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Introduction. This paper is a natural sequel to our previous paper
[3]. The notation and terminology employed there will be used here.

In his paper [4], Y. Miyashita developed a commutor theory of a
Frobenius extension. Successively we study a commutor theory of a
Quasi-Frobenius (QF) extension in this paper.

QOur main result of the present paper is the following :

Theorem A (cf. [4, Th. 2.10]). Let A/B be a ring extension, M
a right A-module such that M QzA.| M,, that is, M QzA is A-isomor-
phic to an A-direct summand of a finite direct sum of copies of A, A'=
End (M.,), the A-endomorphism ring of M, and B'=End (Mz). If A/Bis
a QF extension, then the following statements hold.

1) B'/A’ is a QF extension.

2) B Q@ +MlpgM.

3) A/ Bis a QF extension such that A=A Q,B=B ®A canonical-
ly. Here A and B denote respectively the double centralizers of M as
A and B-modules.

As a consequence of the above theorem, we can obtain the following
in §2.

Theorem B (cf. [4,Th. 2.6]). Let A be a ring, B a subring of A
and T an intermediate subving of A/B. If T isa QF extension of B
such that T @ zA.|rAs then B, the centralizer of B in A, isa QF
extension of T', the centralizer of T in A, suchthat .,AQ B’y |iAp,
and moreover, T'", the double centralizer of T in A, is a QF extension
of B" suchthat T"=T Q zB"=B" @ sT canonically.

Also a direct proof of Morita[6, Ths. 1.1 and 1. 3] is given in §1.

1. Throughout this note, we shall denote by End(Xz) the R-endomo-
rphism ring of a right R-module X and consider End(Xz) as a left opera-
tor domain of X. Similarly, for a left R-module Y, we shall consider
[End(zY)]°, the opposite ring of End(;Y), as a right operator domain
of Y. Further if X is a left R-right S-bimodule, we shall say X a
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R-S-module simply.

Let ¢:B — A be a ring homomorphism.  "Every A-module may
be regarded as a B-module via ¢. Espec1ally Hom (A, Bj) has a B-A-
module structure in a natural way :

&-Fx)=b-f(x), (f-a)(x)=r(ax) (e, xE A, bEB, fEHom (As, Bs)).
Similarly Hom(,A4, ;B) may beregarded as an A-B-module.

Let X be an A-A-module and Y an A-A"-module. If A is finitely
generated (f. g., briefly) and projective as a left B-module, then a map-
ping

(1) X Q® 3A — Hom(Hom(zA, :B)s, X5), 2z ® a ' —> (f —> zf(a))

is an A’-A-isomorphism whose inverse is given by Fi1— 33 F(f)Qa;,
where (f, a)isise is a dual basis for A, that is, f; € Hom (34, 3B),
a € A(f =1, ---,¢) such that 33, fi(@) - a. = @ for all a = A. Also, a
mapping

(2) Hom(zA, ;B) ® ,Y — Hom(z4, 5Y), g @ y'-—> (a'—> g(a)y)

is an A-A"-isomorphism whose inverse is given by # —> 3, £; @ # (a.).
Similarly if A isf. g. projective as a right B-module, then a mapping

(3) AQ® Y — Hom(;Hom(A;, Bj), 5Y), a @ y1—> (fi—> f(a)y)

is an A-A"-isomorphism whose inverse is given by Gi—> Y., d, @ G(g,)
and a mapping

(4) X @ sHom(As Bs) —> Hom(As Xi5), 2 Q f —> (a1 —> xf(a))

is an A'-A-isomorphism whose inverse is given by v — X, v(d,) ® g,,
where (g;, d,) 15;5: (g, € Hom(Aj B;), d;E A) is a dual basis for A,.

Now a ring extension [A/B, ¢], namely, a ring homomorphism
¢: B —> A, is called a Frobenius extension if A is f.g. projective as
a right B-module and isomorphic to Hom(As; Bj;) as a B-A-module (cf.
Kasch [2]). If [A/B, ¢] is a Frobenius extension then there exist a
B-B-homomorphism %2 of A to B and a finite number of elements 7;,
l;in A(=1,--, n) such that

(5) a = 2 rihll:a) = 2 hlar) i (@ € A),

and conversely (cf. Onodera [8]). When this is the case, we shall call
such (%; 7, l)isis» a Frobenius system for [A/B, ¢].
Next a ring extension [A/B, ¢] is called a right QF extension if

1) By a ring homomorphism, we shall mean one which sends an identity element to an identity
element,
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A is f.g. projective as a right B-module and isomorphic to a direct
summand of a finite direct sum of copies of Hom(A B;) as a B-A-module
(cf. Miiller [7]). A left QF extension is defined symmetrically, and a
QF extension is defined as an extension which is right QF as well as
left QF.

If A, is f. g projective then {from (3), we have an A4-A-isomorphism

(6) AR,A—> Hom (;Hom (Az Bj), Az), x Q@ y —> (f—> f(x)y)’

and under this isomorphism, Hom(;Hom (As Bz). sA.) is corresponding
to the set (A &® pA)* of casimir elements in A Qs A. Here an element
7 € A® A is said to be casimir if @ = i'a for all a= A. Thus [4/B,
¢] is right QF if and only if A; is f. g. projective and there exist a
finite number of B-B-homomorphisms a; of A to B and casimir elements
SRy, € AQ A (E =1, -, p) such that

(7) 2 ey (axy) y; = a (a € A).

