## CENTRALIZERS OF A MODULE OVER A QUASI-FROBENIUS EXTENSION

Dedicated to Professor Kiiti Morita on his 60th birthday

## YOSHIMI KITAMURA

Introduction. This paper is a natural sequel to our previous paper [3]. The notation and terminology employed there will be used here.

In his paper [4], Y. Miyashita developed a commutor theory of a Frobenius extension. Successively we study a commutor theory of a Quasi-Frobenius (QF) extension in this paper.

Our main result of the present paper is the following:

**Theorem A** (cf. [4, Th. 2.10]). Let A/B be a ring extension, M a right A-module such that  $M \otimes_B A_A | M_A$ , that is,  $M \otimes_B A$  is A-isomorphic to an A-direct summand of a finite direct sum of copies of A,  $A' = \operatorname{End}(M_A)$ , the A-endomorphism ring of M, and  $M' = \operatorname{End}(M_B)$ . If  $M = \mathbb{C}$  is a QF extension, then the following statements hold.

- 1) B'/A' is a QF extension.
- 2)  $_{B'}B' \otimes _{A'}M|_{B'}M$ .
- 3)  $\widetilde{A}/\widetilde{B}$  is a QF extension such that  $\widetilde{A} \cong \widetilde{A} \otimes_{\mathbb{B}} \widetilde{B} \cong \widetilde{B} \otimes_{\mathbb{B}} A$  canonically. Here  $\widetilde{A}$  and  $\widetilde{B}$  denote respectively the double centralizers of M as A and B-modules.

As a consequence of the above theorem, we can obtain the following in §2.

Theorem B (cf. [4, Th. 2.6]). Let A be a ring, B a subring of A and T an intermediate subring of A/B. If T is a QF extension of B such that  $_{T}T \otimes _{B}A_{A}|_{T}A_{A}$ , then B', the centralizer of B in A, is a QF extension of T', the centralizer of T in A, such that  $_{A}A \otimes _{T'}B'_{B'}|_{A}A_{B'}$ , and moreover, T", the double centralizer of T in A, is a QF extension of B" such that  $_{T'}T \otimes _{T}T \otimes _{T}T$ 

Also a direct proof of Morita[6, Ths. 1.1 and 1.3] is given in §1.

1. Throughout this note, we shall denote by  $\operatorname{End}(X_R)$  the R-endomorphism ring of a right R-module X and consider  $\operatorname{End}(X_R)$  as a left operator domain of X. Similarly, for a left R-module  $_RY$ , we shall consider  $[\operatorname{End}(_RY)]^{\circ}$ , the opposite ring of  $\operatorname{End}(_RY)$ , as a right operator domain of Y. Further if X is a left R-right S-bimodule, we shall say X a

*R-S*-module simply.

Let  $\varphi: B \longrightarrow A$  be a ring homomorphism. Devery A-module may be regarded as a B-module via  $\varphi$ . Especially Hom  $(A_B, B_B)$  has a B-A-module structure in a natural way:

 $(b \cdot f)(x) = b \cdot f(x)$ ,  $(f \cdot a)(x) = f(ax)(a, x \in A, b \in B, f \in \text{Hom } (A_B, B_B))$ . Similarly  $\text{Hom}(_BA, _BB)$  may be regarded as an  $A \cdot B$ -module.

Let X be an A'-A-module and Y an A-A''-module. If A is finitely generated (f. g., briefly) and projective as a left B-module, then a mapping

$$(1) \quad X \otimes_{B} A \longrightarrow \operatorname{Hom}(\operatorname{Hom}(_{B} A, _{B} B)_{B}, X_{B}), \ x \otimes a \longmapsto (f \longmapsto x f(a))$$

is an A'-A-isomorphism whose inverse is given by  $F \mapsto \sum_i F(f_i) \otimes a_i$ , where  $(f_i, a_i)_{1 \le i \le l}$  is a dual basis for  ${}_BA$ , that is,  $f_i \in \text{Hom }({}_BA, {}_BB)$ ,  $a_i \in A(i = 1, \dots, t)$  such that  $\sum_i f_i(a) \cdot a_i = a$  for all  $a \in A$ . Also, a mapping

$$(2) \quad \operatorname{Hom}({}_{B}A, {}_{B}B) \otimes {}_{B}Y \longrightarrow \operatorname{Hom}({}_{B}A, {}_{B}Y), \ g \otimes y \longmapsto (a \longmapsto g(a)y)$$

is an A-A''-isomorphism whose inverse is given by  $u \longmapsto \sum_i f_i \otimes u$   $(a_i)$ . Similarly if A is f. g. projective as a right B-module, then a mapping

$$(3) \quad A \otimes_B Y \longrightarrow \operatorname{Hom}(_B \operatorname{Hom}(A_B, B_B), BY), a \otimes_Y \longmapsto (f \longmapsto_{A} f(a)y)$$

is an A-A''-isomorphism whose inverse is given by  $G \longrightarrow \sum_j d_j \otimes G(g_j)$  and a mapping

$$(4) \quad X \otimes_{B} \operatorname{Hom}(A_{B}, B_{B}) \longrightarrow \operatorname{Hom}(A_{B}, X_{B}), \ x \otimes f \longrightarrow (a \longmapsto xf(a))$$

is an A'-A-isomorphism whose inverse is given by  $v \longrightarrow \sum_{J} v(d_{J}) \otimes g_{J}$ , where  $(g_{J}, d_{J})_{1 \leq J \leq i} (g_{J} \in \operatorname{Hom}(A_{B}, B_{B}), d_{J} \in A)$  is a dual basis for  $A_{B}$ . Now a ring extension  $[A/B, \varphi]$ , namely, a ring homomorphism  $\varphi: B \longrightarrow A$ , is called a Frobenius extension if A is f. g. projective as a right B-module and isomorphic to  $\operatorname{Hom}(A_{B}, B_{B})$  as a B-A-module (cf. Kasch [2]). If  $[A/B, \varphi]$  is a Frobenius extension then there exist a B-B-homomorphism h of A to B and a finite number of elements  $r_{i}$ ,

$$(5) a = \sum r_i h(l_i a) = \sum h(ar_i) l_i (a \in A),$$

 $l_i$  in  $A (i = 1, \dots, n)$  such that

and conversely (cf. Onodera [8]). When this is the case, we shall call such  $(h; r_i, l_i)_{1 \le i \le n}$  a Frobenius system for  $[A/B, \varphi]$ .

Next a ring extension  $[A/B, \varphi]$  is called a right QF extension if

By a ring homomorphism, we shall mean one which sends an identity element to an identity element.

A is f. g. projective as a right B-module and isomorphic to a direct summand of a finite direct sum of copies of  $Hom(A_B, B_B)$  as a B-A-module (cf. Muller [7]). A left QF extension is defined symmetrically, and a QF extension is defined as an extension which is right QF as well as left QF.

If  $A_B$  is f. g. projective then from (3), we have an A-A-isomorphism

(6) 
$$A \otimes_B A \longrightarrow \operatorname{Hom}(_B \operatorname{Hom}(A_B, B_B), A_B), x \otimes y \longrightarrow (f \longmapsto f(x)y),$$

and under this isomorphism,  $\operatorname{Hom}(_B\operatorname{Hom}(A_B, B_B)_A, _BA_A)$  is corresponding to the set  $(A \otimes_B A)^A$  of casimir elements in  $A \otimes_B A$ . Here an element  $\gamma \in A \otimes_B A$  is said to be casimir if  $a\gamma = \gamma a$  for all  $a \in A$ . Thus  $[A/B, \varphi]$  is right QF if and only if  $A_B$  is f. g. projective and there exist a finite number of B-B-homomorphisms  $\alpha_i$  of A to B and casimir elements  $\sum_I x_{ij} \otimes y_{ij} \in A \otimes_B A$   $(i = 1, \dots, p)$  such that

Such  $(\alpha_i; \sum_j x_{ij} \otimes y_{ij})_{1 \le i \le p}$  is called a right QF system for  $[A/B, \varphi]$ . Similarly a left QF system for  $[A/B, \varphi]$  is defined as a system  $(\beta_k; \sum_l w_{kl} \otimes z_{kl})_{1 \le k \le p}$ , where each  $\beta_k$  is a B-B-homomorphism of A to B and each  $\sum_l w_{kl} \otimes z_{kl}$  is a casimir element in  $A \otimes_B A$  such that

Needless to say, a ring extension is QF if and only if it has a right QF system and a left QF system.

Let M be a right A-module, and set  $A' = \operatorname{End}(M_A)$ ,  $B' = \operatorname{End}(M_B)$ ,  $\widetilde{A} = [\operatorname{End}(_{A'}M)]^{\circ}$  and  $\widetilde{B} = [\operatorname{End}(_{B'}M)]^{\circ}$ . Then M may be considered as a B'- $\widetilde{A}$ -module, and further an inclusion mapping  $\varphi': A' \longrightarrow B'$  and ring homomorphisms  $\rho_A: A \longrightarrow \widetilde{A}$  and  $\rho_B: B \longrightarrow \widetilde{B}$  defined by  $m \ \rho_A(a) = ma$  and  $m \ \rho_B(b) = mb \ (m \in M, \ a \in A, \ b \in B)$  respectively are induced. Moreover  $\varphi': A' \longrightarrow B'$  induces a ring homomorphism  $\widetilde{\varphi}: \widetilde{B} \longrightarrow \widetilde{A}$  in a natural way. The meaning of the above notations will be retained throughout this section.

