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Introduction

Let (M, g) be an n#-dimensional Riemannian manifold with Rieman-
nian metric g, and R be its curvature tensor (# = 3). In this paper, we
shall consider a special curvature structure of order p given by

b=rgre  (O=r=<n-2),

where « is a curvature structure of order 2 and p=r+2. This was
suggested to us by the work of S. Tachibana. Especially, if «=R, ¢,
is nothing else but E. Cartan’s notion of “p-vector curvature”, which
was formulated in the present form by R.S. Kulkarni.

In Theorem 1, we shall find a main property of this curvature
structure. As simple application of this theorem, we shall give in The-
orem 2 a sufficient condition for a Riemannian manifold with non-vanish-
ing constant 2p'" sectional curvature to be of constant curvature in usual
sense. In the last section, we shall study somewhat in detail the mean
curvature p for p-plane, which was introduced by Tachibana [7] in
connection with the work in K. Yano and S. Bochner [10]. As second
application of Theorem 1, we shall prove in Theorem 3 that this curva-
ture p generally determines the metric g itself of (M, g).

We shall assume, throughout this paper, that all manifolds are
connected and all objects are of differentiability class C*. For the ter-
minology and notation, we generally follow [4].

1. Preliminaries on curvature structures

In this section, let us recall some basic facts on the ring of double
forms for later use (for the details, see [4]).

Let (M, g) be an n-dimensional smooth Riemannian manifold and let
Z (M) be the ring of smooth functions on M. Let A*(M) and A**(M)
denote the bundles of p-vectors and of p-forms on M, respectively. For
simplicity, we denote the space of sections of a bundle by the same nota-
tion as the bundle space. We consider the spaces
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@p.q=A*p(M)®A*q(M)’ ng, qgn’ @=Z @‘p.a,

»a
where the tensor product is taken over % (M). An element @ of 79 is
an & (M)-linear map « : A?(M)X A(M) —> F (M) and the value of w
on decomposable elements #=1, A%,A-- Ax, and V=9, AN Ay, is
denoted by

o(u X U)':‘U(x1 Xp *** Xp X Vi Yo oo yq),

where %,, -+, £, ¥, -**, ¥, are vector fields on M. < forms an associa-
tive ring with respect to the natural “exterior product” as follows: for
wE D™ and 0= Z*, we define

(w/\ a)(xf “*Xp+r ® Vi 'yq+s)
& e %y % QY9 )0 (%, o2, O Y0, )

&Sh(p,r) nESh(q,8)

(1.1)

for any vector fields %y, ***, Xpsr, ¥1, ***, ¥ous. Here, Sh(p, r) denotes the
set of all (p, 7)-shuffles

Si(p, )= {tE€Spir; 7, <z, and T, <<-<7p,,},
where S,., is the symmetric group of degree p+r. Then, we have
wNO=(—1)""" g Aw

for any we Z?? and = 2", A symmetric element of Z?? is called
the curvature structure of order p and the set of such elements is denoted
by €*r ¥ =3 €7is a commutative subring of Z called the ring of
curvature stmgtures on M,

The first Bianchi sum & maps Z*7 into Z?*""! and is defined as
follows. Let w= ™% If g=0, weset Sw=0. If g=1, then we set

P+1
B2, 1 Q Y1 ¥o1) =J§. (—1) oz, %5 %01 @ 25 917 Yet)

for any vector fields x,, ***, %41, ¥4, ***, ¥4-1, Where as usual " denotes
omission. Then, for any w= 2 *? and /= 2 "* we have

S(@AO)=Bw A b +(—1)"* %0 AGH.