Such (a;; X5 %1y @ yihsis» is called a right QF system for [A/B, ¢].
Similarly a left QF system for [A/B, ¢] is defined as a system (3.; 2.
Wi Q 2u) 1sxsp, Where each 3, is a B-B-homomorphism of A to B and
each X, w, @ 2z, is a casimir element in 4 ® zA such that

(8) 2k 2 Wi ﬁk (zkl a) =a (a e A).

Needless to say, a ring extension is QF if and only if it has a right QF
system and a left QF system.

Let M be a right A-module, and set A’ = End (M,), B'= End (M),
A = [End(,M))° and B= [End (zM)]°. Then M may be considered
as a B'-A-module, and further an inclusion mapping ¢': A’ —> B’ and
ring homomorphisms p,: A —> A and ps: B—> B defined by m p.la)
= ma and m px(d) =mb(m EM, a < A, b € B) respectevely are in-
duced. Moreover ¢': A'—> B’ induces a ring homomorphism ;5 :B—A4
in a natural way. The meaning of the above notations will be retained
throughout this section.

Let us now assume that M satisfies the following condition :

(9) MR A, | M,.

First suppose that [A/B, ¢] is a Frobenius extension with a Fro-
benius system (%; 7, l;). Then, by Miyashita [4, Prop. 2.3], (9)is
equivalent to the existence of f,, g, B'(j =1, ---,£) such that
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(10) 2 g5 (ff(m) @) = mh(a) (e A me M)
So, let f, g, B'(j =1, -, ¢) be as above and define an A’-A’-homomo-
rphism Tr: B'—> A’ by
11) [Tr (B)]0m) = 2 (b'(mr) I; for ¥ € B!, m € M.
Then we have
(12) g Tr(fp) =¥ (' € B).
Indeed, operating the left hand to m € M, we have by (5) and (10)

2 8 (i fy @' Gmr)) 1) = 24 b (mr (L) = b'(m).

Similarly we have
(13) Sy Trb'g)-fi=10 ®' € B.

Thus we have seen (T7; g, f)is;s: @ Frobenius system for [B'/A', ¢'].
Furthermore, (11) implies B’ @ ~M|zM. Therefore, applying the
above argument to the left module M over the Frobenius extension
[B'/A', ¢'] with the Frobenius system (T7; g, fj)», we have by (11)

that (;{ s pAlr), pal)). is a Frobenius system for [A/B, ;], where h €
Hom(;A3 3Bj) is defined by

mh(a) = 3 g(f(m) @) for ac A,meM (cf. (11)).

Then, (10) shows k(p.(a)) = ps(h(a)) for a E A.

It follows that a canonical mapping B (%4) 371 —> Z, PQ a—> Za, is
an isomorphism whose inverse is given by A a— X h(ap. ) Q1L
e B® zA. Similarly a canonical mapping 4 & 2B —> A defined by
a ® b1—> agb is an isomorphism.

Next suppose that [A/B, ¢] is a QF extension having a right QF
system (a:; 3 %y @ Yuhsis» and a left QF system (3; 2 wu @
Zuhskse Then (xy -+« ¥i)s and (e zu, ww)e: are dual bases for
sA and A, by (7) and (8) respectively. By (9), there exist u,: M &5
A, —> M, and v,: M, — M QzA. (n =1, -+, ¥) such that

(14) 200 4y = Idigpn
Define U, € B' and V, €Hom(.B', +A") by

(15) U, (m) = u.(m @ 1) for m e M; Up=u,+ ¢
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(16) V.gh == Q Id,) - v, for ¥ € B,
where ¢ and =7 denote respectively the mappings given by
(M —>MQ@:A4, (mM)=mQQ1,
T M@ A — M, a(m @ a) = ma.

It is then easy to see that (V,, U,). is a dual basis for ,.B'. Similarly
let us define ¢, € B’ and ci, € Hom(B',,, A'y) by

(17) Ceon =17 ° (Id.v ® ﬂk) *Un
(18) [C:n(b,)] (m) = un(Zl b’ (mwkl) ® zkl) (b’ e B’: m € M)s

where 7: M Q® sB— M, 7(m @ b) = mb.

Since [Zk,n Cen * Cim (b')] (m) =35 {r- (Id,v ® fgk)} {(Zn Vo v W) (ZL
b (mw;a) ® zkl)} =p (m Zk.l Wi ﬁk(zu))zb'(m), (C,?,,., Cg,,,)k,n is a dual basis
for B’,. Further let us define B'-A-homomorphisms

wi M M® BA —_—> Hom(AE, Ms), I HOm(AB, MB) _— M®BA

by
(19) (@, (m @ a)] (x) = ma, (ax) for mE M, a, x € A,
(20) r{g) =2, gxy) ® 5 for g € Hom(As Ms)

and mappings
W: H B, —_> Hom(B'A’, A,A/), Q; M Hom (B"l, A,Al) —_— B'
by

21) (f(m) =2, [f(r- (Idy @ ) * vn)] (0 (m @ 1))
for f' = Hom(B',, A's), mE M,

(22) L@ (5] (m) = 25; (' b) (mxy)) ¥y for ¥, b, E B, m € M.
Then it is easy to see
(23) 20O ¥y = Idg.