Let us now assume that M satisfies the following condition:

$$M \otimes_{B} A_{A} \mid M_{A}.$$

First suppose that  $[A/B, \varphi]$  is a Frobenius extension with a Frobenius system  $(h; r_i, l_i)_i$ . Then, by Miyashita [4, Prop. 2.3], (9) is equivalent to the existence of  $f_j$ ,  $g_j \in B'$   $(j = 1, \dots, t)$  such that

(10) 
$$\sum_{j} g_{j}(f_{j}(m) a) = mh(a) \qquad (a \in A, m \in M).$$

So, let  $f_j$ ,  $g_j \in B'$   $(j = 1, \dots, t)$  be as above and define an  $A' \cdot A'$ -homomorphism  $Tr: B' \longrightarrow A'$  by

$$[Tr(b')](m) = \sum_{i} (b'(mr_i)) l_i \text{ for } b' \in B', m \in M.$$

Then we have

(12) 
$$\sum_{i} g_{i} \cdot Tr(f_{i}b') = b' \qquad (b' \in B').$$

Indeed, operating the left hand to  $m \in M$ , we have by (5) and (10)

$$\sum_{i} g_{i} \left( \sum_{i} f_{i} \left( b'(mr_{i}) \right) l_{i} \right) = \sum_{i} b' \left( mr_{i} \right) h(l_{i}) = b'(m).$$

Similarly we have

(13) 
$$\sum_{j} Tr(b'|g_{j}) \cdot f_{j} = b' \qquad (b' \in B').$$

Thus we have seen  $(Tr; g_j, f_j)_{1 \le j \le t}$  a Frobenius system for  $[B'/A', \varphi']$ . Furthermore, (11) implies  $_{B'}B' \otimes_{A'}M|_{B'}M$ . Therefore, applying the above argument to the left module M over the Frobenius extension  $[B'/A', \varphi']$  with the Frobenius system  $(Tr; g_j, f_j)_j$ , we have by (11) that  $(\widetilde{h}; \rho_A(r_i), \rho_A(l_i))_t$  is a Frobenius system for  $[\widetilde{A}/\widetilde{B}, \widetilde{\varphi}]$ , where  $\widetilde{h} \in \operatorname{Hom}(\widetilde{A}\widetilde{A}, \widetilde{B}, \widetilde{B}\widetilde{B})$  is defined by

$$m\widetilde{h}(\widetilde{a}) = \sum g_j(f_j(m) \ \widetilde{a}) \text{ for } \widetilde{a} \in \widetilde{A}, m \in M$$
 (cf. (11)).

Then, (10) shows  $\widetilde{h}(\rho_A(a)) = \rho_B(h(a))$  for  $a \in A$ .

It follows that a canonical mapping  $\widetilde{B} \otimes_{B} \widetilde{A} \longrightarrow \widetilde{A}$ ,  $\widetilde{b} \otimes a \longmapsto \widetilde{b}a$ , is an isomorphism whose inverse is given by  $\widetilde{A} \ni \widetilde{a} \longmapsto \sum_{i} \widetilde{h}(\widetilde{a}\rho_{A}(r_{i})) \otimes l_{i}$   $\in \widetilde{B} \otimes_{B} A$ . Similarly a canonical mapping  $A \otimes_{B} \widetilde{B} \longrightarrow \widetilde{A}$  defined by  $a \otimes \widetilde{b} \longmapsto a\widetilde{b}$  is an isomorphism.

Next suppose that  $[A/B, \varphi]$  is a QF extension having a right QF system  $(\alpha_i; \sum_j x_{ij} \otimes y_{ij})_{1 \leq i \leq p}$  and a left QF system  $(\beta_k; \sum_i w_{ki} \otimes z_{ki})_{1 \leq k \leq q}$ . Then  $(x_{ij} \cdot \alpha_i, y_{ij})_{i,j}$  and  $(\beta_k \cdot z_{ki}, w_{ki})_{k,i}$  are dual bases for  ${}_{B}A$  and  $A_{B}$  by (7) and (8) respectively. By (9), there exist  $u_n: M \otimes_{B}A_{A} \longrightarrow M_{A}$  and  $v_n: M_{A} \longrightarrow M \otimes_{B}A_{A}$   $(n = 1, \dots, t)$  such that

$$\sum v_n \cdot u_n = Id_{A \otimes_{B^M}}.$$

Define  $U_n \subseteq B'$  and  $V_n \subseteq \operatorname{Hom}(A'B', A'A')$  by

(15) 
$$U_n(m) = u_n(m \otimes 1) \text{ for } m \in M; U_n = u_n \cdot \iota$$

$$(16) V_n(b') = \pi \cdot (b' \otimes Id_A) \cdot v_n \text{ for } b' \in B',$$

where  $\iota$  and  $\pi$  denote respectively the mappings given by

$$\iota: M \longrightarrow M \otimes_{B} A, \ \iota(m) = m \otimes 1,$$

$$\pi: M \otimes_{B} A \longrightarrow M, \ \pi(m \otimes a) = ma.$$

It is then easy to see that  $(V_n, U_n)_n$  is a dual basis for A'B'. Similarly let us define  $c_{k,n} \in B'$  and  $c_{k,n}^* \in \text{Hom}(B'_{A'}, A'_{A'})$  by

$$(17) c_{k,n} = \gamma \cdot (Id_M \otimes \beta_k) \cdot v_n$$

(18) 
$$[c_{k,n}^*(b')] (m) = u_n(\sum_l b' (mw_{kl}) \otimes z_{kl}) (b' \in B', m \in M),$$

where  $\gamma: M \otimes_B B \longrightarrow M$ ,  $\gamma(m \otimes b) = mb$ . Since  $[\sum_{k,n} c_{k,n} \cdot c_{k,n}^* (b')]$   $(m) = \sum_k \{\gamma \cdot (Id_M \otimes \beta_k)\} \{(\sum_n v_n \cdot u_n) (\sum_l b' (mw_{kl}) \otimes z_{kl})\} = b' (m \sum_{k,l} w_{kl} \beta_k(z_{kl})) = b'(m), (c_{k,n}^*, c_{k,n})_{k,n}$  is a dual basis for  $B'_{A'}$ . Further let us define B'-A-homomorphisms

$$\Phi_i: M \otimes_B A \longrightarrow \operatorname{Hom}(A_B, M_B), \ \Psi_i: \operatorname{Hom}(A_B, M_B) \longrightarrow M \otimes_B A$$

by

(19) 
$$[\Phi_i (m \otimes a)] (x) = m\alpha_i (ax) \text{ for } m \in M, \ a, \ x \in A,$$

(20) 
$$\varPsi_i(g) = \sum_j g(x_{ij}) \otimes y_{ij} \text{ for } g \in \operatorname{Hom}(A_B, M_B)$$

and mappings

$$\Psi'_i: B' \longrightarrow \operatorname{Hom}(B'_{A'}, A'_{A'}), \ \Phi'_i: \operatorname{Hom}(B'_{A'}, A'_{A'}) \longrightarrow B'$$

by

(21) 
$$\Phi'_{i}(f')(m) = \sum_{n} \left[ f' \left( \mathcal{T} \cdot (Id_{M} \otimes \alpha_{i}) \cdot v_{n} \right) \right] \left( u_{n} \left( m \otimes 1 \right) \right)$$
 for  $f' \in \operatorname{Hom}(B'_{A'}, A'_{A'}), m \in M,$ 

(22) 
$$[\psi'_i(b')\ (b'_1)]\ (m) = \sum_j ((b'\ b'_1)\ (mx_{ij}))\ y_{ij}$$
 for  $b',\ b'_1 \in B',\ m \in M$ .

Then it is easy to see

$$\sum_{i} \Phi'_{i} \cdot \psi'_{i} = Id_{B'}.$$

Obviously, every  $\Phi'_i$  is a left A'-homomorphism. Moreover we shall claim that for any  $h \in \text{Hom } ({}_BA_B, {}_BB_B), \sum_n (r \cdot (Id_M \otimes h) \cdot v_n) \otimes (u_n \cdot \iota)$  is casimir in  $B' \otimes_{A'}B'$ . In fact, noting  $(V_n, U_n)_n$  to be a dual basis for  ${}_{A'}B'$  and an isomorphism  $B' \otimes_{A'}B' \ni x' \otimes y' \longmapsto (g' \longmapsto x' g'(y')) \in \text{Hom } (\text{Hom}({}_{A'}B', {}_{A'}A')_{A'}, B'_{A'})$ , we have the conclusion if we show the

following equation for all  $b' \in B'$  and all n':

$$\sum_{n} (\hat{r} \cdot (Id_{M} \otimes h) \cdot v_{n}) \cdot V_{n'}, (u_{n} \cdot \iota \cdot b')$$

$$= \sum_{n} b' \cdot (\hat{r} \cdot (Id_{M} \otimes h) \cdot v_{n}) \cdot V_{n'} (u_{n} \cdot \iota).$$

However this equation can be verified directly. Especially  $\sum_{n} (\gamma \cdot (Id_{M} \otimes \alpha_{i}) \cdot v_{n}) \otimes (u_{n} \cdot )$  is casimir in  $B' \otimes_{A'} B'$ , which implies  $\Phi'_{i}$  a right B'-homomorphism, and so, it is an A'-B'-homomorphism. On the otherhand,  $\Psi'_{i}$  is obviously an A'-B'-homomorphism. Accordingly we have  $_{A'}B'_{B'}|_{A'}$  Hom $(B'_{A'}, A'_{A'})_{B'}$  by (23). Therefore, recalling  $(c_{k,n}^{*}, c_{k,n})_{k,n}$  to be a dual basis for  $B'_{A'}$ , if we set for each i, k, n

$$\alpha'_{i} = \Psi'_{i} (1_{B'})^{2}, 
d^{(i)}_{k,n} = \Phi'_{i} (c_{k,n}^{*}),$$

then we can see that

$$(24) \qquad (\alpha'_i; \sum_{k,n} c_{k,n} \otimes d_{k,n}^{(i)})_{1 \leq i \leq p}$$

is a right QF system for  $[B'/A', \varphi']$  (see (3)). We have further

(25) 
$$\alpha'_i(b')(m) = \sum_i (b'(mx_{ii})) y_{ii}$$

$$(26) d_{k,n}^{(i)}(m) = u_n (m \bigotimes \sum_{l} \alpha_i (w_{kl}) z_{kl}) (b' \in B', m \in M).$$

In fact, (25) is obvious by (22), and further the left hand of (26) is equal to  $\sum_{n'} [c_{k,n}^* (\gamma \cdot (Id_M \otimes \alpha_i) \cdot v_{n'})] (u_{n'} (m \otimes 1))$ 

$$= u_n \left( \sum_l \left( \gamma \cdot (Id_M \otimes \alpha_l) \right) \left( \left( \sum_{n'} v_{n'} \cdot u_{n'} \right) \left( m \otimes w_{kl} \right) \right) \otimes z_{kl} \right) \quad \text{(by (18))}$$

$$= u_n \left( m \otimes \sum_l \alpha_l \left( w_{kl} \right) z_{kl} \right) \quad \text{(by (14))}.$$

This shows (26).

by

Similarly we shall define B'-A-homomorphisms

$$\psi_k: \operatorname{Hom}(A_B, M_B) \longrightarrow M \bigotimes_B A, \varphi_k: M \bigotimes_B A \longrightarrow \operatorname{Hom}(A_B, M_B)$$

(19), 
$$[\varphi_k (m \otimes a)](x) = m\beta_k (ax)$$
 for  $a, x \in A, m \in M$ ,

$$(20)_{1} \qquad \psi_{k}\left(g\right) = \sum_{l} g(w_{kl}) \otimes z_{kl} \text{ for } g \in \text{Hom } (A_{B}, M_{B}).$$

Then 
$$\sum_{k} \varphi_{k} \cdot \psi_{k} = Id$$
.

