ON RIEMANNIAN MANIFOLDS OF NON-POSITIVE
SECTIONAL CURVATURE ADMITTING A
KILLING VECTOR FIELD

RYOsUKE ICHIDA

Let M be an n-dimensional connected and complete Riemannian
manifold of non-positive sectional curvature. Let X be a Killing vector
field on M and ¢, tER, the l-parameter subgroup of isometries gener-
ated by X. In this note, supposing that the length of X is bounded,
we shall study some properties of M.

1. Killing vector field with bounded length. We consider the
function f=%<X, X> on M. Let y=M, be a tangent vector at p=M

and 7 the geodesic with initial velocity y. Since X is a Jacobi field
along ¥ and M is of non-positive sectional curvature, we have

(1) 4 £ TO =X (R (5, X)X, 3> 20.

Proposition 1. Let M be an n-dimensional connected and complete
Riemanntan manifold of non-positive sectional curvature. Let X be a
Killing vector field on M. If the length of X is bounded, then X is a
parallel vector field on M. In particular, the orbit {¢.(p); t=R} is a
geodesic for each point p=M.

Proof. Since the length of X is tounded, by (1) we see that f
must be constant. Thus, by (1) we have v,X=0 for any point pM
and any tangent vector y=M,. Hence, X is parallel.

Remark 1. In Proposition 1 we have (R(Y, X)X, Y>=0 for any
tangent vector to M. If dim M=2, then M is flat.

In the following sections, we assume that M is always an n-dimen-
sional connected and complete Riemannian manifold of non-positive
sectional curvature admitting a Killing vector field X with bounded
length.

By Proposition 1 we may assume that X is unit.

2. An isometric immersion of the euclidean two-plane.

Proposition 2. For any plane section o at pEM such that X,Eoeo,
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the euclidean plane E® can be isometrically immersed in M so that its
image is tangent to 6 af p.

Proof. Let p be a given point of M and z: R—> M a geodesic
such that z(0)=p, <{z(0), X>=0, and ||#(s)]|=1. We define a map-
ping g: E*—>M by g(s,8)=¢.(z(s)). We set Y=0g/ds. Clearly
X=0g/0t. Then, we have VyY=0, because ¢, is isometric. Clearly
VxX=0. Since V;X=0 and 7, X=T,Y, where T, is the shape oper-
ator of W=g(E®) in M, we see that W is totally geodesic. By Remark 1
and the equation of Gauss, W is flat.

Corollary 1. If M is compact and the orbit {¢.(p);tER} is not
periodic for any point p of M, then the euclidean cylinder S*X R can be
isometrically immersed in M.

Proof. Since M is compact, there exists a closed geodesic
p:S8'—>M. Then, we see that the mapping %:S'XR—> M defined
by k(s,£)=g¢.(p(s)) is an isometric immersion.

3. Decomposition of M. We set D,={YeM,; <Y, X,>=0}.
Since X is parallel, we can easily prove the following

Lemma 1. The (n—1)-dimensional distribution D: p—>D, is com-
pletely integrable.

We denote by S(p) the (n—1)dimensional maximal connected
integral submanifold of D containing a point p of M. Since X is
parallel, we have the following

Lemma 2. S(p) is a totally geodesic hypersurface of M for each
point p of M.

By Lemma 2, M is locally isometric to S(p) X R in a neightourhood
of p=M.

Theorem 1. If M is non-compact and S(p,) ts compact for some
point p, of M, then M is isometric to S(p,) X R.

To prove Theorem 1, we shall prepare some lemmas. Since M is
non-compact and S(p,) is compact, we can take a minimal divergent
geodesic ray 7: [0, o) —>M such that 7(0)=p'€S(p,), 7(0)=¢c¢X,,
e==+1, and [|[7(#)l|=1. Then 7(¢)=¢(p"), t=[0, =), because the
orbit {¢.(p');¢=R} is geodesic. We may assume therefore that 7 (¢)
=.(#), €0, o).

