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ATtsusHl NAKAJIMA

Let R be a commutative ring with identity, and G a finite abelian
group. Let H*(R, G) be the second Harrison cohomology group defined
in [6], and E(GR) the group of isomorphism classes of G-Galois exten-
sions of R. In [1] and [8], S.U. Chase and M. Orzech proved that there
exists a group isomorphism

j: H¥R, G) —> N(GR)

where N(GR) is the subgroup of E(GR) consisting of those extensions
which have normal bases.

In this paper we generalize the notion of Harrison cohomology and
push the idea of [1] and [3] to obtain the information concerning the
relation between the generalized Harrison cohomology groups and Galois
objects over commutative rings in the sense of [4]. In §1, we shall in-
- troduce the notions of Galois coalgebra and weak Galois algebra, which
generalize those in [3, §4]. In §2, the generalized Harrison cohomology
group Harr-H*(R, H) for a commutative Hopf R-algebra H will be con-
cerned with Galois coalgebras and weak Galois algebras. Then under
some reasonable assumptions, we can expand j to an isomorphism Harr-
H*R, H) — NXAQ(R, H), where A, is the category of R-algebras
whose objects are finitely generated projective R-modules and NXAO(R,

H) is the group of isomorphism classes of Galois H-algebras in the cate-
gory A,. In §3, we show that our generalized Harrison cohomology
group is a special case of the right H-comodule algebra cohomology group
introduced by Y. Doi in [5].

Throughout this paper, R will denote a commutative ring with
identity and unadorned @ will mean ®;. Moreover we shall assume,
unless explicitly stated otherwise, that every ring has an identity which
is preserved by every homomorphism, every module is unital, and every
algebra is an R-algebra. We shall denote by —* the functor Homg(—, R).
As to other notations we shall refer to [4], [7] and [9].

1. Galois coalgebra and weak Galois algebra. In this section, H
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will represent always a commutative Hopf algebra, and J the diagonal
map of H. We define the algebra homomorphisms J!: HQ H—HRQQ H
& H (i=0,1,2, 3) by

dix)=1Q %, Jix)=(4 @ 1)(x), 43x)=(1 @ (), 4i(x)=2x@ 1.
Let © ke the set of elements of # in H® H such that

(1.1) (2} d3(u) = Si(2e) S3(we).
In §, we write u~u' if there exists a unit element » in H such that
(1.2) J) u=u'(v Q v).

Then the relation ~ is an equivalence relation and © will mean the set
of equivalence classes determined by this relation. If %, and u, are the
equivalence classes containing #, and u,, respectively, then », ¥,=u u,.
Hence $ is a semi-group with the identity 1.

For HQ® Hand HRY HQ® H, we define an H-module structure via
the diagonal action, i.e.,

hz, @ %)=23m hoy 2, @ by %
and

r @ x. @ %3)=2m by 2, @ by %2 Q by %,
where J(h) =2 hay @ b and (U Q DIR) =T ko) Q@ hay @ b
(Sweedler’s notation).

By a Galois coalgebra (H, D), we mean H together with an H-module
homomorphism D : H —> H X H which satisfies

(1.3) (D® 1)D=Q1Q D)D:H— HR HQR H.

Two Galois coalgebras (H, D) and (H, D) are defined to be isomorphic if
there is an H-module automorphism ¢ of H such that the diagram below
commutes

H—' > H
(1. 4) D| lﬁ
HQQH—HQH
¢ Q¢

Let (H, D)), (H, D,) be Galois coalgebras. Then the mapping D: H
—> H Q@ H defined by D(x)=d(x) D,(1) D,(1) is an H-module homomor-
phism which satisfies (1.3). Therefore we obtain a Galois coalgebra
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(H, D). Moreover if ¢: (H, D,)—>(H, D,") is an isomorphism of Galois
coalgebras, then the diagram below commutes

¢
- > H
ol o
HXRXH—HYH
Q¢

which means that (H, D) and (H, D) are isomorphic, where D'(x)= 4(x)
D,'(1) D,(1). Hence the set of isomorphism classes of Galois coalgebras
C(R, H) is a commutative semi-group with addition

(H, D)Y]+U(H, D,)]=[(H, D)] ([(H, D)], [(H, DJ)IEC (R, H)
where D(x)=4(x) D,(1) D,(1). Obviously [(H, )] is the zero element in
C(R, H).