Further if mappings

$$\varphi'_{k}: \operatorname{Hom}(B'_{A'}, A'_{A'}) \longrightarrow B', \ \psi'_{k}: B' \longrightarrow \operatorname{Hom}(B'_{A'}, A'_{A'})$$

are defined by

Here 1<sub>B'</sub> denotes the identity element of a ring B'.

$$(21)_{1} \quad \varphi_{k}'(f') = \sum_{n} f'(f' \cdot (Id_{M} \otimes \beta_{k}) \cdot v_{n}) \cdot (u_{n} \cdot \iota) \text{ for } f' \in \text{Hom}(B'_{A'}, A'_{A'})$$

(22)<sub>1</sub> 
$$[\phi'_{k}(b')(b'_{1})](m) = \sum_{l}((b' \cdot b'_{1})(mw_{kl})) z_{kl}$$
 for  $b', b'_{1} \in B', m \in M$ ,

then  $\varphi'_k$  and  $\psi'_k$  are A'-B'-homomorphisms such that

$$(23)_{i} \qquad \qquad \sum_{k} \psi'_{k} \cdot \varphi'_{k} = Id.$$

Indeed, the last equation can be seen as follows:

$$\left[\left\{\left(\sum_{k} \phi_{k}' \cdot \varphi_{k}'\right) \left(c^{*}_{k',n'}\right)\right\} \left(b'\right)\right] \left(m\right)$$

$$= \sum_{k,l} \left[ \varphi_k' \left( c_{n',n'}^* \right) \cdot b' \right] \left( m w_{kl} \right) \cdot z_{kl} \quad \text{(by (22))}$$

$$= \sum_{k,l,n} \left[ c_{k',n'}^* \left( \gamma \cdot (Id_M \otimes \beta_k) \cdot v_n \right) \right] \left( u_n \left( b'(mw_{kl}) \otimes 1 \right) \right) \cdot z_{kl} \quad \text{(by (21)}_1)$$

$$= \sum_{k,l,n} u_{n'} \left[ \sum_{l'} \left( \gamma \cdot Id_{M} \otimes \beta_{k} \right) \cdot v_{n} \right) \left( u_{n} \left( b' \left( mw_{kl} \right) \otimes 1 \right) \cdot w_{k'l'} \right) \otimes z_{k'l'} \right] \cdot z_{kl}$$
(by (18))

$$= \sum_{k,l,l'} u_{n'} \left[ \left( b' \left( m w_{kl} \right) \cdot \beta_k \left( w_{k'l'} \right) \right) \otimes z_{k'l'} \right] \cdot z_{kl} \quad \text{(by (14))}$$

$$= \sum_{l'} u_{n'} (b' (m \sum_{k,l} w_{kl} \beta_k (z_{kl} w_{k'l'})) \otimes z_{k'l'})$$

$$= u_{n'} \left( \sum_{l'} b' \left( m w_{k'l'} \right) \otimes z_{k'l'} \right) = \left[ c_{k',n'}^*(b') \right] (m),$$

where the fifth equation is followed from the fact that  $\sum_{l'} w_{k'l'} \otimes z_{k'l'} \in A \otimes_B A$  is casimir. Since  $\{c_{k',n'}^*\}_{k',n'}$  is a generating set for the left A'-module  $\operatorname{Hom}(B'_{A'}, A'_{A'})$ , the above equation yields (23).

Now let us consider the following sequence

$$B' \xrightarrow{\sigma'} \operatorname{Hom}({}_{A'}\operatorname{Hom}(B'_{A'}, A'_{A'}), {}_{A'}A') \xrightarrow{\psi_k^*} \operatorname{Hom}({}_{A'}B', {}_{A'}A'),$$

where  $\varphi_k^* = \text{Hom}(\varphi_k', Id_{A'})$ ,  $\psi_k^* = \text{Hom}(\psi_k', Id_{A'})$  and  $\sigma'$  denotes a canonical isomorphism. Since  $(V_n, U_n)_n$  is a dual basis for A'B', if we set

$$\beta'_k = (\psi_k^* \cdot \sigma') (1_{B'})$$

$$T_n^{(k)} = (\sigma'^{-1} \cdot \varphi^*) (V_n),$$

$$(24)_1 \qquad (\beta'_k; \sum_n T_n^{(k)} \otimes U_n)_{1 \leq k \leq q}$$

is then a left QF system for B'/A' (see (1)). Further we have

$$[\beta'_{k}(b')] (m) = \sum_{l} (b'(mw_{kl})) z_{kl} \qquad (b' \in B', m \in M),$$

$$(26)_{1} T_{n}^{(k)} = \gamma \cdot (Id_{M} \otimes \beta_{k}) \cdot v_{n} (=c_{k,n}).$$

In fact, (25), is obvious and (26), can be seen as follows: It is enough to show that

Hom  $(\varphi'_k, Id_{A'})(V_n) = \sigma'(\gamma \cdot (Id_M \otimes \beta_k) \cdot v_n).$ 

Since 
$$[\{\text{Hom } (\varphi'_{k}, Id_{A'}) (V_{n})\} (c^{*}_{k',n'})] (m)$$
  

$$= [\pi \cdot (\varphi'_{k} (c^{*}_{k',n'}) \otimes Id_{A}) \cdot v_{n}] (m) \qquad \text{(by (16))}$$

$$= \sum_{r} [\varphi'_{k} (c^{*}_{k',n'})] (m_{r}) \cdot a_{r} \quad (v_{n}(m) = \sum_{r} m_{r} \otimes a_{r} \text{ in } M \otimes {}_{B}A)$$

$$= u_{n'} (\sum_{r,l'} m_{r} \otimes \beta_{k} (w_{k'l'}) z_{k'l'}) \cdot a_{r} \qquad \text{(by (18) and (21)_{1})}$$

 $= u_{n'} \left( \sum_{r,l'} m_r \beta_k \left( a_r w_{k'l'} \right) \otimes z_{k'l'} \right)$ 

 $= [c_{k',n'}^* (\gamma \cdot (Id_M \otimes \beta_k) \cdot v_n)] (m)$ 

(where the fourth equation is followed from the casimirness of  $\sum_{l'} w_{k'l'}$   $\otimes z_{k'l'} \in A \otimes_B A$ ) the fact that  $\{c_{k',n'}^*\}_{k',n'}$  is a generating set of  ${}_{A'}\text{Hom}(B'_{A'}, A'_{A'})$  yields the desired equation.

Let us consider the following:

$$B' \otimes_{A'} M \xrightarrow{\lambda \otimes Id_M} \operatorname{Hom}(M_A, \operatorname{Hom}(A_B, M_B)_A) \otimes_{A'} M$$

$$\xrightarrow{\nu} \operatorname{Hom}(\hat{A}_B, M_B)$$

$$\xrightarrow{Hom(\hat{W}_{kl}, Id_M)} \operatorname{Hom}(B_B, M_B) \xrightarrow{\nu_1} M,$$

$$\xrightarrow{Hom(\beta_k \cdot z_{kl}, Id_M)} \operatorname{Hom}(B_B, M_B) \xrightarrow{\nu_1} M,$$

where  $\lambda$ ,  $\nu$  and  $\nu_1$  are canonical isomorphisms, and for each  $a \in A$ ,  $\hat{a}$  denotes a mapping  $B \longrightarrow A$  given by  $\hat{a}(b) = ab$ . Setting

$$(28) f_{k,l} = \nu_1 \cdot \operatorname{Hom}(\hat{w}_{kl}, Id_{M}) \cdot \nu \cdot (\lambda \otimes Id_{M}) : B' \otimes_{A'} M \longrightarrow M$$

(29) 
$$g_{k,l} = (\lambda^{-1} \otimes Id_M) \cdot \nu^{-1} \cdot \operatorname{Hom}(\beta_k \cdot z_{kl}, Id_M) \cdot \nu_1^{-1} : M \longrightarrow B' \otimes_{A'} M,$$
  $f_{k,l}$  and  $g_{k,l}$  are left  $B'$ -homomorphisms such that

(14') 
$$\sum_{k,l} g_{k,l} \cdot f_{k,l} = Id \; ; \; {}_{B'}B' \bigotimes_{A'} M |_{B'}B',$$

$$(30) f_{k,l} (b' \otimes m) = b' (mw_k) (b' \in B', m \in M),$$

$$(31) \quad g_{k,l}(m) = \sum_{k',l',n} (\gamma \cdot (Id_{M} \otimes \beta_{k'}) \cdot v_{n}) \otimes u_{n}(m \otimes \beta_{k}'(z_{kl}w_{k'l'}) z_{k'l'})$$

From now on, we shall denote  $\rho_A$  and  $\rho_B$  by  $\rho$  simply. Corresponding to  $U_n$ ,  $T_n^{(k)} \in B'$ , let us define  $U_{k,l}$ ,  $T_{k,l}^{(l)} \in \operatorname{End}(A'M)$  by

$$(15') U_{k,l}(m) = f_{k,l} (1 \otimes m) \text{ for } m \in M,$$

$$(26') T_{k,l}^{(i)} = \gamma' \cdot (\alpha_i' \otimes Id_M) \cdot g_{k,l},$$

where  $\gamma': A' \otimes_{A'} M \longrightarrow M$  is the canonical isomorphism. Then we have

$$[U_{k,l}]^{\circ} = \rho(w_{kl})$$

$$[T_{k,l}^{(i)}]^{\circ} = \rho \; (\sum_{i} \beta_{k} \; (z_{kl} \; x_{ij}) \; y_{ij}).$$