We define &7 = €?Nkernel © and set & ,=Y, €?. Then, owing to
?
the above formula, &, is a subring of & .
The contraction ¢ maps Z *" into 2 7~ ! and is defined as follows.
If ee 27 and p=0 or ¢=0, we set cw=0. If both p, g=1, then for
any vector fields z,, >+, 5_1, ¥4, ***, ¥-1, We set
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n
e, 2,1 @ yx-'-yq-1)=§] (e, %, %p1 Q € Y10 Vo),

where {e,, -+, e,} is a locally defined orthonormal frame field with res-
pect to the metric g. Then, we have

S-c=¢cS
on < and
1.2) c(gho)y=gAco+(n—p—qg)m

for any =7 ™,
Let «® denote the exterior product of we & with itself p times.
Then, by the formula (1. 1) we find

W%, 2%, DY, o) =p! det | wlz: @ 3) |

for any wE %', Particularly, the norm
the metric g can be written as

|+ | of a p-vector induced by

1
. 3) "xl/\xz/\ A% "2=F gp(xl Tax, Q X, 2,00 %)

for the decomposable p-vector x, Ax, A Ax,.

Let G, denote the Grassmann bundle of p-planes on M, and =:
G,—> M be its projection. For o= %?, we define the corresponding
curvature function K,: G, — R as follows : for any =G,

@ s o

where {x,, ->*, 2,} is a base of 6. The-value K.(¢) depends only on o.
We say a point mEM is isotropic with respect to w if K, is identically
constant on the fibre 77'(m); otherwise, we call m non-isotropic.

The curvature function K, generally determines o, thatis, if K,=
K, on #7'(s), then we have w=8 at mEM, for any », 6 €°?. In partic-
ular, from (1. 3) we have

Lemma. K, |7 '(m)= const. x if and only if w=ﬁ gt at m, for
any wE €7,
Finally, let R,, be the curvature operator defined by
Rey=[V2 Vo] = V0o

for any vector fields x and y, where V denotes the covariant differentia-
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tion with respect to the metric g. The curvature tensor R of type (0, 4)
is defined by the formula

R(xy @ uv)=<R., u, v>

for any vector fields #, », » and ». It is well-known that RE €2 Also,
—cRe €} and —c*Re (M) are the Ricci tensor Ric and the scalar
curvature Sc of (M, g), respectively.

2. Generalized p-vector curvature structures
In this section, let us consider the generalized p-vector curvature
structure

q&r:%g"/\w o=r=<n-—2),

where o is an element of &} and p=r+2. It is easy to see that for any
p-plane ¢ we have

(2.1) K, (0)= 3 wle.e; Qe e)
15i<ysy

from (1.1) and (1.4), where {e,, :*-,¢,} is an orthonormal base of @.
Thus, the value K,r(a) differs by constant factor from the average value

of K, over all 2-planes spanned by ¢; and ¢;,, Similarly, for any (n—1)-
plane ¢ we have

@.2) L to=K, o)+ Kulo)

where v is the normal vector of ¢ in the tangent space T,.,(M).
One of the principal properties of the curvature structure ¢, is the
following theorem, whose proof is essentially due to Kulkarni [4].

Theorem 1. Suppose that K, |n~'(m)=const. a for some point meM
and for some fixed integer v such that 0 =< r < n—4. Then we have
— __f_ 2 at
“= 2u(n—1) % m,

where =2an(n—1) [/ (r +1)(r +2). The converse is also true.

Proof. If r=0, Theorem 1 is trivial. Hence, we suppose » = 1.
The assumption K, |n~'(m) = const. ¢ implies
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2.3) - ¢, =m g atm

by Lemma, from which we obtain easily
iy = KD

for any s satisfying » < s <n—2. Especially, we get
K, lmiomy = =2

from which we find K., |7 '(m)=const., by (2.2). Hence, we have by
Lemma

K

2.4) co=—"rg at m.

On the other hand, from the identity (1. 2) we have inductively
g’ Aw)y=g Aeotrin—r—3) g 'Ae  (r=1).

Accordingly, we get by (2. 4)
2.5) ob =Ty & H—r =3¢ atm.

Since » < #— 4, by substituting (2.3) into (2.5) and then using the
identity
cgi=tn—t+1) g* for any 1 =>1,

we obtain

bra= 2n(n—1){(r—1) !} g at m.

It is easy to check that, continuing this way, we have finally
.
¢°_2n(n—1) g at m.

It will be easily seen that the converse is true. q. e. d.

Suppose ¢ =0 in Theorem 1. Then we have immediately a certain
cancellation law in the ring ¥, of curvature structures as follows (cf.
Lemma 1 and Lemma 2 in Tachibana [7]):

Corollary. Suppose that w= €3 If g" Aw=0 at mE M for some
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v suchthat 0 < v < n—4, then we have w=0 at m.