For -f), and C(R, H), we have the following

Proposition 1.1. Let 8,: C(R, H) —> -5 be the mapping defined by
6,([(H, DY1)=DQ). Then 0, is a semi-group isomorphism.

Proof. Let (H, D) be a Galois coalgebra, and D(1)=x. Then, not-
ing that D(x)=4(x)D(1), we see that D satisfies (1.3) if and only if »
satisfies (1. 1). Moreover if ¢: (H, D) — (H, 5) is an isomorphism of
Galois coalgebras, then ¢(x)=2x ¢(1) (x€H) and ¢(1) is a uvnit in H,
because ¢ is an H-module automorphism. Since all mappings in the
diagram (1. 4) are H-module homomorphisms, the commutativity of (1. 4)
is equivalent to the condition (1.2) with #=D(1) and #’ =D(1). Thus 0,
is well defined. By the definition of addition in C(R, H), 8, is a homo-
morphism and 6,([(H, 4)])=1. Now let z be in © and let D(x): H—>
H @ H be the mapping defined by D(x)(x)=4(x)». Then by (1.1) and
(1.2), (H, D(«)) is a Galois coalgebra and is uniquely determined up to
isomorphism of Galois coalgebras. Therefore, if we define 6; (z)=[(H,
D(%))], then 8, is the inverse homomorphism of 4,. Thus @, is an isomor-
phism, completing the proof.

Definition 1.2. Let S be an algebra (not necessarily with identity),
and ¢ : H® S—>S an R-module homomorphism. Then (¢, H) measures
Sio Sif

Q) olh @ 29)=2m ¢lhay @ %) ¢y @ ¥)
@) ¢(h @ 1)=e(h)1 (in case S has 1)
where J(B)=21w ko Qhw, and € is the counit map in H.
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For brevity, we shall denote the pair (¢, H) by the symbol H alone.
If Sis an H-module and H measures S to S, then S is called an H-module
algebra.

Definition 1.3, An algebra S (not necessarily with identity) is
called a weak Galois algebra if S is an H-module algebra and there ex-
ists an H-module isomorphism = : H —> S. Two weak Galois algebras S

and 'S are said to be isomorphic if there exists an algebra isomorphism

S—> S which is also an H-module isomorphism.
In case H has an antipode A, given an arbitrary H-module M, M*
will be understood always as an H-module defined by

(Rf)(m)=f (2(B)m) (he H, fe M*, me M)

In the subsequent study of this section, we shall vestrict our attention
to a fixed finite, commutative, cocommutative Hopf algebra (cf. [4, p. 55])
such that H* is tsomorphic fo H as H-module.

Let (H, D) be a Galois coalgebra. Then H* is a weak Galois algebra
canonically. Moreover, since (H @ H)* = H* Q H*, the mapping D*:
(HQ H)* —> H* yields a multiplication on H*, namely,

(1.5) (fe)x)=(f ® g)D(x)=(f ® g)4x)DQ) (f,gEH*, x€H).

Then the multiplication is associative by (1.3) and H* becomes an
algebra, which we denote by H(D). Since D is an H-module homomorphism,
H measures H(D) to H(D). Thus H(D) is a weak Galois algebra.

Let S be an arbitrary weak Galois algebra, and s+ the multiplication
of S. By Def.1.3 and H* = H, there exists an H-module isomorphism
7: S*—> H. Hence we have an H-module homomorphism D(S, ): H—>
H @ H which is the composition

-1 /I*

7 7
H-> S —> (SRS =5Q®S* HQ H.