In fact, (32) is obvious by (30), and (33) can be seen as follows:

$$\begin{split} (T_{k,l}^{(i)}) \ (m) &= \sum_{k',l',n,j} \left[ \widetilde{r} \cdot (Id_M \otimes \beta_{k'}) \cdot v_n \right) \left( u_n \left( m \otimes \beta_k \left( z_{kl} \, w_{k'l'} \right) \, z_{k'l'} \right) \, x_{ij} \right) \right] \ y_{ij} \\ &= \sum_{k',l',j} m \ \beta_{k'} \left( \beta_k (z_{kl} \, w_{k'l'}) \, z_{k'l'} \, x_{ij} \right) y_{ij} \\ &= \sum_j m \beta_k \left( z_{kl} \, \sum_{k',l'} w_{k'l'} \, \beta_{k'} \left( z_{k'l'} \, x_{ij} \right) \right) \, y_{ij} \\ &= m \, \sum_j \beta_k \left( z_{kl} \, x_{ij} \right) y_{ij} \quad \text{(by (8)),} \end{split}$$

which shows (33). Further using (8), (32) and (33), we have

$$\sum_{k,l} [U_{k,l}]^{\circ} \otimes [T_{k,l}^{(i)}]^{\circ} = \sum_{l} \rho(x_{il}) \otimes \rho(y_{il}) (\in \widetilde{A} \otimes \widetilde{A}).$$

Similarly, corresponding to  $d_{k,n}^{(i)} \in B'$ , let us define  $d_{i,k,l}^{(k')} \in \operatorname{End}(A'M)$  by

$$[d_{i,k,l}^{(k')}(m)] = f_{k,l}((\sum_{k,n} c_{k,n}\beta'_{k'}(d_{k,n}^{(i)})) \otimes m) \text{ for } m \in M \quad \text{(cf. (26))}.$$

Then a calculation using (17), (26), (25), and (30) shows that the right hand of the above equation is equal to  $m\sum_{l'} w_{kl} w_{k'l'} \alpha_i(z_{k'l'})$ , and so,

(35) 
$$[d_{i,k,l}^{(k')}]^{\circ} = \rho(\sum_{i'} w_{kl} w_{k'l'} \alpha_i (z_{k'l'})).$$

Accordingly, 
$$\sum_{l,k,l} [d_{l,k,l}^{(k')}]^{\circ} \otimes [T_{k,l}^{(i)}]^{\circ} = \sum_{l'} \rho(w_{k'l'}) \otimes \rho(z_{k'l'}) (\in \widetilde{A} \otimes_{\widetilde{B}} \widetilde{A}).$$

Therefore, applying the above argument that leads a left QF and a right QF systems for A/B to those for B'/A' to the left modules M over the QF extension B'/A' with the left QF system (24), and the right QF system (24), we know that

(24\*) 
$$(\widetilde{\alpha}_i; \sum_j \rho(x_{ij}) \otimes \rho(y_{ij}))_i$$

is a right QF system and

$$(24^*)_{\scriptscriptstyle 1}$$
  $(\widetilde{\beta}_k\; ;\; \sum_{\scriptscriptstyle l}\; \rho\; (w_{kl}) \otimes \rho(z_{kl}))_k$ 

is a left QF system for  $\widetilde{A}/\widetilde{B}$ , where  $\widetilde{\alpha}_t$ ,  $\widetilde{\beta}_k \in \operatorname{Hom}(\widetilde{B}\widetilde{A}\widetilde{B}, \widetilde{B}\widetilde{B})$  are defined

by 
$$m\widetilde{\alpha}_i(\widetilde{a}) = \sum_{k,n} c_{k,n} (d_{k,n}^{(i)}(m)\widetilde{a})$$

$$m\widetilde{\beta}_{k}(\widetilde{a}) = \sum_{n} T_{n}^{(k)} (U_{n}(m)\widetilde{a}) \qquad (\widetilde{a} \in \widetilde{A}, m \in M).$$

To be easily seen, we have

(36) 
$$\widetilde{\alpha}_i(\rho(a)) = \rho(\alpha_i(a)), \ \widetilde{\beta}_k(\rho(a)) = \rho(\beta_k(a))$$
  $(a \in A)$ 

It follows therefore that mappings  $A \otimes_B \widetilde{B} \longrightarrow \widetilde{A}$ ,  $a \otimes \widetilde{b} \longmapsto a\widetilde{b}$ , and  $\widetilde{A} \longrightarrow A \otimes_B \widetilde{B}$ ,  $\widetilde{a} \longmapsto \sum_{k,l} w_{kl} \otimes \widetilde{\beta}_k (z_{kl} \ \widetilde{a})$ , are mutually inverse isomorphisms. The same holds for mappings  $\widetilde{B} \otimes_B A \longrightarrow \widetilde{A}$ ,  $\widetilde{b} \otimes a \longmapsto \widetilde{b}a$ , and  $\widetilde{A} \longrightarrow \widetilde{B} \otimes_B A$ ,  $\widetilde{a} \longmapsto \sum_{i,j} \widetilde{\alpha}_i (\widetilde{a}x_{ij}) \otimes \widetilde{y}_{ij}$ .

Summarizing the above, we obtain the following:

Theorem 1.1 (cf. [4, Th. 2.10]). Suppose that  $[A/B, \varphi]$  is a QF (resp. Frobenius) extension and M is a right A-module with  $M \otimes \otimes_B A_A \mid M_A$ . Then there holds the following:

- 1)  $[B'/A', \varphi']$  is a QF (resp. Frobenius) extension.
- 2)  $_{B'}B' \otimes _{A'}M \mid _{B'}M$ .
- 3)  $[\widetilde{A}/\widetilde{B}, \widetilde{\varphi}]$  is a QF (resp. Frobenius) extension such that  $\widetilde{A} \cong A \otimes_B \widetilde{B} \cong \widetilde{B} \otimes_B A$  canonically.

**Proposition 1.2.** Suppose that  $[A/B, \varphi]$  is a QF extension. Then the following statements hold.

- 1) If A/B is H-separable (i. e.,  ${}_{A}A \otimes {}_{B}A_{A} \mid {}_{A}A_{A}$ ) then  ${}_{A'}B'_{A'} \mid {}_{A'}A'_{A'}$ . Furthermore assume  $M \otimes {}_{B}A_{A} \mid M_{A}$ .
  - 2) If A/B is separable (i. e.,  ${}_{A}A_{A} \mid {}_{A}A \otimes {}_{B}A_{A}$ ), then  ${}_{A'}A'_{A'} \mid {}_{A'}B'_{A'}$ .
  - 3) If  $_BA_B \mid _BB_B$  then B'/A' is H-separable.
  - 4) If  $_BB_B \mid _BA_B$  then B'/A' is separable.

*Proof.* Let  $(\alpha_i: \sum_j x_{ij} \otimes y_{ij})_i$  and  $(\beta_k: \sum_i w_{ki} \otimes z_{ki})_k$  be respective right QF and left QF systems for A/B. 1): Since A/B is H-separable, there exist  $f_n: {}_AA \otimes {}_BA_A \longrightarrow {}_AA_A$  and  $g_n: {}_AA_A \longrightarrow {}_AA \otimes {}_BA_A$   $(n = 1, \dots, n_0)$  such that  $\sum g_n \cdot f_n = Id$ . Let us consider a sequence of B'-A-modules

$$M \otimes_{B} A \xrightarrow{\Upsilon_{1}} M \otimes_{A} A \otimes_{B} A \xrightarrow{\overline{f_{n}} = Id_{M} \otimes f_{n}} M \otimes_{A} A \xrightarrow{\Upsilon_{2}} M$$

$$\overline{g_{n}} = Id_{M} \otimes g_{n}$$

where  $\gamma_1$  and  $\gamma_2$  are both the canonical isomorphisms.

Setting 
$$u_n = \gamma_2 \cdot \overline{f}_n \cdot \gamma_1, \ v_n = \gamma_1^{-1} \cdot \overline{g}_n \cdot \gamma_2^{-1}$$

$$\sum v_n \cdot u_n = Id$$
.

Therefore we can use Theorem 1.1 and its proof in any case. So, we shall employ the notations as before throughout the proof. First a right QF system (24) yields

$$\sum_{i} \sum_{k,n} (\alpha'_i(b' \cdot c_{k,n})) \cdot d^{(i)}_{k,n} = b' \qquad (b' \in B').$$

However, to be easily verified,  $c_{k,n}$  and  $d_{k,n}^{(t)}$  are contained in the centralizer  $V_{B'}(A')$  of A' in B' at the present case. It follows that  $A'B'_{A'} \mid_{A'}A'_{A'}$ . Furthermore assume  $M \otimes_B A_A \mid M_A$ . Hence B'/A' is QF by Theorem 1. 1. 2): Suppose  ${}_{A}A_{A} \mid A \otimes_B A_A$ . Thus

 $_{A'}M_A \cong _{A'}M \bigotimes_A A_A \mid _{A'}M \bigotimes_A A \bigotimes_B A_A \cong _{A'}M \bigotimes_B A_A \sim _{A'} \operatorname{Hom}(A_B, M_B)_A,$  which yields  $_{A'}\operatorname{Hom}(M_A, M_A)_{A'} \mid _{A'}\operatorname{Hom}(M_A, \operatorname{Hom}(A_B, M_B)_A)_{A'}$   $\cong _{A'}\operatorname{Hom}(M_B, M_B)_{A'}.$ 

This shows 2). 3): Let us assume  ${}_{B}A_{B} | {}_{B}B_{B}$ . Thus there exist  $\delta_{r} \in \operatorname{Hom}({}_{B}A_{B}, {}_{B}B_{B})$  and  $a_{r} \in V_{A}(B)$   $(r = 1, \dots, s)$  such that  $\sum a_{r}\delta_{r}$  (a) = a for all  $a \in A$ . Replacing  $f_{k,n}$  and  $g_{k,n}$  in the proof of Theorem 1.1 respectively by

$$f_r = \nu_1 \cdot \operatorname{Hom}(\hat{a}_r, Id_M) \cdot \nu \cdot (\lambda \otimes Id_M)$$

$$g_r = (\lambda^{-1} \otimes Id_M) \cdot \nu^1 \cdot \operatorname{Hom}(\hat{a}_r, Id_M) \cdot \nu^{-1} \cdot$$

we have  $_BB' \otimes_{A'}M_B \mid_{B'}M_B$  (see (27)). This yields  $_{B'}B' \otimes_{A'}B'_{B_r} \sim_{B'}$ Hom  $(B'_{A'}, B'_{A'}) \cong_{B'}$ Hom  $(B' \otimes_{A'}M_B, M_B)_{B'} \mid_{B'}$ Hom  $(M_B, M_B)_{B'} =_{B'}B'_{B'}$ , which shows 3). 4): Finally suppose  $_BB_B \mid_B A_B$ . Then there exist  $f_r \in \text{Hom}(_BA_B, _BB_B)$  and  $a_r \in V_A(B)$   $(r = 1, \dots, t)$  such that  $\sum f_r(a_r) = 1$ .

