g"ADICAL ANALOGUES OF SOME ARITHMETICAL
FUNCTIONS

IEKATA SHIOKAWA

1. Introduction

Let g=2 be a fixed integer. Any positive integer # can be
expressed uniquely in the form

k
n = E ag”™ = a,a, - a
i=1
where each @, is one of 0, 1, -+, g — 1, and @, is different from 0
or, equivalently,

_ _ | logn
where [z] denotes the integral part of the real number z. R. Bellman
and H.N. Shapiro [1] pointed out the analogy existing between the
dyadic decimal expression of a positive integer and the representation
of the integer as the product of primes in the standard form. In this
paper we attempt to develop their idea and exhibit some analogous
facts in the g-adic representation system of positive integers.

A positive integer # is said to be g-adically divisible by a positive
integer m if k(m) < k(n) and a(m) < a(n) for each i, 1<i< k(n).
We then say that m g-adically divides # or m is a g-adical divisor
of #, and indicate this by m|,n. We say also that »# is a g-adical
multiple of m. It will be natural to understand that the integer 0 is
a g-adical divisor of any non-negative integer. We note that d|,n if
and only if # — d|;m. Let m, n be two non-negative integers. Their
greatest common g-adical divisor, denoted by (n, m), is defined to be
the largest positive integer which g-adically divides both » and m.
If (n, m), =0, we say that = is g-adically prime to m. The least
common g-adic mutiple {n, m} of two non-negative integers » and m is
the smallest positive integer which is g-adically divisible by both =
and m. Then it is easy to see that »# + m = (n, m), 4+ {n, m},. Accord-
ing to our definitions, all powers of g will play in a sense a role of
‘prime numbers’ and this regulality of ‘primes’ brings us simpler and
more interesting consequences than those in ordinary multiplicative
number theory.
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76 1. SHIOKAWA

In this paper, by an arithmetical fnnction is meant a complex-
valued function which is defined on the set of non-negative integers, An
arithmetical function f is said to be g-adically additive if f(m +n)=
f(m) + f(n), whenever (m, n),=0. (This concept was first introduced

-by R. Bellman and H. N. Shapiro in (1) for the special case of g = 2.)
Furthermore if f(m-+n) = f(m) + f(n) for any non-negative integers m
and n, f is called completely (g-adically) additive. Clearly f(0) =0
if f is g-adically additive. An arithmetical function f is g-adically
multiplicative if (i) f(0)=1 and (ii) f(m + n) = f(m)f(n), whenever
(m, n), =0. 1f, further, the relatin f(m + n) = f(m) f(n) holds for all
non-negative integers m and n, f is called completely (g-adically)
multiplicative. Now, the following four propositions can easily be
verified :

Proposition 1. 1. If f is g-adically multiplicative then
k-1 ¢9-1 . 4
X f) =1 T f(igh), r=1
0sn<p i=0 =0

Propositin 1. 2. If f is a g-adically multiplicative function whose

sum Y f(n) is absolutely convergent then
n=0

=3 e g=-1
2 fm)y=10 % f(ig").
n=0 k=0 j=0

If, further, f is completely multiplicative then

o - l_f(gtn)
Ef(n) ‘_kI;IO 1_f(gk) .

Proposition 1.3. If f is g-adically multiplicative then ;Z f(d) is
d on
also g-adically multiplicative.

Proposition 1.4. If f is g-adically multiplicative then

-1 %
2@ =1 % f(ig"™
lilun =1 j=o

where k = k(n) and a, = a(n).

Some important arithmetical functions in multiplicative number
theory have obvious analogues when translated into the language of
the g-adic decimal expression. Thus, the function 2,(n), the g-adical
analogue of the arithmetical function Q(#) giving the total number of
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prime factors of #n, is defined by

k(L)
Q(n) = ,Z 1 = =Z] a(n).
Jail'gn
Similary we define the g-adical analogue of the function w,(n), the
number of different prime factors of #, by setting

wy (n) = Z 1.