Lemma 3. The orbit {p.(p'); t=R} is a minimal geodesic line.
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Proof. For ¢, t,=R such that ¢ <0, £,<<t,, let p be a shortest
geodesic segment from ¢. (p") to ¢, (p'). Since ¢, is isometric,
@i © p is a shortest geodesic segment from p' to @i+, (p"). Then
g PC e (p); tE[0, )}, because {¢.(p"); ¢t E[0, )} is a minimal
geodesic ray. Thus pC {¢.(p"); tER]}.

Lemma 4. ¢.(q)€ES(p,) holds for each point ¢ES (p,) and t<(0, ).

Proof. Suppose ¢.(g)=S(p,) for some point ¢ES(p,) and some
#>0. Since S(p,) is maximal, ¢.(S(p,))=S(p,), and so is ¢.(p")E
S(p,). This is contradictory to Lemma 3.

From Lemma 4 the following is immediate.

Lemma 5. ¢.(gq) & S(p,) holds for each point qES(p,) and s=
(_— OO' 0)'

Proof of Theorem 1. Since S(p,) is compact, there exists a per-
pendicular from each point of M to S(p,). It is contained in some orbit
{e.(p);t=R}, p=S(p,). Thus, by Lemmas 4 and 5, we see that the
orbit {¢.(p);¢ER} is a minimal geodesic line for each point p of S(p,).
Therefore, we can define an isometry @:S(p,)XR—>M by @(p, )=
¢.(p). This completes the proof of Theorem 1.

In the above theorem, since S(p,) is compact and totally geodesic,
there exists a closed geodesic 7:S'—>S(p,) which is also a closed
geodesic of M. Hence, we have the following

Corollary 2. The euclidean cylinder S'XR can be isometrically
imbedded in M.

Theorem 2. If the orbit I'={¢.(p,); tER} is periodic and I' NS(p,)
={p,} Sfor some point p, of M, then M is the bundle space of a fibre
bundle whose base space is S* and fibre S(p,).

Proof. Let ¢, be the minimal period of I'. We set ¢.(S5(p,))=S.,
0=t<t,. Let ¢ be a point of M\I" and + a perpendicular from ¢ to
I'. Then =S, for some ¢<[0,£,), and clearly ¢=S,. Since each S,
is maximal and I"'NS,={p,}, we see that S, NS, =@, ¢t,7#.€[0, £,).
Thus, we have
(2) M= U S, SiNS,=@ for t,+#¢t.€0, ).

IJS£<l0
Suppose ¢=S,. Then we can express a coordinate neighbourhood of ¢

in M as UsX(¢—e¢, ¢t+¢), where Us is a coordinate neighkourhood of g
in S, and 0<<e<<(¢,/2. Then the projection #: M—> S'=R/#,Z can be
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defined by n(g¢')=#, ¢'ES,, t'S(t—e,t+¢). = is a Riemannian submer-
sion and by (2) 7 '(#)=S.. The mapping ¢,: (t—¢, t+e)XS(p,)—>
7~} (¢—e, t+¢) defined by ¢, (¢ P)=¢uqv(p), kEZ, is an isometry. If
we fix ¢/, then ¢;' o ¢; is an isometry of S(p,). Now we set P=g,.
Then, @ is an isometry of S(p,) and @(p,)=p,. Let G={¢*}, k=Z,
@°=id., be the discrete group generated by #. Then G is an effective
topological group acting on S(p,). Therefore, we see that M is the
bundle space of a fibre bundle whose base space is S', fibre S(p,), and
structure group is G.

Corollary 3. =, (M)/7,(S(p,))=Z.

Corollary 4. If ¢, (p)=p for any point p of S(p,), then M is
isometric to S(p,) X S'.

Remark 2. If M is compact, S(p) is compact for any point p of M.

Remark 3. If dim M=2, then ¢(g)=¢q or #*(g)=g for any point
g of S(p,).
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