Setting  $c_i = \sum_{j,r} a_r x_{ij} f_r(y_{ij})$ then  $c_i \in V_A(B), \sum_i \alpha_i (c_i) = 1.$ 

Thus a mapping  $\rho_{c_i}: M \longrightarrow M$  defined by  $\rho_{c_i}(m) = mc_i$  is in  $V_{B'}(A')$ , and so,  $\sum_i \sum_{k,n} c_{k,n}, (\rho_{c_i} \cdot d_{k,n}^{(i)}) = 1_{B'}$  (see (36)).

On the other hand, every  $\sum_{k,n} c_{k,n} \otimes d_{k,n}^{(i)}$  is casimir in  $B' \otimes_{A'} B'$  and hence so is  $\sum_{l} \sum_{k,n} c_{k,n} \otimes \rho_{c_l} \cdot d_{k,n}^{(i)}$ . It follows that B'/A' is separable. Thus our proof is complete.

**Proposition 1.3.** Assume that  $[A/B, \varphi]$  is right QF (resp. left QF, Frobenius) and  $M_A$  is a generator. Then  $[A(=\widetilde{A})/\widetilde{B}, \widetilde{\varphi}]$  is right QF (resp. left QF, Frobenius), and moreover right QF (resp. left QF, Frobenius) system for  $[A/B, \varphi]$  gives a right QF (resp. left QF, Fro-

benius) system for  $[A/\widetilde{B}, \widetilde{\varphi}]$  naturally.

Proof. First we shall show that any  $f \in \operatorname{Hom}(A_B, B_B)$  is contained in  $\operatorname{Hom}(A_{\overline{B}}, B_{\overline{B}})$  (note that  $M_A$  is a generator). In fact,  $mf(u(m')\widetilde{b}) = (\lambda_m \cdot f \cdot u)$   $(m'\ \widetilde{b}) = m(f(u(m'))\ \widetilde{b}$   $(m,\ m' \in M,\ \widetilde{b} \in \widetilde{B},\ u \in \operatorname{Hom}\ (M_A,\ A_A))$  means the conclusion, where  $\lambda_m$  denotes a mapping  $A \longrightarrow M$  given by  $\lambda_m(a) = ma$ . Let  $(\alpha_i : \sum_j x_{ij} \otimes y_{ij})_i$  be a right QF system for A/B. The mention just above shows that every  $\alpha_i$  is in  $\operatorname{Hom}(A_{\overline{B}},\ \widetilde{B}_{\overline{B}})$  and  $A_{\overline{B}} \mid \widetilde{B}_{\overline{B}}$ . We claim further every  $\alpha_i$  is contained in  $\operatorname{Hom}(_{\overline{B}}A,\ _{\overline{B}}B)$ . To see this, let  $x \in A$ ,  $\widetilde{b} \in \widetilde{B}$  and  $f \in \operatorname{Hom}(A_B,\ B_B)$  be arbitrary elements. Then  $f(\alpha_i(\widetilde{b}x) - \widetilde{b}\alpha_i(x)) = f(1)\alpha_i(\widetilde{b}x) - f(\widetilde{b})(\alpha_i(x)) = \alpha_i(f(1)\widetilde{b}x - f(\widetilde{b})x) = 0$ , which implies  $\alpha_i(\widetilde{b}x) - \widetilde{b}\alpha_i(x) = 0$  as desired, since  $A_B$  torsionless. On the other hand, every casimir element in  $A \otimes_B A$  is mapped canonically into a casimir element in  $A \otimes_B A$ . Therefore we have shown the proposition for a right QF extension.

Next let  $(\beta_k; \sum_l w_{kl} \otimes z_{kl})_k$  be a left QF system for A/B. By the mention at the begining of the proof, every  $\beta_k$  is in  $\text{Hom}(A_{\widetilde{B}}, \widetilde{B}_{\widetilde{B}})$ . Further we can regard as  $\text{Hom}(_BA, _BB) \subset \text{Hom}(_{\widetilde{B}}A, _{\widetilde{B}}\widetilde{B})$ ;  $[(g(\widetilde{b}x) - \widetilde{b}g(x)) \beta_k](y) = \beta_k(yg(\widetilde{b}x)) - \beta_k(y\widetilde{b}g(x)) = g(\beta_k(y)\widetilde{b}x) - g(\beta_k(y\widetilde{b})x) = 0$   $(g \in \text{Hom}(_BA, _BB), x, y \in A) \Longrightarrow (g(\widetilde{b}x) - \widetilde{b}(g(x))) \beta_k = 0 \Longrightarrow g(\widetilde{b}x) - \widetilde{b}g(x) = 0$  as desired. In particular,  $\beta_k \in \text{Hom}(_{\widetilde{B}}A_{\widetilde{B}}, _{\widetilde{B}}B_{\widetilde{B}})$  and  $_{\widetilde{B}}A|_{\widetilde{B}}\widetilde{B}$ . It follows that the proposition for a left QF extension has be shown. The case of Frobenius extesion is now obvious. Thus our proof is complete.

Let  $B_0$  be the subring of B generated as a ring by the identity element of B and by all the elements of the form f(a) ( $a \in A$ ,  $f \in \text{Hom}(A_B, B_B)$ ),  $\overline{B}$  the double centraizer of  $A_B$  (i. e.,  $\overline{B} = [\text{End}_{(E_{\text{nd}}(A_B)}A)]^{\circ}$ ), and T an arbitrary intermediate subring of  $\overline{B}/\varphi$  ( $B_0$ ). Then the proof of the above proposition (taking  $A_A$  as  $M_A$ ) shows the following assertion obtained in Morita [6, Ths 1.1 and 1.3].

**Proposition 1.4.** Under the same notations as above, if A/B is right QF (resp. left QF, Frobenius) then so is A/T.

2. In this section, B denotes a subring of a ring A,  $\varphi: B \longrightarrow A$  the inclusion mapping, T an intermediate subring of A/B and Z the ring of intergers. Moreover, for a subset S of A, S' denotes the centra-

lizer of S in A.

Under the above notations, we shall prove the following as an application of Theorem 1.1.

**Theorem 2.1** (cf. [4, Th. 2.6]). If A/B is a QF extension with  $_{T}T \otimes \otimes_{B}A_{A} \mid _{T}A_{A}$  then B'/T' is a QF extension with  $_{A}A \otimes _{T'}B'_{B'} \mid _{A}A_{B'}$ , and moreover T'' (= (T')')/B'' is a QF extension such that

$$T \otimes_{B}B'' \longrightarrow T'', \ t \otimes b'' \longrightarrow tb''$$

and

$$B'' \otimes_B T \longrightarrow T'', \ b'' \otimes t \longmapsto b''t$$

are isomorphisms.

Before going to prove the theorem, we note some facts. For a T-A-module X, we can give X a left  $T \otimes_{\mathbf{z}} A^{\circ}$ -module structure in a natural way:  $(t \otimes a^{\circ}) \cdot x = txa \ (a \in A, \ t \in T, \ x \in X)$ . Conversely if X is a left  $T \otimes_{\mathbf{z}} A^{\circ}$ -module then X has a T-A-module structure. Hence the  $T \otimes_{\mathbf{z}} A^{\circ}$ -endomorphism ring of left  $T \otimes_{\mathbf{z}} A^{\circ}$ -module A can be identified with the centralizer T' of T in A naturally. The following lemma can be easily verified.

**Lemma 2.2.** 1)  $T \otimes_B A \cong (T \otimes A^\circ) \otimes_{B \otimes A} A^\circ$  as left  $T \otimes A^\circ$ -modules by the correspondence  $t \otimes a \longmapsto t \otimes 1^\circ \otimes a$ , where the unspecified tensor products of the right hand are taken over Z.

2) For each element  $\sum t_i \otimes a_i \in (T \otimes_B A)^T = \{ r \in T \otimes_B A | tr = \gamma t \text{ for all } t \in T \}$ , a mapping

$$\eta \left(\sum t_i \otimes a_i\right) \colon B' \longrightarrow T', \quad \left[\eta \left(\sum t_i \otimes a_i\right)\right](b') = \sum t_i b' a_i$$

is a left T'-homomorphism.

Lemma 2.3. 1)  $_{T}T \bigotimes_{B} A_{A}|_{T}A_{A}$  is equivalent to the existence of a finite number of elements  $b'_{m} \in B'$  and  $\sum_{n} t_{mn} \bigotimes a_{mn} \in (T \bigotimes_{B} A)^{T}$   $(m = 1, \dots, m_{0})$  such that

- 2) Assume  $_TT \otimes_B A_A |_T A_A$  and let  $(b'_m; \sum_n t_{mn} \otimes a_{mn})_m$  be as above 1). Then there holds the following:
  - i)  $\sum_{m,n} f(tt_{mn}) \ a_{mn} \ t_1 \ b'_m = f(tt_1) \ (t, \ t_1 \in T, \ f \in \text{Hom}(T_B, \ T_B)).$
- ii) T'B' is f.g. projective with a dual basis  $(\gamma_m, b'_m)_m$ , where  $\gamma_m = \gamma (\sum_n t_{mn} \otimes a_{mn}) (m=1, \dots, m_0)$ .