”'lv"

Obviously, both of the function £,(n) and ,(n) are g-adically additive.
The analogue of the Mobius function u(#) can be written by

(—1)™ i 2y(n) = wy(n)

Hg\n) = .
w(n) {O otherwise,
Moreover we define
500(’1) =OS?S1;1
(m,n)q=0
Tv(") =211
dlo'n
and
a,{n) = d
d|l n

[

as the g-adical analogues of the Euler function ¢(#), the divisor func-
tion =(n) and the sum o(n) of the divisors of #, respectively.
In this paper all O-constants may depend possively on g.

2. The function g,(n)
Proposition 2.1. The function 1,(n) is g-adically multiplicative.

Proof. Let (m, n),=0. Suppose first that s,(m)p,(n) =0. Then,
from the g-adical additivity of £, and ®,, we have 2,(m-+n) >w,(m+n).
This implies that pg(m + n) =0. If, however, p,(m)p,(n) =0 then
2,(m + n) = w,(m + n), and so

w (m+n)

tolm + 1) = (—1)0T = (=) (= 1) = p,(m) + pyln).
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Proposition 2.2.

1 if n=20
(d) =
7o, 1) {o if n>1.

Proof. Put f(n) =§‘, 1(d). Clearly f(0) =1. TFor any integer
o
7, 0<j<<g, and k=0, we have
f(G &%) = m0) + plg) =1 —1=0.

But, from Propositions 1.3 and 2.1, f(n) is g-adically multiplicativg..
Hence, for any positive integer » we have

£on) = (2 0 8 = I Flai g9 = 0.

Proposition 2.3. (Inversion formula) Let f be an arithmetical
Sunction. If

hn) =3 fld), n=0,

then

Flm) = 3, 1dd) hn—d) = 2, tln—d)d), 20,
and conversely.
Proof. If h(n) =3 f(d), n=0, then
= 4 @) = 2 ) 3 /00
= pIPONCY =d§:f<d') En}fgd) = f(n).

=

n

dlon

(using Proposition 2. 2). Convesely, if f(») - > un—adn{d), n=0,
then -

'”Zonf(d) =dlzd':"f(n—d)

-z %d proln — d — d') h(d")

=2 hd) 2 pln—d—d)=hn).

Proposition 2.4. Let f(n) be g-adically multiplicative. Then
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= 1(d) f(d) =7‘lll (1—r(g
all 13 qn

Proof. From Propositions 1.4 and 2.1. we have

n)-1 "t
@) =115 i &) £ &)
= g[ 1+ g)f(g)) =1 U —fg).
Propoition 2.5. We have

#([x]) if [x]=0 (modg)
0 otherwise.

= = {

osnsz

Proof. If n=0 (mod g) then a(n) =0, aln+ 1)=1 and a(n)

=agmn+1), 1<i<k—1, andso p(n)+ pn+1)=0. Butif n=j
(mod g), 2=<j<g—1, then £,(n) > w,n); thatis, #(n)=0. Hence
for any integer m =0 and /, IS<!/=g— 1,

2 l‘a(n) =0.

vnansv’:g+l

As the result we obtain

2 )= 3 p )

0snsz [g]os"s[_r]

_{ #([x]), if[x] =0 (mod g),
“lo  othewise.

We now write

Z‘ 1= M(a.;) and n?&; 1 = M,(x).

Ho(nd 0 F-g(n)- 1

Proposition 2.6. We have

log 2 Jeg 2
(2.1) ‘ lim supx "l‘:}?-M(x) = (g—1) og
_log 2
2.2) lim inf x ~se M(x) = 1,
and

log 2

log 2
2.3 limsup x "¢ M,(x) = —;— (g—1)teev |
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.. —log 2 _ 1
(2.4) lim inf & Tiev M, (x) = 5 -

Edad ol

Proof. Let

&
n = 2 bi Zk—‘

=1
be the dyadic development of a positive integer » where b, = 1. We
set

Gln) = g b g G(0) = 0.

Clearly G(n) is a g-adically additive and monotonically increasing
arithmetical function, Note that p(m)+0 if and only if m = G(n)
for some non-negative integer n. Thus we have

M(Gn) = X 1=n, n=0.