Obviously, every 9; is a left A-homomorphism. Moreover we shall
claim that for any # € Hom (345 5Bs), 20 (¥ + (Idx Q@ £) » v,) Q (4 * ¢)
is casimir in B’ ® B’ In fact, noting (V,, U,). to be a dual basis
for +B' and an isomorphism B' @ +B'2 x' @ y'—> (g'—> ' g'(3"))
e Hom (Hom(, B', +A")., B's), we have the conclusion if we show the
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following equation for all 3' € B' and all #’:

En (T ¢ (IdM® h) ¢ vn) * Vn’v (un b bl)
2211 /0 (T ¢ (Idj{® k) * Un) ° Vn’ (un . ‘)-
However this equation can be verified directly. Especially >, (7 -
(Idy @ @) * v.) ® (., + ) is casimirin B’ ® , B’, which implies @; a
right B'-homomorphism, and so, it is an A’-Bhomomorphism. On the
otherhand, #7 is obviously an A'-B“homomorphism. Accordingly we
have . B'p |, Hom(B's, A's)s by (23). Therefore, recalling (¢,
Cn)in tO be a dual basis for B',., if we set for each 4,k

o = 7 (1),
di = @, (ck.a),

then we can see that

(24) (a5 Zhn €an @ Al )isess

is a right QF system for [B'/A’, ¢'] (see (3)). We have further

(25) a; (0" (m) = 25, (0! (mxyy)) 3,y

(26) d@(m) = u. (m @ 21 e (wu)2w) (o' = B!, m € M).

In fact, (25) is obvious by (22), and further the left hand of (26) is equal
to T [efn (7 (dy @ @) - va)] (s (m @ 1))

= Up (Zl (r * (Id’d ® ai)) ((Zn' [ un’) (m ® wkl)) ® zkl) (by (18))

= Up (m ® Zl o; (wkl) zkl) (bY (14))

This shows (26).
Similarly we shall define B’-A-homomorphisms

¢, + Hom(Az, My) — M Q;A, Fre - M @zA —> Hom(4,, M)

by

(19), [or i @ a)] (x)=mp, (ax) fora, x = A, mE M,
(20)1 Py (g) =24 g(wu) ® 2y for g e Hom (Am MB) .
Then Z)‘ gﬁ;‘ . ¢'k = Id .

Further if mappings
¢r: Hom(B',,, A’y — B/, ¢.: B' —> Hom(B',,, A's)
are defined by

2) Here 1z denotes the identity element of a ring B'.
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@1), ¢ (M=%, - (Idu® &)+ v.) + (1, - ¢) for f' € Hom(B',,, A',)
(22), [¢x (&) (B)] (m) = /(" - by) (mww)) zu for b', b < B, m M,
then ¢x and ¢, are A'-B'-homomorphisms such that

(23), 2 e o = Id.

Indeed, the last equation can be seen as follows :

Lk &5 - @) (c*er )} (8] (m)

= 2t Lpx (c3ar) + '] (nuwy) - zo (by (22),)

= 2ktn Lo (F - (Idu @ ) - )] (s (b'(mwe) @ 1)) * 2u (by (21),)

= 2t U [0 7+ Idy @ B) + 02) (u (B () @ 1) wer) @ zen] * 2
(by (18))

= Dty tw [0 (mws) « B (i) @ 20] + 2 (by (14))

=2 tp (b (m Lo Wt fr (2uwer)) @ 20

= s (20 b (mwer) Q z4y) = [e&.nr(8)] (m),

where the fifth equation is followed from the fact that 3 ww ® zuw €

A QsA is casimir. Since {c}. ). is a generating set for the left

A'module Hom(B',, A'y), the above equation yields (23)..
Now let us consider the following sequence

a' i
B, _’:) HOH](,;IHOD’](BIAI, A',;l), A’ A') «— Hom (,4' B', AIAI),
. 90:
where ¢ =Hom(gs, Id,), ¢i=Hom (¢;, Id,) and ¢ denotes a canoni-
cal isomorphism. Since (V,, U,). is a dual basis for «~B!, if we set
B = (g1 - ") (1)
T® = [ 99*) (V,.),

(24), (Br; Za TP Q@ Un)isesa

is then a left QF system for B'/A’(see (1)). Further we have

(25), (8 (0] (m) = 2 (b (mwn)) 2u ('e B, me M),
(26), T =7+ (Idu ® 30) - vn (=cn).

In fact, (25), is obvious and (26), can be seen as follows: It is enough
to show that
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Hom (g1, Ide) (Vo) =o' (r - (Idu @ ﬂ_k) * Vn).
Since [{Hom (¢:, Id.) (V.)} (e )] (m)

= [« (g (c&,n) @ Id.) * v.] (m) (by (16))
=35 [ee (ctn)] (m,) « ar (0a(m) = m, @ @, in M Q 5A4)
= tpr (e r Q Bi (W) 21) * @, (by (18) and (21),)

= Unr (Zr.l’ m, B (arww') Q 2zxr)
= [ctn (- (Idx Q@ i) * va)] (m)

(where the fourth equation is followed from the casimirness of % wer
® 2z € AQ 3A) the fact that {c¥ . }.. is a generating set of
+Hom(B',, A')) yields the desired equation.