*Proof.* 1) and 2-i) can be verified easily. Let  $b' \in B'$  be an arbitrary element. A mapping  $\lambda_{b'} \colon A \longrightarrow A$  defined by  $\lambda_{b'}(a) = b'a$  is a left B-homomorphism obviously. Operating  $Id_T \otimes \lambda_{b'} \colon T \otimes_B A \longrightarrow T \otimes_B A$  to (37), we have

$$\sum_{m,n} t_{mn} \otimes b' a_{mn} b'_{m} = 1 \otimes b',$$

which yields

$$b' = \sum_{m,n} t_{mn} b'_{m} = \sum_{m} \gamma_{m}(b')b'_{m}$$
.

This implies ii) from Lemma 2. 2 2).

We are now ready for proving the theorem.

Proof of Theorem 2.1. Assume that T/B is a QF extension with  $_{T}T \otimes_{B}A_{A} \mid_{T}A_{A}$ . Let  $(\alpha_{i}; \sum_{j} x_{ij} \otimes y_{ij})_{i}$  and  $(\beta_{k}; \sum_{k} w_{ki} \otimes z_{ki})_{k}$  be respective right QF and left QF systems for T/B and let  $(b'_{m}; \sum_{n} t_{mn} \otimes a_{mn})_{m}$  be as Lemma 2.31). Since  $_{T'}B'$  is f. g. projective by Lemma 2.32-ii), a mapping  $\sigma: A \otimes_{T'}B' \longrightarrow \text{Hom } (\text{Hom}(_{T'}B', _{T'}T')_{T'}, A_{T'})$  defined by  $[\sigma(a \otimes b')](g) = a.g(b')$  is an A-B'-isomorphism (see (1)).

Setting 
$$\gamma_{k,l} = \sum_{m,n} \beta_k (z_{kl} t_{mn}) a_{mn} \otimes b'_m \in A \otimes_{T'} B',$$

we have by Lemma 2. 3 2-i)

$$[\sigma(\gamma_{k,l}b')](\gamma_{m'}) = \sum_{n'} \beta_k (z_{kl} t_{m'n'}) b'a_{m'n'} = [\sigma(b' \gamma_{k,l})](\gamma_{m'}).$$

However,  $\{\gamma_{m'}\}_{m'}$  is a generating set of  $\operatorname{Hom}(_{T'}B',_{T'}T')_{T'}$  by Lemma 2. 3 2-ii). Therefore the above equation shows  $\sigma(\gamma_{k,l} b') = \sigma(b' \gamma_{k,l})$ , that is,  $\gamma_{k,l} \in (A \otimes_{T'}B')^B$  for each k, l.

Similarly we have 
$$\left[\sigma\left(\sum_{k,l}w_{kl}\,\gamma_{k,l}\right)\right]\left(\eta_{m'}\right)=\left[\sigma\left(1\otimes1\right)\right]\left(\eta_{m'}\right)$$
, and so,  $\sum_{k,l}w_{kl}\,\gamma_{k,l}=1\otimes1\in A\otimes_{T'}B'$ .

It follows that  ${}_{A}A \otimes {}_{T'}B'_{B'} | {}_{A}A_{B'}$  and  $(\eta_{k,l'} w_{kl})_{k,l}$  is a dual basis for  $T''_{B''}$  by Lemma 2.3 (left and right are replaced), where  $\eta_{k,l}: T'' \longrightarrow B''$  is defined by  $\eta_{k,l}(t'') = \sum_{m,n} \beta_k (z_{kl} t_{mn}) a_{mn} t'' b'_m \quad (t'' \in T'')$ . Then  $\eta_{k,l}(t) = \beta_k (z_{kl} t)$  for  $t \in T$ . Thus, if  $\sum t_r \otimes a_r \in T \otimes {}_{B}B''$  is an element with  $\sum t_r a_r = 0$ , then

$$\sum t_r \otimes a_r = \sum \sum_{k,l} w_{kl} \beta_k (z_{kl} t_r) \otimes a_r$$

$$= \sum_{k,l} w_{kl} \otimes \gamma_{k,l} (\sum t_r a_r) = 0,$$

which implies that a canonical mapping  $T \otimes_B B'' \ni t \otimes b'' \longmapsto tb'' \in T''$  is an injection. However, recalling the above dual basis for  $T''_{B''}$ , it is obviously surjective, and so, it is a bijection. Moreover our assump-

tions, T/B being QF and  $_{T}T \otimes _{B}A_{A} \mid _{T}A_{A}$ , yield

$$_{A}A \otimes _{B}T_{T} \sim {_{A}}\operatorname{Hom}(T_{B}, A_{B})_{T} \cong {_{A}}\operatorname{Hom}(T \otimes _{B}A_{A}, A_{A})_{T}$$

$$|_{A}\operatorname{Hom}(A_{A}, A_{A})_{T} \cong {_{A}}A_{T}.$$

Therefore a symmetric argument shows that a mapping  $B'' \otimes_B T \ni b'' \otimes t \mapsto b'' t \in T''$  is a bijection.

On the other hand, it is easy to see that  $(\alpha_i \otimes Id_{A^\circ}: \sum_J (x_{ij} \otimes 1^\circ) \otimes (y_{ij} \otimes 1^\circ))_i$  and  $(\beta_k \otimes Id A^\circ; \sum_l (w_{kl} \otimes 1^\circ) \otimes (z_{kl} \otimes 1^\circ))_k$  are respective right QF and left QF systems for  $T \otimes_{\mathbf{z}} A^\circ/B \otimes_{\mathbf{z}} A^\circ$ . Since  $(T \otimes_{\mathbf{z}} A^\circ) \otimes_{B \otimes A^\circ} A \cong T \otimes_B A \mid A$  as left  $T \otimes_{\mathbf{z}} A^\circ$ -modules by Lemma 2.21) andour assumption, we can apply Theorem 1.1 to the left module A over the QF extension  $T \otimes_{\mathbf{z}} A^\circ/B \otimes_{\mathbf{z}} A^\circ$ . Thus  $\operatorname{End}(B \otimes_A A^\circ) / \operatorname{End}(B \otimes_A A^$ 

- 3. Let  $\varphi: B \longrightarrow A$  be a ring homomorphism, U a right B-module and V a right A-module. Put  $B^* = \operatorname{End}(U_B)$  and  $A^* = \operatorname{End}(V_A)$ . In a natural way,  $\operatorname{Hom}(A_B, U_B)$  is a  $B^*$ -A-module. In the subsequent study, we assume always the following conditions.
- (38) There exists an A-isomorphism  $\alpha: V \longrightarrow \operatorname{Hom}(A_B, U_B)$ .
- (39)  $V_B | U_B$ ;  $\sum g_t \cdot f_t = Id_V$  for some  $f_t : V_B \longrightarrow U_B$  and  $g_t : U_B \longrightarrow V_B$   $(t=1, \dots, t_0)$ .

By (38), V may be regarded as a  $B^*$ -A-module. Further  $\alpha$  induces a ring homomorphism  $\varphi^*: B^* \longrightarrow A^*$  defined by  $\varphi^*(b^*)(v^*) = \alpha^{-1} (b^* \alpha(v))$  or  $\varphi^*(b^*) = \alpha^{-1} \cdot b^* \cdot \alpha$  ( $b^* \in B^*$ ,  $v \in V$ ). On the other hand, (39) gives the canonical isomorphism

$$\pi: V \longrightarrow \operatorname{Hom}(B_* \operatorname{Hom}(V_B, U_B)), B_* U), [\pi(v)] (f) = f(v).$$

Moreover, we have a chain of  $B^*-A^*$ -isomorphisms



where the vertical mappings are canonical. Then the composite  $\xi: A^* \longrightarrow \operatorname{Hom}(V_B, U_B)$  of these isomorphisms is a  $B^*-A^*$ -isomorphism such that

$$[\xi(a^*)](v) = [\alpha(a^*v)](1) \qquad (a^* \in A^*, v \in V).$$

Therefore, we have a left  $A^*$ -isomorphism

(38\*) 
$$\alpha^* = \operatorname{Hom} (\xi, Id_v) \cdot \pi : V \longrightarrow \operatorname{Hom} (_{B*}A_*, _{B*}U)$$
$$[\alpha^* (v)] (a^*) = [\alpha(a^* v)] (1).$$

Accordingly, a ring homomorphism  $\widetilde{\varphi} \colon \widetilde{B} = [\operatorname{End}_{(B*}U)]^{\circ} \longrightarrow \widetilde{A} = [\operatorname{End}_{(A*}V)]^{\circ}$  can be induced by  $\alpha^*$  in a similar way. For convenience, the canonical ring homomorphisms  $A \longrightarrow \widetilde{A}$  and  $B \longrightarrow \widetilde{B}$  will be denoted by  $\rho$ . Under the above notations, we can obtain the following which corresponds to Theorem 1.1.

**Theorem 3.1.** Assume that  $U_B$  and  $V_A$  satisfy (38) and (39). If  $[A/B, \varphi]$  is QF (resp. Frobenius), then there hold the followings:

- 1)  $[A^*/B^*, \varphi^*]$  is QF (resp. Frobenius).
- 2)  $_{A*}V \cong _{A*} \text{Hom}(_{B*}A^*, _{B*}U).$
- 3)  $_{B*}V \mid _{B*}U.$
- 4)  $[\widetilde{A}/\widetilde{B}, \widetilde{\varphi}]$  is QF (resp. Frobenius) such that

$$\widetilde{B} \otimes_{\scriptscriptstyle{B}} A \longrightarrow \widetilde{A}, \ \widetilde{b} \otimes a \longmapsto \widetilde{b} \rho \ (a)$$

and

$$A \otimes_{\scriptscriptstyle B} \widetilde{B} \longrightarrow \widetilde{A}, \ a \otimes \widetilde{b} \longmapsto \rho \ (a) \ \widetilde{b}$$

are isomorphisms.