Now let T be another weak Galois algebra. If we define a product on H*
by

(fe)x)=(f @ g)(M(x) DS, »(1) D(T,£)A)) (x<H, f, g€ H*)
then it is easy to see that H* is a weak Galois algebra, which will be
denoted by H®. For H®, we have the following

Lemma 1.4. H? is uniquely determined by the isomorphism classes
of S and T up to isomorphism of weak Galois algebras.

Proof. Let ¢ : S—>S, be an isomorphism of weak Galois algebras,
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7,: S%—> H an H-module homomorphism, and H% the weak Galois
algebra defined by S, and T as atove. Then there exists an H-module
isomorphism 6 : H—> H such that the following diagram is commutative

77 o 7Q7
H—S$— (SQRSN=5*R®S* — HRYH
ol | a=ra lo®o
H— Sl*'_) (Sl®sl)*§sl*®sl*—_—> H®H

7]1—1 ."f 7/‘1®7/‘1

where p, is the multiplication of S,, and thus (6 ®¥8) D(S, »)=D(S,, %.) 0.
If we define ¢: HY —> H® by ¢(f)=f0, then ¢ is an H-module and
algebra isomorphism, completing the proof.

Let A(R, H) be the set of isomorphism classes of weak Galois alge-
bras. Then by Lemma 1.4, we can define the sum of the isomorphism
class of S and the isomorphism class of T as that of H. Thus A(R, H) is
a commutative semigroup and the isomorphism class of the canonical
weak Galois algebra H* is the zero element in A(R, H). Now, let¢:
(H, D) -—> (H, D) be an isomorphism of Galois coalgebras. Then, ¢*:

H(ﬁ) — H(D) is an H-module and algebra isomorphism. We can define
therefore the mapping 8,: C(R, H) —> A(R, H) by 0,([(H, D)])= (H(D)).
Moreover, by the definition of additions in C(R, H) and A(R, H), it is
easy to see that 4, is a monomorphism.

Proposition 1.5. 8, is a semi-group isomorphism.

Proof. Let Ste a weak Galois algebra, and 7: S*——H an H-
module isomorphism. Then, we have the following commutative diagram

s s@s
(1. 6) 7 l l 7 &7
H——— HXYH.
D(S, %)

Noting that s is associative and » is an isomorphism, we have (D(S, 7)
R 1D, 7)=0Q DS, 7)D(S, 7). Hence (H, D(S, 7)) is a Galois
coalgebra. Transposing the commutative diagram (1. 6), it follows that
7* D(S, »)* = ply* ® »*). Since » is an H-module isomorphism, »*:
H(D(S, %)—>S is an H-module and algebra isomorphism. Therefore 4,
is onto, completing the proof.

Remark 1.6. For some useful finite, commutative, cocommutative
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Hopf algebras, the supplementary assumption that H* is isomorphic to
H as H-module is automatically satisfied.

(1) Let G be a finite abelian group. Then the group algebra RG is
a finite Hopf algebra such that (RG)* = RG as RG-module.

(2) Let H be a finite, commutative, cocommutative Hopf algebra.
Then H* is an H-Hopf module in the sense of [9, p. 93] with the left H-
module structure

(W) (x)=r(a(k)x) (h,x=H, fEH*)
and with the left H-comodule structure
¢: H* — HQ H*
defined by ¢(g)=2.2 . ® gfi (gEH*), where {x, fi}isis» iS an R-
projective coordinate system of H. By [4, p.128] or [9, p.84],
H*=HQI
as left H-module and I is a projective R-module of rank one. Therefore

if Pic(R)=0, then H* = H as left H-module.

(3) Let R be a commutative algebra over GF(p) (p #= 0) and let
H=Rd, © Rd, D+ P Rd,-, be a free R-module with a free basis {d,=

1, d,-+,d,-;}. Then H is a finite, commutative, cocommutative Hopf
algebra with antipode 4:
dd;=(Y) d.., 114 j=<p—1)
J(dn)=2i:o d: Q dn (O_S_”gp—l)
e(d,)=4d., (Kronecker’s delta)

A (d() = ("l)idi.