Let us consider the following :

AR Idy
B'® +M=— Hom(M,, Hom(A4; M;),) ® .M

= Hom(A; M;)
Hom(z?}u, Idy)

ul
3 > Hom (BB: MB) - M)
Hom(ﬂk‘ il Idﬂ)

where 4, v and v, are canonical isomorphisms, and for each ¢ € A,
@ denotes a mapping B —> A given by a(b) = ab.
Setting

(28) Sea =y, - Hom(a)kb Idy) « v - (Z ® Idzl) :BQ.M—M

(29) ge: =7 Q Idy) + v - Hom(B, + 2uy Idy) + v, : M —> B'Q M,
Jrp and gx, are left B’-homomorphisms such that

(14" 2kt &ea fea=1d; B’ ®A’Ml =B,
(30) Fii (U @ m) = b (mwy) (b' € B, m € M),
(31) 8kt (m) = Zk’.l’.n(T ° (Idx ® ﬂb’) . vn) X un(m X ﬁl". (zkzwk'z') zw')

From now on, we shall denote p, and p; by p simply. Corres-
ponding to U, T{® € B, let usdefine U, T € End (,,M) by

(15" U, (m) =fii 1 Q® m) for m e M,
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(26") TE=7"(: ® Idu) * gr,

where 7': A'Q.M — M is the canonical isomorphism. Then we have
(32) [Ue.:1° = pwi)

(33) [T = p (s Be (2 %) yu)-

In fact, (32) is obvious by (30), and (33) can be seen as follows :
(Tlgﬂl) (m) = D v T (Idx ® ng') * U,) (un (m X B (zu wk’l') zk’l’) xij)] Yy

= Y11 M B (Bl2a Wir) 2 %43)is
= Zj mi?k (Zkz Zk’,t’ Wy lgk’ (Zx'zf -’131'1)) Yis
=m 2 fe (20 %)y, (by (8)),

which shows (33). Further using (8), (32) and (33), we have
2 [T @ [T = 2 play) @ ply4) (€ A® EA)-

Similarly, corresponding to d{°, € B', let us define d%?, € End (M)
by

[afi (m)] = fea((Znn Copnfli (dE200)) @ m) for me M (cf. (26)).

Then a calculation using (17), (26), (25), and (30) shows that the right
hand of the atove equation is equal to m>X ww Wi a(2), and so,

(35) [dfkr;)l:ln = P(ZV Wiy Wy O (zlc’l’))-
Accordingly’ Dk [d:g.k"gl]o (0% [Tﬁ ° = ZI'P (wlc'l’) ® P (zk'l’) (EE® EAV)-

Therefore, applying the above argument that leads a left QF and a
right QF systems for A/B to those for B'/A’ to the left modules M
over the QF extension B'/A' with the left QF system (24), and the
right QF system (24), we know that

(24%) (&i 3 25 p(xy) @ p(3))):
is a right QF system and
(24%), (ﬁx s 2up (wxz) X P(zkl))k

is a left QF system for A/B, where a, 7. € Hom(; 43, 5B3) are
defined

by ma(@) = Tin Coaldu(m)a)
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mpa) = T, T® (U, (m)a) (@4, me M)

To be easily seen, we have

(36) o (p(@) = p (., (a)), B (0 (@) = p (3 (a)) (a € A).
It follows therefore that mappings A ® B — A, a ® b'—> ab, and
A—>AQ®.B a—> St wu @ B (2w @), are mutually inverse iso-
morphisms. The same holds for mappings BR 4 — A4, b @ a—>

'Ea, and A — B X =4, a—> 21 a (;xu) ®;if~
Summarizing the above, we obtain the following:

Theorem 1.1 (cf. (4, Th. 2.10]). Suppose that [A/B, ¢] is a
QF (resp. Frobenius) extension and M is a right A-module with M ®
@ sAs| Ma  Then there holds the following :

1) [B'/A', ¢l isa QF (resp. Frobenius) extension.

2) »B'Q@ +M|asM.

3) [A4/B, ;] is @ QF (resp. Frobenius) extension such that A=
AR®:B=B &®sA canonically.

Proposition 1.2. Suppose that [A|B, ¢] is a QF extension. Then
the following statements hold.

1) If A/Bis H-separable (i. e., +,A Q pAa| 1AL then By | A 4.
Furthermore assume M @ pA.| M.,

2) If A/B is separable (i.e., +A.| 1A Q 5AL), then +A'y | 4By

3) If pAz|sBs then B'/A' is H-separable.

4) If sBy| Az then B'|A’ is separable.

Proof. Let(a:: X 2, @ yu) and (3 : 20 wu @ 2u): be respctive
right QF and left QF systems for A/B. 1): Since A/B is H-sep-
arable, there exist f,: ,A Q A, —> 4As and g, JAs — A Q4.
(n=1, +, n,) such that >g,-f, = Id. Let us consider a sequence
of B'-A-modules

7 fi=1du R f, 7
MR A MQ.AQ A M A—=M

&n = Idu Qgn

where 7, and 7, are both the canonical isomorphisms.

Setting Uy = Tz ‘ 7;; . T], Un = Tl_l . éﬂ ¢ T;1
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then dwncu, = 1d.