3. Application to the Riemannian manifold with constant 2pth
sectional curvature

The 2p™ sectional curvature y,, of Thorpe [8] is given by the for-
mula

(=1)°
B.1)  r1ule)= Wﬂéﬁ &6 Rie., e, Qew e) Rle.,, e, Qe  eu,)
for any 2p-plane ¢=G,,, where {e, -, &;;} is an orthonormal base of o.

In the case p=1, 7, is the usual sectional curvature of (M, g). Since we
have from the formula (1.1)

“)p(xl"'xzp ® y1"'y2p)
1
=F' E

neszp

€&y w(x‘l x‘z ® y“] y“a)m lu(x‘zp—l x‘sp ® y"zp—: y“zp)

for any o= Z** and any vector fields x,, -, Zap, ¥, ***, Y2, it follows
that the formula (3. 1) reduces to the expression

7:0(@)=(—2)"{(2p)!} 7' R*(e;y-+ €2, Q &, e5,),
that is to say, yi, is the curvature function K, corresponding to the
curvature structure
w=(—2)"{(2p)!} ' R".
Since R’ %’3i*, we have from Lemma

(3.2) 72p = const. k,, iff R*=(—2)"7x,, g%,

for any p = 1.
Now, the condition y,, = const. (p = 2) does not always imply r, =
const. (e. g. see A. Stehney [6, §2]). However, we have

Theorem 2. Let (M, g) be an n-dimensional Riemannian manifold
with non-vanishing constant 2p™ sectional curvature. If 0<<2p=n—4
and its 2(p+1)* sectional curvature s also identically comstant, then
(M,.g) is of constant curvature in usual sense.

Proof. The assumption 7., = const. &,, (= 0) in Theorem 2 implies
(3.3) R?=(—2)7" £y, g%

by (3.2). Furthermore, suppose jay.+ = const. £3,.;. Then we have
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similarly
(3_ 4) Rp+1=(_2)~(p+l) Eatpaty g2(p+1).

Substituting (3. 3) into the left hand side of (3. 4) and applying Corollary
to Theorem 1, we obtain R= — {ry,.,/2%;,} g°. Hence, we find 7, =
Kys+n/Kip, thatis, (M, g) is of constant curvature, q. e. d.

4. Application to the mean curvature for p-plane

Let p be an integer such that 1 << p <<#, and we put

= 2R——- pil g/\CR.

We consider, throughout this section, the generalized p-vector curvature
structure ¢, defined by this v=Z?:

1
b =TT & A (r=p—-2).

The mean curvature p for p-plane of Tachibana [7] is given by the
formula

1 po&
(4- 1) P(") _ p(n_p) 1';1‘ j=2p+l Tz(eiy eJ)
for any ¢=G,, where {e,, -+, ¢,} is an orthonormal base of the tangent
space T.»(M) such that e, ---, ¢, span &, and 7,(e;, ¢;) denotes the sec-
tional curvature of the 2-plane spanned by ¢; and ¢;. On the other hand,
we get

1
qu,(tr)siljzp_l R(e.e; Q e:e)) — =1 15%5;»( gAcR)e.e; @ ee))

2,, 5 R(e.er Q@ eqer)

im] kw1l

= 'é—] R(e;ej ® eie,-) —_

i4

= i i Tz(ei, ej)

i=] jep+l

by the formula (2. 1). Hence, p is a curvature function corresponding to
the curvature structure {p(n—p)} ' ¢, € 7, that is,

1
P pln—p)

From (4.1) and Theorem 1, we have the following proposition,

4.2) K, : G——R.
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which has been obtained by Tachibana (cf. Theorem in [7]).

Proposition. Let 1 <<p<<m.  Each point of M is isotropic with
respect to the mean curvature p for p-plane if and only if

(i) (M, g) is Einsteinian for p=n—1,

(ii) (M, g) is of constant curvature, for 1<p<<n—1 and 2p 5 n,

(iii) (M, g) is conformally flat, for 1<p<<n—1 and 2p=n.