Hence H* is also a finite, commutative, cocommutative Hopf algebra
with the dual basis {d,*, d.*, «:,d,_*}. Weset f=d,*+d,*+-+d,_.
Then it is easily seen that f is a free basis of H* as H-module. Therefore
H=H™* as H-module.

2. Galois object and cohomology. Throughout this section we shall
assume, unless explicitly stated otherwise, H is a commutative Hopf
algebra with the diagonal map 4 and the counit map e.

Let ®" H denote the tensor product H Q) -+ @ H (n-times), and Q°
H=R. Let U( ) be the multiplicative group of the ring ( ). We define
& U@ H) —> U(QR"*' H) by the formula

(2. 1) 3"(“) = Aé‘(u) {Hiﬁl J?(u)(_l)i} An";l(u)(_l)nﬂ (u eU (®" H))
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where the algebra homomorphisms £, 7, 4% : Q' H—> Q"' H be
defined by the conditions

Hx)=1Q =z, Jaa@=2®1 (re Q" H)

Q@ h)=h Q- Qh @ ) D by @ -+ Q b,

(¢.=1, 2,:-n; h, = H). Then one can easily check that ¢**' §*=0,
which enables us to define a cochain complex (R, H)= {U(Q" H), 6"} nz0.
The n-th cohomology group of ©(R, H) is denoted by Harr-H" (R, H), and
will be called the generalized Harrison cohomology group.

Let M be an H-module (resp. ®* H-module). Since @* H(resp. @*H)
can be viewed as a right H-module (resp. ®* H-module) via the diagonal
map d(resp. £, i=1,2), we have an ®* H-module (resp. ®* H-module)
AM)=(Q* H) ®u M (resp. A (M)=(Q* H) Qrex M). If X, Y are
finitely generated projective faithful H-module, then X ® Y may be
viewed in the obvious way as a finitely generated projective faithful
®?® H-module, and there exist isomorphisms A, (X Q V)=AX)R Y,
DXQRQY)=XQ AY), A ANH) = A, A(H). We shall treat these
isomorphisms as identifications.

Let A" : H— A(H) be a mapping defined by A*(A)=1QR 1R #.
For an element « in H @ H, we define a,: (Q* H) Qx H—> ®* H as

the composition (R® H) Qx H = K* Hl> Q? H, where ®* H Ry H=
Q@ *H denotes the natural isomorphism and m, denotes the multipli-

cation by u. Then a, is an @Q* H-module homomorphism and «, A¥(x)=
MHx)u (x=H).

The following lemma is easily proved.

Lemma 2.1. Let u be an element in HQ H. Then u satisfies (1. 1) if
and only if the diagram below commutes

1®au
D, (HOH)=HQAH) ———> HRYHRQH
Dala) T T a1
DNNH)=0,0(H) O (HRQH)=AH)® H

An(au)
where A; (0)=1 Q1 R® 1R a,.

Definition 2.2 ([5, 1. 1. Def. J). A right H-comodule algebra is a pair
(S, @), where S is an algebra and a: S——>S @ H is an algebra
homomorphism such that (@ @ a=(1 & da and (1 Q e)a=1s. For
brevity, if there is no confusion, we shall denote the pair (S, «) by the
symbol S alone. A right H-comodule algebra S will be called a Galois
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H-object if S is a faithfully flat R-module and y: SQS——>SQ H defined
by r(x ® »)=(x ® 1) a(y) is an algebra isomorphism.

Remark 2.3. A commutative right H-comodule algebra is an H-
object in the sense of [4, p. 55].

Now let H be a finite Hopf algebra, and (S, «) a right H*-comodule
algebra. Then S has a left H-module structure which is defined by

)= 20y @ <h, x> (x€S, hEH)

where a(2)= 2 20y @ %ey in S @ H* (Sweedler’s notation), and <, >:
H & H* —> R denotes the duality pairing. Hence S is an H-module
algebra (cf. [4, p.56]). Conversely, if S is an H-module algebra, then
we obtain amap a: S—> S @ H* such that

als)=22 hi s @ kit (s€S, heH, h*e H*)

where {k;, %!} 5:s. is an R-projective coordinate system of H. Since S
is an H-module algebra, S is a right H*-comodule algebra with respect
to a. In the subsequent study, every right H*-comodule algebra (vesp. H-
module algebra) will be regarded as an H-module algebra (resp. right
H*-comodule algebra) in the above way.