Therefore we can use Theorem 1.1 and its proof in any case. So, we
shall employ the notations as before throughout the proof. First a right
QF system (24) yields

20 2en (a’i(b Crk, n)) m = (b' e B')-

However, to be easily verified, c¢., and d{°. are contained in the
centralizer V;(A') of A' in B' at the present case. It follows that
«B's| #+A's.  Furthermore assume M @zA,| M, Hence B'/A'is QF
by Theorem 1.1. 2): Suppose .A,|A @zA, Thus

AIMA = A'M®4AA [ A'M ®4A ®BAA = A'M ®BAA ~ 4 HOIn(AB, MB)A;
which yields ,Hom(M,, M,). |.Hom(M, Hom(Az; M;z).).
= ,Hom(Mj, M)y

This shows 2). 3): Let us assume zAz|zBs Thus there exist 6, €
Hom(A; 5Bs) and @, € V(B) (r =1, -+, s) such that a9, (@) =a for
all a € A. Replacing fi. and g, in the proof of Theorem 1. 1 respec-
tively by

fr =V Hom(/&r; IdM) r Y. (X ® IdM)

g'r = (}‘—1 ® IdM) 1 Hom (37’) Idu) yl »
we have B’ @ My| Mz (see (27)). This yields pB' @ B's, ~
pHom (B’A’r B,A’) = p.Hom (B’ ®A'M81 MB)B’ IB’Hom(MB; MB)B’ = pB'y,

which shows 3). 4): Finally suppose zBz|zAs. Then there exist f, €
Hom(zAs, 5Bs) and a, € V,(B) (r =1, ---, ¢) such that 3 f, (a,) = 1.

Setting ¢ = Xjr Gxy [, r(yu)

then GEVAB), Ziaile)=1

Thus a mapping  p.,,: M —> M defined by p,, (m) = mc, is in Va(4"),
and so, P Zk.n Ci,n, (Pci m) =1z (See (36))°

On the other hand, every . c:.Q d¥ is casimir in B' @B’ and
hence so is 3, Xin Crn @ po, » d%.. It follows that B’/ A’ is separable.
Thus our proof is complete.

Proposition 1.3. Assume that [A/B, ¢] is right QF (resp. left
QF, Frobenius) and M., is a generator. Then [A(= A)/B, ;5] is right
QF (resp. left QF, Frobenius), and moreover right QF (resp. left QF,
Frobenius) system for [A|B, ¢] gives a right QF (resp. left QF, Fro-
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benius) system for [A/B, ;] naturally.

Proof. First we shall show that any f € Hom(A4s B;) is contained
in Hom(A3z, B) (note that M, is a generator). Infact, mf(u(m)b) =
A s few) (m! 3) = m(flum)) b (m, meM, b€ B, u<Hom (M, AL))
means the conclusion, where 4, denotes a mapping A —> M given
by An(@)=ma. Let (a:; 3, x;Q®:;): be a right QF system for A/B. The
mention just above shows that every «; is in Hom(A3, B;) and A; | B;.
We claim further every «; is contained in Hom(; A, ;,E). To see this,
let x€ A, be B and f = Hom(A,, Bg) be arbitrary elements. Then
f (a,-(‘i;x) — Ba(x)) = F(1) a:(bx) — FB) (%)) = a:(f Q)b —fF(B)x) =0, which

implies «; (bx) — b, (x) = 0 as desired, since A, torsionless. On the
other hand, every casimir element in A ® A is mapped canonically
into a casimir element in A @Q 5A. Therefore we have shown the
proposition for a right QF extension.

Next let (3, ; X wu @ zu): be a left QF system for A/B. By the

mention at the begining of the proof, every J. is in Hom(43, E;,).
Further we can regard as Hom(zA4, 5B) C Hom(34, ETI); [(g('lvyx) —_
bg () 8] (9) = Pulrg(x)) — AurBa(®) = g (B(9)B%) — g(B. (8) 2) = 0
(g € Hom(o4, 1B), 5, y € A) = (g(ba) — bg(x))) A = 0 => g(b2) ~bg(x)
= (0 asdesired. In particular, 3. € Hom(343 5B3) and 3A|3B. It

follows that the proposition for a left QF extension has be shown. The
case of Frobenius extesion is now obvious. Thus our proof is complete.

Let B, be the subring of B generated as a ring by the identity
element of B and by all the elements of the formf(a) (e € A, f&€
Hom(Ap, B;)), B the double centraizer of A; (i. e, B= [End(zoa apA)1°),
and T an arbitrary intermediate subring of B/¢ (B,). Then the proof
of the above proposition (taking A, as M,) shows the following assertion
obtained in Morita [6, Ths 1.1 and 1. 3].

Proposition 1.4. Under the same notations as above, if A[B is
right QF (resp. left QF, Frobenius) then sois AJT.

2. In this section, B denotes a subringof aring A4, ¢: B— A
the inclusion mapping, 7 an intermediate subring of A/B and Z the
ring of intergers. Moreover, for a subset S of A4, S’ denotes the centra-
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lizer of S in A.
Under the akbove notations, we shall prove the following as an
application of Theorem 1. 1.

Theorem 2.1 (cf. [4, Th. 2.6]). If A/B is a QF extension with ;T Q
RpAs| rAs then B'|T' is a QF extension with A Q By | 1Ay, and
moreover T" (= (T")")/B" is a QF extension such that

T ® BBII —_— TII’ t ® bll l— tbll
and
BI! ® BT —_— TII’ bll ® t |— b"t

are isomorphisms.

Before going to prove the theorem, we note some facts. For a T-A-
module X, we can give X a left T §QzA>module structure in a natural
way: ( Q a’) - x=txa(acs A, tT, x=X). Conversely if X is a left
T @ Amodule then X has a 7-A-module structure. Hence the T &,
A°-endomorphism ring of left T ®,A>module A can be identified with
the centralizer 7' of 7 in A naturally. The following lemma can be
easily verified.