Proof. The assertion 2) has be shown already. Let us set  $V' = \operatorname{Hom}(A_B, U_B)$  and  $\Delta = \operatorname{End}(A_B)$ . Then we can consider A as a subring of  $\Delta$  and V' a  $B^*-\Delta$ -module in a natural way. Put  $\Lambda = \operatorname{End}(V'_A)$  and  $\Gamma = \operatorname{End}(V'_A)$ . We have then a ring homomorphism  $\psi : B^* \longrightarrow \Gamma$  defined by  $\psi(b^*)(v') = b^*v'$  ( $b^* \in B^*$ ,  $v' \in V'$ ) and a ring isomorphism  $\overline{\psi} : A^* \longrightarrow \Lambda$  induced by  $\alpha$ . Then it is easy to see  $\overline{\psi} \cdot \varphi^* = \iota \cdot \psi$ , where  $\iota$  denotes the inclusion mapping of  $\Gamma$  to  $\Lambda$ .

Let  $(\alpha_i ; \sum_j x_{ij} \otimes y_{ij})_i$  and  $(\beta_k ; \sum_l w_{kl} \otimes z_{kl})_k$  be respective right QF and left QF systems for A/B and let  $(\delta_n, a_n)_{1 \le n \le n_0}$  be a dual basis for  $A_B$ . Define  $u_n : A \otimes_B A_A \longrightarrow A_A$  and  $v_n : A_A \longrightarrow A \otimes_B A_A$  by  $u_n(x \otimes y) = \delta_n(x)y$  and  $v_n(x) = a_n \otimes x$  respectively. Then  $\sum_n v_n \cdot u_n = Id$ , and so  $A \otimes_B A_A \mid A_A$ . Therefore we can apply Theorem 1.1 to the right module A over the QF extension A/B. Thus we know by its

proof that  $\Delta/A$  is a QF extension with a right QF system  $(\alpha_i'; \sum_{k,n} c_{k,n} \otimes d_{k,n}^{(i)})_i$  and a left QF system  $(\beta_k'; \sum_n c_{k,n} \otimes U_n)_k$ ,

where 
$$\left[\alpha_i'\left(\delta\right)\right]\left(a\right) = \sum_j \delta(ax_{ij})y_{ij}$$
 (see (25))

$$[\beta'_k(\delta)] (a) = \sum_{l} \delta(aw_{kl}) z_{kl}$$
 (see (25))

$$c_{k,n}(a) = a_n \beta_k(a) \qquad (see (17))$$

$$d_{k,n}^{(i)}(a) = \delta_n(a) \sum_{l} \alpha_l(w_{kl}) z_{kl} \qquad (see (26))$$

$$U^{n}(a) = \delta_{n}(a)$$
  $(\delta \in \Delta, a \in A)$  (see (15)).

Further define  $\bar{f}_t: V' \otimes {}_{A}\Delta_{A} \longrightarrow V'_{A}$  and  $\bar{g}_t: V'_{A} \longrightarrow V' \otimes {}_{A}\Delta_{A}$  by

$$\begin{split} & [\bar{f}_t(w \otimes \delta)](a) = (f_t \cdot \alpha^{-1}) \ (w\delta \ (a)) \\ & \bar{g}_t(w) = \sum_n \left( (\alpha \cdot g_t) \ (w \ (a_n)) \right) \otimes \delta_n \qquad (w \in V', \delta \in \Delta, a \in A) \end{split}$$

Then

$$\sum \bar{g}_t \cdot \bar{f}_t = Id$$
;  $V' \otimes {}_{A}\Delta_{\Delta} | V'$ .

Hence we can apply Theorem 1.1 to the right module V' over the QF extension  $\Delta/A$  with the above left QF and right QF systems. Thus we know that  $\Lambda/\Gamma$  is a QF extension with a right QF system

$$(40) \qquad (\alpha_t^+: \sum_{k,l} c_{k,l}^+ \otimes d_{k,l}^{+(i)})_i$$

and a left QF system

$$(\beta_k^+; \sum_i c_{k,i}^+ \otimes U_i^+)_k$$

where

$$[\alpha_{t}^{+}(\lambda)] (w) = \sum_{k,n} (\lambda(w \cdot c_{k,n})) \cdot d_{k,n}^{(i)}$$

$$[\beta_{t}^{+}(\lambda)] (w) = \sum_{n} (\lambda (w \cdot c_{k,n})) \cdot U_{n}$$

$$c_{k,t}^{+}(w) = (\gamma \cdot (Id_{V'} \otimes \beta_{k}') \cdot \tilde{g}_{t})(w)$$

$$d_{k,t}^{+(i)} (w) = \bar{f}_{t}(w \otimes \sum_{n} \alpha_{i}' (c_{k,n}) \cdot U_{n})$$

$$U_{t}^{+}(w) = \bar{f}_{t} (w \otimes 1)$$

$$(w \in V', \lambda \in \Lambda, \gamma : V' \otimes_A A \ni w \otimes a \longmapsto wa \in V')$$

Moreover we can see that

$$\begin{split} \left[\alpha_{i}^{+}\left(\lambda\right)\left(w\right)\right]\left(a\right) &= \left[\lambda\left(w\cdot a\cdot \alpha_{i}\right)\right]\left(1\right) \\ \left[\beta_{k}^{+}\left(\lambda\right)\left(w\right)\right]\left(a\right) &= \left[\lambda\left(w\cdot a\cdot \beta_{k}\right)\right]\left(1\right) \\ c_{k,i}^{+}\left(w\right) &= \sum_{l}\left(\left(\alpha\cdot g_{l}\right)\left(w\left(w_{kl}\right)\right)\right)\cdot z_{kl} \\ \left[d_{k,l}^{+(i)}\left(w\right)\right]\left(a\right) &= \left(f_{l}\cdot \alpha^{-1}\right)\left(w\cdot a\sum_{j}\beta_{k}\left(x_{ij}\right)y_{ij}\right) \\ \left[U_{l}^{+}\left(w\right)\right]\left(a\right) &= \left(f_{l}\cdot \alpha^{-1}\right)\left(w\cdot a\right) & \left(w\in V',\ a\in A\right). \end{split}$$

Let us define further  $\alpha_i^*$ ,  $\beta_k^* \in \text{Hom}(_{B*}A^*_{B*}, _{B*}B^*_{B*})$  by

$$[\alpha_i^* (a^*)] (u) = [\alpha (a^* \alpha^{-1} (\lambda_u \cdot \alpha_i))] (1)$$

$$[\beta_k^* (a^*)] (u) = [\alpha (a^* \alpha^{-1} (\lambda_u \cdot \beta_k))] (1),$$

where for  $u \in U$ ,  $\lambda_u$  denotes a mapping  $B \ni b \longmapsto ub \in U$ . We have then  $\psi \cdot \alpha_i^* = \alpha_i^+ \cdot \overline{\psi}$  and  $\psi \cdot \beta_k^* = \beta_k^+ \cdot \overline{\psi}$ . It follows that

$$(40^*) \qquad (\alpha_i^* \; ; \; \sum_{k,l} c_{k,l}^* \otimes d_{k,l}^{*(i)})_i$$

is a right QF system and

$$(41^*) \qquad (\beta_k^* \; ; \; \sum_t c_{k,t}^* \otimes U_t^*)_k$$

is a left QF system for  $[A^*/B^*, \varphi^*]$ , where  $c_{k,t}^* = \overline{\psi}^{-1}(c_{k,t})$ ,  $d_{k,t}^{*(i)} = \overline{\psi}^{-1} (d_{k,t}^{+(i)})$  and  $\overline{\psi}^{-1}(U_t^*)$ . Moreover we can see that

(44) 
$$c_{k,t}^*(v) (= \alpha^{-1}(c_{k,t}^+(\alpha(v)))) = \sum_{l} (g_{l}(\alpha(v)(w_{kl}))) z_{kl}$$

$$(45) \qquad (\alpha \ (d^{*(i)}_{k,t} \ (v))) \ (a) \ (= [d^{+(i)}_{k,t} \ (a \ (v))](a)) = f_t \ (va\sum_i \beta_k \ (x_{ii}) \ y_{ij})$$

(46) 
$$[\alpha (U_t^* (v))] (a) (= [U_t^+ (\alpha(v))](a)) = f_t(va) .$$

On the other hand, if we define  $f_n^*: {}_{B*}V \longrightarrow_{B*}U$  and  $g_n^*: {}_{B*}U \longrightarrow_{B*}V$  by  $f_n^*(v) = [\alpha(v)](a_n)$  and  $g_n^*(u) = \alpha^{-1}(\lambda_u \cdot \delta_n)$ , then  $\sum g_n^* \cdot f_n^* = Id_v$ , which shows 3).

Now 1), 2) and 3) enable us to use the above argument to the QF extension  $A^*/B^*$  with the left QF system (41\*) and the right QF

system (40\*). So, let  $\widetilde{c}_{i,n}$ ,  $\widetilde{d}_{i,n}^{(k)}$  and  $\widetilde{a}_n$  be in  $\widetilde{A}$  such that

(44') 
$$v\widetilde{c}_{t,n} = \sum_{k,l} c_{k,l}^* \{g_n^* ((\alpha^* (v)) (d_{k,l}^{*(t)}))\}$$

(45') 
$$\left[ \alpha^* \left( \widetilde{vd}_{i,n}^{(k)} \right) \right] \left( \alpha^* \right) = f_n^* \left( \sum_{t} \left( c_{k,t}^* \cdot \alpha_i^* \left( U_t^* \right) \right) \left( \alpha^* v \right) \right)$$

(46') 
$$[\alpha^* (va_n)] (a^*) = f_n^* (a^*v).$$

Then 
$$\left[\alpha \left(a^* \widetilde{va_n}\right)\right] (1) = \alpha \left(a^* va_n\right) (1),$$

and so, 
$$[\xi(a^*)] (\widetilde{va_n}) = [\xi(a^*)] (va_n).$$

Since  $\xi$   $(A^*) = \text{Hom}(V_B, U_B)$  and  $V_B \mid U_{B'}$  the last implies  $\tilde{a}_n = \rho$   $(a_n)$ . Furthermore, the right hands of (44') and (45') are equal to  $v \sum_i \delta_n (x_{ij}) y_{ij}$  and  $v \sum_i w_{ki} \alpha_i (z_{ki} a_n)$ , respectively, and so,

$$\widetilde{c}_{i,n} = \rho \left( \sum_{j} \delta_{n} \left( x_{ij} \right) y_{ij} \right),$$

$$\widetilde{d}_{i,n}^{(k)} = \rho \left( \sum_{l} w_{kl} \alpha_{i} \left( z_{kl} \alpha_{n} \right) \right).$$