0SEMI<ER)

This implies that

(2.5) M= 2 1=n+1
pEm<LGE(n+1)

for any x satisfying G(#) <z < G(n + 1). Hence, by (2.5) we obtain

log 2 1o,
(2.6) max 7w M(x) = G(n) 59 n+ O(L),
Hn)LrSG(n+1)
and
log 2 o
@.7) min  xoo M(z) = Gln+1) 60 (n -+ 1).

(LT SO(n+1)

Put

W(n) = G(n) “Tors n.

Then the following inequality holds for any integers j, i<j=<#%, and
m 0= m<<27:

(2.8) W@ 25t ek 25 b ) > W (254257 oo - 257 o),
Indeed (2. 8) is true for g = 2. Suppose now that g =3. Then
log W2+ 2" oor +-25 I 4 ) —log W (25424 oo 42577 p-m)
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284270 e 42 log 2, g gt 4+ 2"+ Glm)

= 10g2,¢+2k-1+_“+2k—;+1+m log g ggk+gk—l+...+gk—1+l+ G(m)
25425 e 250425 log 2, g 4gt ot g ]

>10g2k_|_2k—1+"_+2k—j+l+2k-j IOg gloggk+gk—l+___+glz—)+l

_ 2**  log2, g't'—1 2+ 3t—1

= 10g2j+1___1' Tog glog g =log Y ) log 3,+,_3>0,

since g=3 and j=1. Using (2.8), we have, for any integer n with
<2 —1, k=1,

Wn) = WR' + 5,257 + b2 + by)

S WE + 257 + 5,258 oo+ a2 + By)

S S W@ 425 e+ 1) = W2 —1).
Then

log 2 _log3
(2.9) max W(n) = (g—1)Tes(gt—1) T (2,—1), k=1.
Fgnakt]

Therefore, from (2. 6) and.(2. 9), we get

log 3 _lg 3
lim sup « "¢ ? M(x) = lim sup G(n) Tz
Troo n—+co

_log 2 log 2
= lim max G(n) on = (g—1)iesv,
kv Fgncgt

Similary we obtain (2. 2) by using (2. 7) and the following equality ;
max W) =1 k=1,

2"511(2’“'1
which can be deduced from
logg log ¢ oz 0
plogd = (Ezi)lug'a‘g 22 Tog 2 — G(”)
biﬂ'() bt¢0

on noticing W(2*) = 1 where b, is, of course, the #-th digits in the
dyadic development of #. Finally (2. 3) (resp. (2. 4)) follows from (2. 1)
(resp. (2.2)) and Proposition 2. 5.

The proof of Proposition 2. 6 is now complete.

3. The function 2,(n)

First we estimate the magnitude of the function £,. By the
definition we readily have

(3.1) 120 =(g—1)k@m), n=1.
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But at the same time
2,g"—1) = (g—1) (k—1) and 2,(g) =1 k=1
Hence we have

; 2,(n) _ g—
o \l) —
hl}ifup logn logg’

and

lim inf Q,(n) = 1.

n -+ oo

Proposition 3.1. We have for an arbitrary g =2

x log £+ 0(x)

a()—i

lSnSa:

Moreover, for the particular case of g = 2, we have

1 (xlogx 0 = _log 3
lim sup (2 Iog 2 oise? (”)) 1= 570 2
and
hm 1nf ( x log x >0, (n)) =
2log 2 odmsz
Proof. Cf. [1], [3], [6] and [7].
Proposition 3.2. The normal order of 2, (n) is(—g—_w
! 2logg
Proof. Let n = a,a, a.,; be the g-adic decimal expression of »

where @, is not 0 and let b be an integer with 0= b<g—1. We set
N@® n)= > 1land N* (n,b) = > 1.
15igk+1

25isk+1

ﬂ-i=b lli-
Further we define
w(b, n) 7 —!—1 g and w*(b, »n) = A 7

It follows from Lemma 8.8 in [4] that for any ¢ >0 there exist a
constant §, 0<C#<C1l, depending only on g and ¢ such that the
inequality
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X1 <kg™
oxSnggktl
* 13
w(b, 13>7;

holds for all sufficiently large k. But clearly if w(b, n)>§ then

w*(b, n) > é for all sufficiently large k. Hence we have

8

1= ¥ 1<kg™
v"Sn<a"'e+' o:sn<0k“
w.m>g wo.m>E

for all sufficiently large k. This implies that
> 1=0(log x).

osn<lz
w(b, n )>E?