Lemma 2.2. 1) TQ ;A=(TQ A°) Q 5.4 A° as left TR A>modules
by the correspondence t Q a ——t Q 1°Q a, where the unspecified
tensor products of the right hand are taken over Z.

2) For each element 3t Qa, €E(TQR A ' ={reT Qs Altr =yt
for all t € T}, a mapping

(X6 Qa): B—T, [t Qa)ll) =3 tba
is a left T'-homomorphism.

Lemma 2.3. 1) ;T ®sAL|rA is equivalent to the existence of a finite
number of elements b, € B' and 3. twn Q @Gun E (T Q 34) (m =1, -,
m,) such that

(37) Zm Zn ton ® Qmn b,n =1 ® 1 (E T ® BA)-
2) Assume ;T Q sAi|rAs and let (b} 2w tnn Q Gmu)m be as above

1). Then there holds the following :

1) 2n fGtnn) Gunt b = F(tt) & t, €T, f = Hom(T5 Ts)).
ii) #B' is f.g. projective with a dual basis (3m, bun)m, where 7,

=7 (Entmn ® amn) (m=1' B m°)'
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Proof. 1) and 2-i) can be verified easily. Let 5 =B' be an
arbitrary element. A mapping 2,: A —> A defined by 2, () = b'a .
is a left B-homomorphism obviously. Operating Id, @ 4,: T® ;A—>
T @ zA to (37), we have

Em.n Emn ® b,amnb:n =1 ® b';
which yields V= ntmn b = 2 7n(®)b .
This implies ii) from Lemma 2. 2 2).

We are now ready for proving the theorem.

Proof of Theorem 2.1. Assume that T/B is a QF extension with
T @ A4 I rAs.  Let (o 20 Xy X J’tj)i and (Bc; Xk wa ® 2u)x be res-
pective right QF and left QF systems for 7/B and let (b,,; X tmn @
@nn)n be as Lemma 2.3 1). Since -B' is f. g. projective by Lemma 2. 3
2-ii), a mapping ¢: A Q .B'—> Hom (Hom(r-B', T"), Ar) defined
by [e (2 @ b')] (g) = a. g(b') is an A-B'isomorphism (see (1)).

Setti.ng rk.l = Zm,n ﬁb (zkl tmn)amn ® b,m A ®T'B,r
we have by Lemma 2. 3 2-)
[e (Tk.lbl)] (%n') = 2 B (2 tmnr) V' @un = [0 @ Tea)] (77m')-

However, {7.}w is a generating set of Hom(-B’, -T'); by Lemma 2. 3
2-i). Therefore the above equation shows (7, b') = ¢ (¥’ 7..), that is,
7€ (A Q »~B')® for each &,/

Similarly we have [o (X wa Te)] u) = [6 (1 @ 1)] (), and so,

Shite, =11 AQ B
It follows that 4A @ 7B’y | 4Ap and (9er wy)x.: is a dual basis for T,
by Lemma 2.3 (left and right are replaced), where #,,: T" —> B"
is defined by 7 (¢') = Xmn B (21 Emn) Gmn £ b (¢ = T"). Then
70 &) = B (2 t) for t = T. Thus, if 2 tQa, € T Q zB" is an ele-
ment with >0 ¢4 @, = 0, then

2t Qa, = 202k Wa B (2u i) K a,

= Zk,l W ® /PR (E trar) =0,

which implies that a canonical mapping T Q B 2t Qb —— b’ =T"

is an injection. However, recalling the above dual basis for T'g., it
is obviously surjective, and so, it is a bijection. Moreover our assamp-
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tions, T/B being QF and T @ A4.|-A, yield

AR Ty~ JHom(T 5, Ap)r = Hom(T Q 24, A)r
| sHom(A,, A.)r= A

Therefore a symmetric argument shows that a mapping B"Q ;T 30" Q¢
— p'"¢t & T'" is a bijection.

On the other hand, it is easy to see that (a; ® Id,: X2, (2, @ 1°)
Q (3,1 and (3 @ Id A°; 1, (wu @ 1°) @ (21 @ 1°)), are respec-
tive right QF and left QF systems for T @QzA4°/B & 24°.  Since
(T ®2A") RuesrA=T QsA|A as left T @ A>modules by Lemma 2.2 1)
andour assumption, we can apply Theorem 1.1 to the left module A
over the QF extension T ®,A°/B @zA°. Thus End(sgA)/End (rg.-A),
and hence B//T' is a QF extension. Finally, a similar argument shows
that T"'/B" is QF. Thus our proof is complete.

3. Let ¢ : B——> A be aring homomorphism, U a right B-module
and V aright A-module. Put B* = End(Uz) and A* = End(V,). Ina
natural way, Hom(Ajz; Uj) is a B*-A-module. In the subsequent study,
we assume always the following conditions.

(38) There exists an A-isomorphism o« : V — Hom(A4,; Uy).

(39) VBIUB; th ‘_f‘ = Idy fOI‘ some _f;: VB_) UE and gg: UB——)VB
(=1, ).

By (38), V may be regarded as a B*-A-module. Further « induces
a ring homomorphism ¢* : B* —> A* defined by ¢*(b*)(v*)=a"' (* a(v))
or ¢*(0*)=a™' - b* - a (b* € B*, v € V). On the other hand, (39) gives
the canonical isomorphism

n: V— Hom(z.Hom(Vy, Us), 5. U), [7 ()] (f) = f(v).