Remark 1. It is interesting to compare this proposition in the case
(iii) with the following (cf. Theorem 3.2 in Kulkarni [3]): (M, g) is con-
formally flat if and only if at every point of M we have

rle., e:)+7.(es, e))=r:(e., e,)+7.(e,, €)

for every quadruple of orthogonal vectors {e,, e,, ¢;, ¢,}.

Now, let us assume 1 <<p <<2—1 and show the mean curvature p
for p-plane generally determines the metric g. Let (3, g) be an another
Riemannian manifold and f: (M, g) —> (M, g) be a diffeomorphism.
We indicate the corresponding quantities with respect to the metric g or
the induced metric g*=f*g by bar overhead or asterisking, respective-
ly. Suppose that f is K, -preserving, that is, for every ¢= G, we have

(4.3) K; (fvo)=K, ().

Furthermore, if
( *) the set of non-isotropic poinis w.r.t. ¢, is dense in M,

then f is conformal, that is, we have
4.4) gr=e"g (pEF(M))

by the well-known theorem of Kulkarni (see General Theorem 5.1 in
[4]). Under these circumstances, we shall prove f is an isometry, that
is, y»=0.

First of all, we remark that the assumption ( * ) means

(*) the set of non-isotropic points w.r.t.» is dense in M,
by Theorem 1. Also, under the conformal change (4. 4) of metric we have

4.5) R*=e"{R+g Ax(y)},

(y) being an element of %], which depends on y. From (4.5) we
obtain

(4. 6) ¢*R*=cR+(n—2)x(y)+Trace x(y) g.
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Substituting (4. 4), (4.5) and (4. 6) into ¢*, we have

p.—
On the other hand, the condition (4. 3) can be written as

2 —
4.7 ¢ =711— e g" A {w + P lng/\x(\p)— pil Trace «(y) g°}.

K,’: = eip'ﬁ K”,’
which implies
(4.8) ¢r=e™ ¢,

because we have ¢,, ¢ €7. By (4.4), (4.8) and Corollary to The-
orem 1 we obtain

(4.9) w* =g w,
Eliminate ¢ from two equations (4. 7) and (4. 8). Then we have similarly
(4.10) (p—1Xe™ —1)w=(2p—n) g Ax(y)—Trace «(y) g

Case (i) n=2p. Suppose that M'={meEM; (m)+#0} has non-
empty interior. Then, each point of M'is isotropic w.r.t. « by the
equation (4. 10) and Lemma. But this contradicts the assumption ( * )".
Hence, we have » =0.

Case (ii) n=2p. In the case, it will be easily seen that the
assumption ( * ) means

(*)" the set of nom-isotropic points w.r.t. R is dense in M.
By operating the contraction ¢ to the equation (4. 10), we have

(4. 11) (e*—1){(2p—n) cR—c*R g}
) =(2p—n)(n—2) r(y)+(2p—3n+2) Trace x(y) g.

Furthermore, operating ¢ to (4. 11) we get

(e**—1) ¢’R=2(n—1) Trace #(y).

Substitute this into the left hand side of (4. 11). Then owing to # 5~ 2p
we have

(e**—1) cR=(n—2) #(y-)+Trace (y) g,
which implies
(4.12) c*R*=¢e* ¢R

by (4.6). Substitute (4.4) and (4. 12) into (4. 9). Then we find R* =¢**R.
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Thus, f is Kp-preserving. Since we assume (*)” and #>3, f is an
isometry by Theorem 7.1 in [4]. Thus, we have proved the following
theorem:

Theorem 3. Let (M, g) and (M, g) be two Riemennian manifolds of
dimension n. Let f: (M, g) —> (M, g) be a diffeomorphism which preser-
ves the mean curvature for p-plane, where 1 << p <mn—1. Suppose that
the set of nonm-tsotropic points with respect to the mean curvature for
p-Dlane is dense in M. Then f is an isometry.

Remark 2. Theorem 3 is not true when p=#z—1. Infact, if p=
n—1, then the formula (4. 1) reduces to the expression

P(a) = —n—ii— K (en)-

The present author found a counterexample for corresponding local
statement for the Ricci curvature Ky, (cf. [5]).
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