In other wards the inequality w(p, n) < % holds for almost all positive

integers n. (Here ‘almost all’ means that such integers »# form a set
of density 1 in the set of all positive integers.) Recalling the defini-
tion of £, we have

2,(n) = 25 NG, n).

Hence the inequality

.g;—_]‘_lgg_'_z(]_ — 26)<"Q0(ﬂ) < g:—_l]'o

g n
2 logg 2 log,g,r(1 +2¢)

holds for almost all positive integer n, which is the assertion of our
proposition.

Proposition 3.3([2]). The nnmber of integers n, n=x, satisfying
the condition

n=(mod m); 9,(n)=a (mod x)

where m>>1, r>1, [, a are integers and (r, g — 1) =1, is given
by the formula

To(x) = mir + 0, 1<1,

where % does not depend on x, m, I, a.
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4. The function ,(n)

By a reasoning similar to that of the preceding section we have

‘”a(n)__: 1
e o logn logg

and

lim inf w,(n) = 1.

n—soco

Proposition 4.1.

— &1
lSnst wy(n) z oz 2 % log x + O(x).

Proof. We first show, by inductionon %k, that
4.1) 2 on)=(g—1Dkg"", kE=1.
15n<g®

Indeed, this is true for # = 1. Suppose now that the equality is
true for some 2 =1. Then

p 1“"’(”) =(g—Dg"+g X ) w, (1)

152t 0Sn<g

=(g—1 (& +1)g".

By considering the integral part of ¥ we may suppose, without loss of
generality, that x itself is an integer. Let ¥ =@, @, - @, @, 50,
be the g-adic development of # and set

11 otherwise.
Then, using (4. 1),
P “‘o(n) = 61(-” - gk_l) +a, 2] ma(n) + > ‘”n(”)
isnaz 0galg” 0§ns:c—ﬂ'luk"1

=8{x—g"N+a X ofn)+d(x— ag— g

psng™
+a 2 w,(n) + > 2‘”0(”)

osn<p?2 osnsz—m]qk'l-ag

I3 k k
==NMTag" — g+ Da T o) +1

i=1 i=1 ﬂSﬂ(ak_
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But
L=(g—DE 2 g = 0
L< 3 g = 0()

and

— g—-l < ot — — . s k—i-1
I, =2—FkXag (g DX aig

=—gi:—1kx+0(x) - 110g“x+0(x)
g g logg

Summing up these results, we obtain

= g_]' >
1s’szlwg(n) sheg” log x + O(x).

g—1logn
g logg

Proposition 4.2. The normal order of w, is

Proof. Similar to that of Proposition 3. 2.
‘Proposition 4.3. The number of integers n, n < x satisfying the
condition
n=1[ (mod m); v, (n) = a(mod 7r)

where m> 1, r>1, [, a areintegers, is given by the formula

U(x) = mlr ~0(x”), »< 1,

where v does not depend on x, I, a.

Proof. Following A. O. Gelfond (see [2]), we have

m—1 r—1 x

Uw =2 85 2 e (Pl + Lm - a)

t=0 5=0 n=0

lml.r
WAES ype
my mrgn-!
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m-1 r-1 )
v ;?271-20 ;; e( > E 9 — f + —wg(n))

=2 4R + R,, say,
mr ! = S2Y

where e(u) =™, {* = —1. Apparently |[R,|<<1. So we have to
show |R,| = O(x”). Inorder to do this, it is enough to prove that

(4.2)

% w,(n)) I = 0(x*), v<1,

where 0<¢t<m—1 and 1<s<7r—1. Let x=a, a - a, a 70,
be the g-adic development of x. Then, by Proposition 1.1 we have

4.3 = =
(4.3) P ( n + w (n)> l
= Z‘ P e (Ln + i'ml,(n)) | , & =0,
i=0 : k—h Jfn k—nh m ¥ .
wmak O ETGE
i ¢ s
< — - =
k=1 j-—
= b3 e( bg" + w (bg")) |
J=0 h=0 b=0
Put
S — (t bgh ‘i‘ ‘”q(bgh)) '
b=0

- S oLt S |
lﬁﬁdm@'*” i
Then, if m divides (in the ordinary sense) fg* we have

S = 1+(g——1)e(%)!