Moreover, we have a chain of B*-A*-isomorphisms

Hom(Idy, «)
A* > Hom(V,, Hom (45 Uz).)
b
Hom(V® AAB: UB)
E A1
HOm (VB, UB):

where the vertical mappings are canonical. Then the composite £: A*
—> Hom(V;, U;) of these isomorphisms is a B*-A*-isomorphism such
that
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(€ (@®)] (@) = [ (a* v)] (1) (a* € A*, vE V).
Therefore, we have a left A*-isomorphism

(38%) a* = Hom (¢, Idy) - n: V —> Hom (5,44, z:U)
[a* ()] (a*) = [ala* v)] (1).

Accordingly, a ring homomorphism ;; : B = [End(;,U)]°—> A = [End
(uxV)]° can be induced by «* in a similar way. For convenience, the

canonical ring homomorphisms A —> A and B——> B will be denoted

by p. Under the above notatioris, we can obtain the following which
corresponds to Theorem 1. 1.

Theorem 3.1. Assume that Uz and V, satisfy (38) and (39). If
[A/B, ¢] is QF (resp. Frobenius), then there hold the followings :

1) [A*/B* ¢*]is QF (resp. Frobenius).

2) sV =, Hom(zeA*, 3.U).

3) 2V |sU.

4) [Z/ﬁ, ;5] is QF (resp. Frobenius) such that

B ®,A— A4, 3®al—>3p (a)

and
ARB— A4 a@b—>p (@b

are isomorphisms.

Proof. The assertion 2) has be shown already. Letusset V/=
Hom(Aj;, Uz and A = End(4;). Then we can consider A as a subring
of A and V' a B*-A-module in a natural way. Put 4 = End(V',) and
I = End(V',). We have then a ring homomorphism + : B* —> I
defined by +(b*)(2') = b*?' (b* € B*, »' € V') and a ring isomorphism
¥ : A* —> 4 induced by «. Then it is easy to see s + ¢* = -4,
where : denotes the inclusion mapping of I' to A.

Let (a3 25 2y @ 95 and (B3 20 wu @ 2u), be respective right
QF and left QF systems for A/B and let (3, @.) 1snsa, be a dual basis
for Az. Define #,: AR A, —> A, and v,: A, —> A Q A, by
(2 ® y) = 6.(x)y and v,(x)=a, @ x respectively. Then X, v, * u, =
Id, and so A® 5A,| A, Therefore we can apply Theorem 1.1 to
the right module A over the QF extension A/B. Thus we know by its
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proof that A/A isa QF extension with a right QF system (ai; 2.
Cen @ d¥), and a left QF system (3;; X cen @ Ui

where [a: (0)] (@) = 25 6(axiy)y,y (see (25))
8 (8)] (@) = 2 daww)zy (see (25))

Crn (@) = a,8da) (see (17))

d¥, (@) = 0, (@) ) o (ww)zu (see (26))

U* (a) =6.(a) (e A, as A) (see (15).

Further define f,: V! ® ,A,—> V', and g: Vi— V' Q A, by
[f.w ® a) = (f, + @) (w8 (a))
gw)=3. (@ g)(w (@) ®s (weV',d€A, aci)
Then S fi=Id; V'@ AV,

Hence we can apply Theorem 1.1 to the right module V'’ over the QF
extension A/A with the above left QF and right QF systems. Thus
we know that A/I' is a QF extension with a right QF system

(40) (et ¢+ 20 ciie @ diiP):

and a left QF system

(41) B el @ Uik

where [ai (V)] (W) = Zk.n (Mw - x,0)) - d,

B )] (w) =20 3w+ cen) » Un
Cive (w) =(r- (IdV' X ﬁ;‘) . g:)(w)
d:.?) (w) = }_‘l(w ® Zn a: (Ck,n) ° Un)
Ut (w) =7 (w®1)
weV,2€d 7: VVQRQADwQ a—>wa V),

Moreover we can see that

lai (A) (w)] (@) = [A(w - a - a)] (1)
(B (D) (w)] (@) = [A(w - a- B3] ()
i (w) = 2 (a0 + g0) (w (ww))) * 20
[di@)] (@) = (fi - a™) (w + a2, B (%:7) ¥47)
(Ui w)] (@) = (fr-a™) (w - a) weV!, acA).
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Let us define further af, 3 & Hom(s.A*s1, 54B* 5i) by
(42) la? (@)] (&) = [a (¢* &' (A, - a))] (1)
(43) (8¢ (@)] () = [a (@a™" (A - 3] (1),

where for ¥« € U, 1, denotes a mapping B3 b——>ub = U. We have
then o =ai -4 and - 3 =p¢ +y. It follows that

(40*) (ot 3 ke cie @ dEP),
is a right QF system and
(41*) (}9: ; 2k cn @ Ut

is a left QF system for [A*/B*, ¢*], where ¢, = v ek, diP
=7 (di®) and ¥ (Ur). Moreover we can see that

(44) i (@) (= a (et (@ @) = 5 (g (a(v) (ww))) 2w
(45) (a (@5 ) (@) (= [dif° (a (0))1(a@)) = f. WaX, B (x5) 31)
(46) la (UF ()] (a) (= (U (a(v))](a)) = fiva) .

On the other hand, if we define f¥ : 5,V—>,;,U and g}: ;U —> 5.V
by fi(@) = [a(v)] (e.) and g¥(x) =a™ (% -4.), then Xgi . f: = Id,,
which shows 3).