Definition 2.4. Let H be be a finite Hopf algebra. A weak Galois
algebra S is called a Galois H-algebra if S is a Galois H*-object such
that S == H as H-module. (Needless to say, every Galois H-algebra is a
weak Galois algebra.)

Now let S be an H-module algebra, and F(S) = Hom, (Q* H, S),
where @* H is viewed as an H-module via i(x @ y)=4(r)x @ ) (&, z,
yE€H). Then F(S) is a ®*H-module via the formula

[ @ ko) f1(x ® 9)=Ff(xh, R k) (b, x, yEH, fFEF(S))
and we can define a mapping ¢ : S&® S——> F(S) by

[o(s @ 1)1(h, @ M) = h(s) hs(t) (h.€H, s, tES).

Lemma 2.5. Let H be a finite Hopf algebra, and S a faithfully flat
R-module. Then S is a Galots H*-object if and only ¢f S is an H-module
algebra such that the mapping ¢: SQ S—> F(S) defined above s a
Q*H-module isomorphism.

Proof. Assume that S is an H-module algebra. Let {h;, £} 1<:<: be
an R-projective coordinate system of H, and consider the following
diagram
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S® SLHOII’IH (®* H,S)
rl l ¢
0

where 7, ¢, ¢ are defined as follows

T(S ® t)':zt,.l‘ h( st ® hi* (S, tES)
() )=r1Q k) (fEHomg (R* H, S), hE H)
o(s @ r*YB)=h*(h)s (seS, k=H).

Then the diagram commutes and ¢ is an isomorphism. We define a map
¢': Hom, (H, S)—Hom; (®Y* H, S) by ¢'(g) (& Q b")=Zw hay (2 (hew)
#"), where 2 is the antipode of H (h, #'=H, g=Homy (H, S)). Since 4
is an algebra homomorphism, we have

P(g)x(h @ A))=2Zwm.w xawy by 84z k) Xy B')
=2 m Ty (&) hay g(A(hay) A7)
=2 ¥hey g(A(he) B)=2¢" (g) (B Q@ &")

(x=H), which means ¢' is in Homz (®* H, S). Moreover,
" (g)m)=¢'(2)1 @ h)=g(h)
and

GY AR R B =T by ¢(F) (Mhew) b)Y =Zn hoy F(1QA k) h')
=f (Z(h) h(x) ® hcz) 'l(hcs)) h')
=f(Xw hay @ e(h(ﬁ)) R=f(Q h')

(h, =H, g= Homy (H, S), f€eHomg (Q* H, S)). Hence ¢ is an iso-
morphism. The lemma is then easily seen.
Theorem 2.6. Let H be a finite Hopf algebra. Then a weak Galois
algebra S is a Galots H-algebra if and only if 0, 6,7 ((S)) is a unit in o.
Proof. By Prop. 1.5, we may assume that S=H(D(x)) with % in 9.

Assume that % is a unit in ©. Then by (1.2), » is a unit in . First,
we shall show that S possesses an identity element. We consider the
R-module homomorphisms p, p': (Q* H)®zH —> H defined by

ple ® b Q c)=¢e(a)be, p'la @b Q c)=e(b)ac.

Setting r=pa;’ and «'=p'a;’, we obtain the diagram
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1Q au
AHRH)=HQ A(H) HYHKRH
A (1) A
]_m 1 ®j/
(@) HOR /o ®
Afz u, 1 1
* ©) g @ | ©
PR®1
D O(H) =D A (H) >N\ (HQH)=AH)QH.

