proposition 2 is also obtained
from their results; (9. 12) and (11. 12).

§ 2. Proof of Propoesition 1

Let G be a proper normal subgroup of =,(M). Let 7: M—>M be
the regular Riemannian covering corresponding to G. We first note
that the isometry group I which is isomorphic to #,(M)/G acts transi-
tively on each fibre a~'(p), pM. By the hypothesis M contains a
proper closed totally convex subset. Let C be a proper closed totally
convex subset of M. Since M is of negative sectional curvature, C
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contains every closed geodesic of M [1]. Let S be the intersection of
all proper closed totally convex subsets of M Since, by the hypothesis,
M contains at least one closed geodesic, we see that S is non-empty
and a proper closed totally convex subset of M. Let S be an element
of I'. Since f isisometric, f(S) is also totally convex. We see that
f(S)=S. Hence S is I'invariant. =#(S)CM, because I' acts transi-
tively on each fibre = '(p), p =M, and S is I'invariant. Now we
shall show that =(S) is totally convex. Let p and ¢ be any two points
of #(S) and ¢ a geodesic segment of M from p to g. Let & be a
unique lift of ¢ which starts from p=#"*(p)NS and g the endpoint of
. Then for g'=a*(g)NS there exists f=TI" such that £(3')=g. Since
S is I-invariant, g=S. Hence ¢CS, because S is totally convex. Thus
e=n(3)Cx(S). This implies that =(S) is totally convex. We complete
the proof.

§ 3. Proof of Proposition 3

Let M be a connected and complete Riemannian manifold of nega-
tive sectional curvature, and ¢ an isometry of M. For a geodesic
segment ¢ of M we denote by ¢* the geodesic extention of ¢ in both
directions. We say that ¢ translates a geodesic 7: R——M if there
exists a positive constant number ¢ such that get(¥)=t(¢+¢) for every
t=R.

We need the following

Lemma ([1], [3], and [4]). Let M be a simply connected and
complete Riemannian manifold of negative sectional curvature. Let 7,
and v, be distinct geodesics of M. Then the Junction t—>d (z,(f), ©.(R)),
tER, ts unbounded.

Now we shall prove Proposition 3. Let A be an open subset on
which d(p, ¢(p)) is constant, pEA. Suppose for contradiction that ¢
is not the identity. Then we may assume that d(p, ¢(p))=a=const
>0 for every p€EA. Let ¢ be a point of A and =: [0,e]—>M a
minimizing geodesic from ¢ to ¢(g). Note that = and o7 do not overlap
each other. The angle between v and ¢or is w. Suppose that it is
less than 7. Since A is open, we can take an interior point ¢’ of ¢
([0, a]) which is contained in A. Then, by the triangle inequality, we
have d(g¢', ¢{(¢"))<<d(g, ¢(¢))=a which implies a contradiction. Since
¢ is an isometry, we see that r* is translated by ¢. If M is simply
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connected, we see that the above fact contradicts Lemma. From now
on, we assume that M is not simply connected. Fix p=A. Let {p,},
7j=1,2, -, be a sequence of points of A which converges to p. For
each p, we take a minimizing geodesic 7,: [0, 2]——M from p, to ¢ (p)).
Then {z;}, j=1,2, -, uniformly converges to a minimizing geodesic
e:[0,a]—>M from p to ¢(p). Hence, if we choose a sufficiently large
number %, for each t=[0, a] v.(¢f) and ¢(¢) can be connected by a unique
minimizing geodesic segment of M. Fix such a # and set r,=t. Then
7 is freely homotopic to @. Let & be a lift of ¢* to the universal
Riemannian covering manifold M of M. Noticing that ¢* and =* are
translated by ¢, we can lift v* to a geodesic T of M such that the
function t——d(z(#), ¢(R)), t=R, is bounded. But this contradicts
Lemma. Hence we complete the proof.
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