Now 1), 2) and 3) enable us to use the above argument to the QF
extension A*/B* with the left QF system (41*) and the right QF

system (40*). So, let ¢i., ’c\i’E,",i and @, bein A such that

(449 Ve = e cke (g7 (@ (9)) (@)

(45) [o* (vd)] (@*)=FfF (X (cie + @ (UP)) (a*0))
(46") [a* (va,)] (a*) = fi (a*0).

Then [a (a*va,)] (1)=c (a*va,) (1),

and so, (£ (a*)] (va.) = [£ (a*)] (vay).

Since £ (A*) = Hom(Vs, Us) and V| U, the last implies @, = p (,).
Furthermore, the right hands of (44') and (45') are equal to » 3 8, (%) ¥,
and v X, wy oy (24 @), respectively, and so,

z';.n = p (Zj On (xu) J’u)’
A8 = p (T wu i (2u a)).
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It follows that
i 55*3 ®En =3 P(wkl) & P(zkz),
3 2 ® Cim = Ty play) ® p(y) in A Q 5A.

Therefore, if we define a;, fx Hom(5A43, 5B;3) by

(42" ua, (@) = {a* (@ (pu + ) @)} (L)
(43") uBe (@) = {a* (a* ™ (pu + BE)) » @)} (1a)

(# €U, pu: B* 2b* —> b*u € U), we know that (f: T p (wu) ®
p(zo))e and (a;: 3y p (%) @ p(¥;)) are respective left QF and right
QF systems for [A/B, o]. Moreover it is easy to see @ (p (a)) =

pla; (@) and Bi(p(a))=pRa) for a= A. Therefore, as was mentioned
in the proof of Theorem 1.1, we have the latter half of 4). Similarly
we can show the assertion for a Frobenius extension. Thus our proof is
complete.

Remark. Under the same assumption as the theorem, let us con-
sider the following diagram of functors:

D,
Mod,g —: A¥ Mod
s, T I D, T s*, T*
D,
Mod; > ;+ Mod
D,

where Mod; (resp. 5+ Mod) denotes the category of right B (resp. left
B*)-modules and

D, = Homg(‘—’, UB), Dz = HomB* (—l B*m
ﬁl = HOH]A('—, VA), 52 = Hom,» ('—9 A*V)
S =— QA s T = Homy(Az —)

S* = A% Q — , T* = Homp+(5*A*, —).

Then the functors D, o S, T* o D, : Mod; —> ,*Mod are eqgivalent. The
same holds for the functors D, o S*, T oD, : zxMod —> Mod,. In fact,
(D, 2 S) (X) = Hom (X @ 544 V.)
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= Hom(X; Hom(A, V.)»)
= Hom(X5, V)
Hom(Idy, «*)
= Hom(X; Hom(z*A*, 5« U)y)
= Hom (z*A, *Hom(Xj; Upz))
= (T* - D,) (X) (X € Mody).

Thus, if we define 7, : (D, o S) (X) —> (T* o D,)(X) by the composite of
these isomorphisms, then 7; is a left A*-isomorphism which is natural
in X € Mod obviously. The second assertion can be shown similarly.

Corollary. Suppose that Uy is an f.g.injective cogenerator and
B is right artinian. Put V = Hom(A Us). If[A/B, ¢] is QF
(resp. Frobenius) then [A*[B*, ¢*] is QF (resp. Frobenius).

Proof. By our assumption A is right artinian and V is anf. g.
injective cogenerator as an A, hence as a B-module. Thus V| U,
and so this corollary is a direct consequence of the theorem.

Remark 1) This corolllary also can be seen as follows: In what
follows, for a ring R, we shall denote by Og (resp. zO) the full sub-
category of Mod, (resp. xMod) consisting of all f. g. right (resp. left)
R-modules. By our assumption, A* and B* are toth left artinian, U
and ,+V are both f.g. injective cogenerators, A = [End(,*V)]° and
B = [End(3*U)]°, and further D = (D,,, Dy,) (resp. D = (D,,, D,,)) gives
a duality between Oy and Op* (resp. between O, and ,+O), where
( ). denotes the restriction of ( ) to O.* However, as was mentioned
in the proof of the corollary, we have V3|Up and z«V |z+«U, and so,
Remark to Theorem 3.1 yields that

I_)zu o S* =T, °ﬁzo; f)IOOSOzT*D °ﬁlo~

Moreover the assumption that A/B is QF (resp. Frobenius) yields S,
~ (resp. =) T,.* Thus

S*o:ﬁm ° ﬁzo ° S*oz—Dxu °oT,o ﬁ2o ~ (resp. =) —Dw °§, 0 ﬁzo
=T* 0 BID ° ﬁznzT*o:
and so A*/B* is QF (resp. Frobenius).

3) See {1, Th. 6].
4) See [6, Th. 5.1].
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2) With the same assumptions as in the corollary, if [A/B, ¢] is

QF then ¢ and ¢* are both monic : Let & B and b*EB* be elements
with ¢(8) =0 and ¢*(b*) = 0. Since B is right artinian, U, is f.g.
injective and V; is a cogenerator, we have therefore Uy|V; As Vb=
V(b)) =0, Ub = 0. Thus the faithfulness of U, implies »=0. Finally
o*(b*)=0=>b*Hom(A,, U;) = 0=>b* (Hom(As Us) (A)=b*U=0 as

desired.
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