A(o)

Parts (1) and (2) of this diagram are commutative by the definition of «,
&' and a routine computation shows that part (3) is commutative. Since
A () and «, are isomorphisms, we obtain from Lemma 2. 1 that part
(4) of the above diagram commutes. Let % = 3, u;; & wy, and u'=
200 Qo Then(1Q® ")(1)=(" ®1)1), i.e,

1R 21 e(vn) va=2201 vy e(v) @ 1.
Therefore

2 E(ﬂu) S(USi)‘:‘Zi Vi S(Uzt)=2i E(vli) V3.
If we define € : H—> R by (k) =2, (k) v, (vx) (hE H), then we have

f E)(36') = D &y #1) € (Teoy 2)
=2 1.0 L (X e(o) 20 vy () e(va))) =1 ()
(xH). Inother words, ¢ is a right identity in S. By symmetry, € is
a left identity. Next, we show that S is an H-module algebra. Recalling
that 4 is an algebra homomorphism and a,A%(x) =4(x)x (x = H), we
then have

h(fg)(x)=(f2)a(R)x)=(f @ gaw AF(A(R)x)= 2y ((hcy [ Ay £))(x)
and
(re)(x)=2(a(R)x) =<(h) £(x)

where i, x €H, f, g=S. Thus S is an H-module algebra. Now we con-
sider the following diagram

S@S—‘p»Honrm(@2 H, S)
2.2) P l o
(HQ H* — (Q*HQ= H)*

a:( )
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where ¢ is as in Lemma 2.5, and

pP(FRg=(f®g 1)

0(z) (b, @ h. @ hs)=7(h, @ h:) [2(hs)].
A routine computation then shows that this diagram commutes, and p,
0, i are isomorphisms. Thus ¢ is an isomorphism. By the definition
of S, it is easy to see that S is a faithfully flat R-module, and Sis a
Galois H*-object by Lemma 2.5. Conversely, if H(D(«)) is a Galois H-
algebra, then the diagram (2. 2) commutes, and by Lemma 2.5, ¢ is an
isomorphism. Thus aX., s an isomorphism, that is, » is a unit, complet-
ing the proof,

Let A,(resp. C,) be the category of R-algebras (resp. the category of
R-coalgebras) whose objects are finitely generated projective R-modules.
Then the functor * : C,°*——>A, enables us to obtain the theory of Galois
H*-objects in C,. A Galois H-object in C, which is a Galois coalgebra
as well will be called a Galois H-coalgebra. Henceforth N, (H*) (resp.
Ne, (H)) denotes the set of isomorphism classes of Galois H-algebras

(resp. the set of isomorphism classes of Galois H-coalgebras). Then we
have the following

Proposition 2,7. (1) Let S be @ weak Galois H-algebra with an H-
module isomorphism 5 : S*—>H. Then (S) is in Na (H*) if and only if
D(S, 1) (1) és @ unit. (2) Let (H, D) be a Galois coalgebra. Then [(H, D)]
is in Nc, (H) if and only if D(1) is a unit.

Proof. (1) By Th.2.6, Sis a Galois H-algebra in A, if and only if
D(S, 7)(1)is a unit. Therefore, (S)is in N. (H*)if and only if D(S, %)
(1) is a unit. (2) To be easily seen D(H(D), 1)=D. Accordingly by Th.
2.6 and (1), H(D) is a Galois H-algebra if and only if D(1) is a unit.
Hence, (H, D) is a Galois H-object in C, if and only if D(1) is a unit.
Thus [(H, D)] isin Nc, (H) if and only if D(1) is a unit, completing the
proof.

Let Xa, (H*) (resp. X, (H)) be the set of isomorphism classes of
Galois H*-objects in A, (resp. the set of isomorphism classes of Galois H-
objects in C,). Patterning after the proof of [4, Proposition and Remarks
4.7], we can introduce an abelian group structure into X, (H*). Clearly,
N, (H*) (resp. Ne, (H)) is a subgroup of Xa, (H*) (resp. X, (H)), and
by the duality we have X., (H*)=X., (H). By Prop.2.7, N. (H*)(resp.
N, (H)) may be regarded as a subset of A(R, H) (resp. C(R, H)).
Moreover, we can easily see that Nc (H) (resp. Na (H*)) is a subgroup
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of C(R, H) (resp. A(R, H)). Therefore by Prop. 1.1 and Prop. 1.5, we
have the following

Theorem 2.8. If H is a finite, commutative, cocommutative Hopf
algebra such that H= H* as H-module, then

Harr-H*(R, H) = N. (H*) = N, (H).