It follows that

$$\sum_{l,n} \widetilde{d}_{i,n}^{(k)} \otimes \widetilde{c}_{i,n} = \sum_{l} \rho(w_{kl}) \otimes \rho(z_{kl}),$$

$$\sum_{n} \widetilde{a}_{n} \otimes \widetilde{c}_{i,n} = \sum_{l} \rho(x_{ij}) \otimes \rho(y_{ij}) \text{ in } \widetilde{A} \otimes \widetilde{\beta} \widetilde{A}.$$

Therefore, if we define  $\widetilde{\alpha}_i$ ,  $\widetilde{\beta}_k \in \operatorname{Hom}(\widetilde{\widetilde{\mathfrak{g}}} A \widetilde{\widetilde{\mathfrak{g}}}, \ \widetilde{\widetilde{\mathfrak{g}}} B \widetilde{\widetilde{\mathfrak{g}}})$  by

(42') 
$$\widetilde{u\alpha_i}(\widetilde{a}) = \{\alpha^* \left( (\alpha^{*-1} \left( \rho_u \cdot \alpha_i^* \right) \right) \widetilde{a} \right) \} (1_{A*})$$

$$(43') u\widetilde{\beta}_{k}(\widetilde{a}) = \{\alpha^{*} ((\alpha^{*-1} (\rho_{u} \cdot \beta_{k}^{*})) \cdot \widetilde{a})\} (1_{A*})$$

 $(u \in U, \ \rho_u : B^* \ni b^* \longmapsto b^*u \in U)$ , we know that  $(\widetilde{\beta}_k : \sum_l \rho \ (w_{kl}) \otimes \rho(z_{kl}))_k$  and  $(\widetilde{\alpha}_i : \sum_l \rho \ (x_{ij}) \otimes \rho(y_{ij}))_k$  are respective left QF and right QF systems for  $[\widetilde{A}/\widetilde{B}, \ \widetilde{\varphi}]$ . Moreover it is easy to see  $\widetilde{\alpha}_i \ (\rho \ (a)) = \rho(\alpha_i \ (a))$  and  $\widetilde{B}_k(\rho(a)) = \beta_k(a)$  for  $a \in A$ . Therefore, as was mentioned in the proof of Theorem 1.1, we have the latter half of 4). Similarly we can show the assertion for a Frobenius extension. Thus our proof is complete.

Remark. Under the same assumption as the theorem, let us consider the following diagram of functors:

$$\begin{array}{ccc} & \overline{D}_1 \\ & \operatorname{Mod}_A & \longrightarrow {}_{A^*} \operatorname{Mod} \\ S, & T & \overline{D}_2 & & \uparrow \\ & D_1 & & \uparrow \\ & \operatorname{Mod}_B & \longmapsto {}_{B^*} \operatorname{Mod} \\ & D_2 & & \end{array}$$

where  $Mod_B$  (resp.  $_B*$  Mod) denotes the category of right B (resp. left  $B^*$ )-modules and

$$\begin{array}{lll}
 D_1 &= \operatorname{Hom}_B(-, \ U_B), & D_2 &= \operatorname{Hom}_{B^*}(-, \ _{B^*}U) \\
 \overline{D}_1 &= \operatorname{Hom}_A(-, \ V_A), & \overline{D}_2 &= \operatorname{Hom}_{A^*}(-, \ _{A^*}V) \\
 S &= - \otimes \ _{B}A_A &, & T &= \operatorname{Hom}_B(A_B, \ -) \\
 S^* &= \ _{A^*}A^*_{B^*} \otimes - &, & T^* &= \operatorname{Hom}_{B^*}(_{B^*}A^*, \ -).
 \end{array}$$

Then the functors  $\overline{D}_1 \circ S$ ,  $T^* \circ D_1 : \operatorname{Mod}_B \longrightarrow_{A^*} \operatorname{Mod}$  are eqivalent. The same holds for the functors  $\overline{D}_2 \circ S^*$ ,  $T \circ D_2 : {}_{B^*} \operatorname{Mod} \longrightarrow \operatorname{Mod}_A$ . In fact,  $(\overline{D}_1 \circ S)(X) = \operatorname{Hom}(X \otimes_B A_A, V_A)$ 

$$\cong \operatorname{Hom}(X_B, \operatorname{Hom}(A_A, V_A)_B)$$

$$\cong \operatorname{Hom}(X_B, V_B)$$

$$\operatorname{Hom}(Id_X, \alpha^*)$$

$$\cong \operatorname{Hom}(X_B, \operatorname{Hom}(_B * A^*, _B * U)_B)$$

$$\cong \operatorname{Hom}(_B * A, _B * \operatorname{Hom}(X_B, U_B))$$

$$= (\mathbf{T}^* \circ \mathbf{D}_1)(X) \qquad (X \in \operatorname{Mod}_B).$$

Thus, if we define  $\eta_X : (\overline{D}_1 \circ S)(X) \longrightarrow (T^* \circ D_1)(X)$  by the composite of these isomorphisms, then  $\eta_X$  is a left  $A^*$ -isomorphism which is natural in  $X \in \operatorname{Mod}_B$  obviously. The second assertion can be shown similarly.

**Corollary.** Suppose that  $U_B$  is an f.g. injective cogenerator and B is right artinian. Put  $V = \text{Hom}(A_B, U_B)$ . If  $[A/B, \varphi]$  is QF (resp. Frobenius) then  $[A^*/B^*, \varphi^*]$  is QF (resp. Frobenius).

**Proof.** By our assumption A is right artinian and V is an f.g. injective cogenerator as an A, hence as a B-module. Thus  $V_B \mid U_B$ , and so this corollary is a direct consequence of the theorem.

Remark 1) This corolllary also can be seen as follows: In what follows, for a ring R, we shall denote by  $\mathbb{O}_R$  (resp.  $_R\mathbb{O}$ ) the full subcategory of  $\mathrm{Mod}_R$  (resp.  $_R\mathrm{Mod}$ ) consisting of all f. g. right (resp. left) R-modules. By our assumption,  $A^*$  and  $B^*$  are both left artinian,  $_B*U$  and  $_A*V$  are both f. g. injective cogenerators,  $A = [\mathrm{End}(_A*V)]^\circ$  and  $B = [\mathrm{End}(_B*U)]^\circ$ , and further  $D = (D_{10}, D_{20})$  (resp.  $\overline{D} = (\overline{D}_{10}, \overline{D}_{20})$ ) gives a duality between  $\mathbb{O}_B$  and  $\mathbb{O}_B*$  (resp. between  $\mathbb{O}_A$  and  $_A*\mathbb{O}$ ), where ( )<sub>0</sub> denotes the restriction of ( ) to  $\mathbb{O}$ . <sup>3)</sup> However, as was mentioned in the proof of the corollary, we have  $V_B|U_B$  and  $_B*V|_{B*}U$ , and so, Remark to Theorem 3.1 yields that

$$\overline{D}_{{\scriptscriptstyle 2\,0}}\circ S^{*}{_{\scriptscriptstyle 0}} \simeq T_{{\scriptscriptstyle 0}}\circ \overline{D}_{{\scriptscriptstyle 2\,0}}, \qquad \overline{D}_{{\scriptscriptstyle 1\,0}}\circ S_{{\scriptscriptstyle 0}} \simeq T^{*}{_{\scriptscriptstyle 0}}\circ \overline{D}_{{\scriptscriptstyle 1\,0}}.$$

Moreover the assumption that A/B is QF (resp. Frobenius) yields  $S_0 \sim (\text{resp.} \simeq) T_0$ . Thus

$$S^*_{o} \simeq \overline{D}_{10} \circ \overline{D}_{20} \circ S^*_{o} \simeq \overline{D}_{10} \circ T_{o} \circ \overline{D}_{20} \sim (resp. \simeq) \overline{D}_{10} \circ S_{o} \circ \overline{D}_{20}$$
$$\simeq T^*_{o} \circ \overline{D}_{10} \circ \overline{D}_{20} \simeq T^*_{o}.$$

and so  $A^*/B^*$  is QF (resp. Frobenius).

<sup>3)</sup> See [1, Th. 6].

<sup>4)</sup> See [6, Th. 5.1].

2) With the same assumptions as in the corollary, if  $[A/B, \varphi]$  is QF then  $\varphi$  and  $\varphi^*$  are both monic: Let  $b \in B$  and  $b^* \in B^*$  be elements with  $\varphi(b) = 0$  and  $\varphi^*(b^*) = 0$ . Since B is right artinian,  $U_B$  is f. g. injective and  $V_B$  is a cogenerator, we have therefore  $U_B|V_B$ . As  $Vb = V\varphi(b) = 0$ , Ub = 0. Thus the faithfulness of  $U_B$  implies b = 0. Finally  $\varphi^*(b^*) = 0 \Longrightarrow b^* \operatorname{Hom}(A_B, U_B) = 0 \Longrightarrow b^* (\operatorname{Hom}(A_B, U_B)(A)) = b^* U = 0$  as desired.

## RERERENCES

- [1] G. AZUMAYA: A duality theory for injective modules, Amer. J. Math. 81 (1959), 249-278.
- [2] F. Kasch: Projective Frobenius-Erweiterungen, Sitzungsber. Heidelberger Akad. Wiss. 1960/61, 97—121.
- [3] Y. KITAMURA: On Quasi-Frobenius extensions, Math. J. Okayama Univ. 15 (1971), 41—48.
- [4] Y. MIYASHITA: On Galois extensions and crossed products, J. Fac. Sci. Hokkaido Univ. Ser. I, 21 (1970), 97—121.
- [5] K. Morita: Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 9 (1965), 40-71.
- [6] K. MORITA: A theorem on Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 10 (1968), 79—87.
- [7] B. MÜLLER: Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964), 345—368.
- [8] T. ONODERA: Some studies on projective Frobenius extensions, J. Fac. Sci. Hokkaido Univ. Ser. I, 18 (1964), 89—107.
- [9] K. Sugano: Supplemetary results on cogenerators, Osaka J. Math. 6 (1969), 235— 249.

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY

(Received October 12, 1973) (Revised June 25, 1974)