3. Comparison with other cohomologies. In this section, we shall
assume that H is a commutative Hopf algebra and A is a commutative
right H-comodule algebra with the structure map a¢: A—AXH. In
[5], Y. Doi defined several cohomology groups of comodule algebras,
comodule coalgebras, etc. We recall here the definition of the cohomolo-
gy group of comodule algebras [5, §2].

Let F be an additive functor from the category of commutative R-
algebras to the category of abelian groups. We define algebra homomor-
phisms d;: AR (®" H) —> AR (R*** H) as follows :

dn(a ® k1 ®°'°® hn)=a(a) ® hl ®"'® hm
di(a ® h, ®"’® hn)=a ® hy ®'® Ry ® A(hi) ® ht+l®'"®hm
dn+l(a ® hx ®"'® hn)’:a ® hx ®'"® hn ® 1

(e€A, hheH; i=1,2, -, n). Then we have a cochain complex {F(4 ®

(®" H)), D"} .,z with coboundary D"=3 7% (—1) F(d,) and denote the

n-th cohomology group by Alg,- H*(A, H, F). Since R is a commutative

right H-comodule algebra via the inclusion R——>R @ H = H, we have
Algz-H*(R, H, U)=Harr-H*(R, H),

where U is the functor from the category of commutative algebras to

the category of abelian groups defined by ( )——U( ).

Let {F(®"**' A), E } be the Amitsur complex of A with coboundary
E*: F(®"*' A) —> F(®"*' A) defined by E"=X211 (—1)* F(e,), where
e;: @' A—> ®™*?* A is defined by ¢z R QR @ri)=@, @R ez, R 1
® g1 Q) @,.1. Since A is a right H-comodule algebra, we have an
algebra homomorphism Q": @**'4A—A4 Q (Q" H) which is given by

-Q'”(‘Z; Q- Bne1) =23 B, Boy B30 *** B0y Q B2y Bty *** Gy

@@ Gun-1 Bnvicn-n & Ensrcnn
where a(@)=w @y @ @w in A @ H, and inductively

2awn @ aay @ Q uy=(a®1 QR 1) (X 2w Rt Q-+ & &n-»)
(Sweedler’s notation) [5, 3.5]. Then we have the following

Theorem 3.1. Let A be a Galois H-object. Then Q" induces an
isomorphism of complexes



ON GENERALIZED HARRISON COHOMOLOGY AND GALOIS OBJECT 147

Q: (F(@"" A), EYaze—> {F(AR (®" H)), DY 1.
Especially, H'(A/R, F)= Algz-H" (A, H, F).

Proof. By [5, §4, Prop. ], Qis a morphism of these complexes.
Since7: AQA—AR H (r{(a® b)=(¢Q 1)a(b)) is an algebra isomor-
phism, we can easily see that =G X 1 QR 1DNAIRrR1 R R1)
(1Q®1Q - @ 7y). This implies Q is an isomorphism.

By the last theorem and [2, Th. 7.6],

Corollary 3.2. Let A be a Galois H-object which is a finitely gener-
ated projective R-module. Then there exists an exact sequence

0—>Alge-H'(A, H, U)—>P(R)—>P(A)—>Alge-H*(A, H, U)
—>B(A/R)—>Alg.HY(A, H, P)—>Alg.-H’ (A, H, U),

where P( ) is the Picard group of ( ) and B(A/R) is the Brauer group
of Azumaya R-algebras split by A.
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Added in proof. Recently, the auther has found that the result
of Corollary 3.2 was obtained by K. Yokogawa in a different point of

view in Appendix of his paper: On S & zS-module structures of S/R-
Azumaya algebras, to appear.