(9 L
<{g— 1" +2g -—1)003%; +1)<g.
On the other hand, if m does not divide #g"
lg : L h '
S<1 + , e(m bg )
sm;(g——l),

_l)l
=1+ ) R
' sin —

m
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Thus we have a constant », % <v<1, which depends at most on g,

m and 7, such that
(4. 4) S<g.
Therefore from (4. 3) and (4. 4) we obtain

X

e tg" | %wq(n)) l

nm=Q m

k=1
Ww—_& kv 1,0
=g ¢ gﬁ—y_l(g N<g'x.

This implies (4. 2) and the proof of the proposition is now complete.

5. The function ¢,(n)
Proposition 5.1. ¢ (n) = g |

Proof. Cleary this formula is true for #» = 0. Assume that # be
a positive integer. Let # = @, @, - @, be its g-adic development and
let m be any integer such that 0 <m <#u. Then (n, m), =0 if and
only if m = ]§k b* g** for some b;, 0 =b<g — 1. Since for each i b,
a;=0
may take g values O, 1, ---, g—1 independently and since the number
of indices ¢ satisfying @; = 0 is just k(#) — «w,(n), we have

) = g0
as required.
By definition 1=<¢,(n) <n for any #=0. Nevertheless, from
proposition 5. 1 we have ¢,(g°"") = g** and ¢,(g") =1. Then we get

lim supfﬂgl—) =1 and liminf ¢,(n)=1.

Proposition 5.2.
_log(2g—1)
log s;s . ¢o(n) gz log x + O(1).

Proof. Let k be any positive integer and let / be an integer
satisfying 0 <</=%. Denote by B(k, /) the number of integers =,
0<n<g" such that «,(n) =1. Then we have

5. 1) Bk, 1)=(§)(g—1)l, E>0, 1<I<Fk,
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which can be proved by induction on # and /. Indeed, the equality
(5.1) is trivially true true for any k=1 if either /=0 or / =F%

Suppose that (5. 1) is true for some £2=1 andall /, 0/ k.
Blk-+1, 0)=B(k 1) +(g—1)Bk I —1)

=((5) +(E))e—v =(* 7).

Now by (5.1) we have

g " ZB(k Dg™

0Sa<g®
( ) (g—1Dg'=g"2g—1).
From this and Proposition 5. 1 we get

Z ?o(n) = Z gk_ma(n)

ol * " an<o®
=(g=D B &7 =(g~1) 2g-D".
0Sn<e™
Hence

2 ‘?v(”) %(0) + Z 2 ?9(”)

osn<q J§n<g

=1 +(g—1);0(2g—1)’=%(2g—1)*+%.

Therefore

l — 1)k@d-1 _1_ l — 1)) L
3 2¢g —1) + 5 _Sosgq o () < 2 2g— 1) + 5
And the proposition follows at once from these inequalities.
Proposition 5.3.
1
= X
logosIﬂI< I«p,,(n) p log x + O(x).

Proof. Since

k(2)-1
k= 2 X km+ X k)
[lén T {m] gl—ls’lql ok(-‘l‘)—l Sn<r
k(x)-1

= E i(g - 1) g“‘ + k(x)(x . gt(,,-).q_i_l)

Then
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1
= loggx log x + O(x)

we have readily
log OSE::: ¢o()
= log g( né;iz k(n) — os%: w, (n)) = % x log x -+ O(x)
(usingProposition 4. 1).
6. The function z,(n)
Proposition 6.1. =, (#) = ‘1,':11 (a; + 1),
where every a, is the i-th digit in the g-adic development of the non-

negative integer n. Hence < (n) is g-adically multiplicative.

Proof. Every g-adical divisor d of » can be written, by definition,
in the form

k
d=?_—a:bigk_’, 0=bh=a.

But in the summands of this representation b; may take ¢, + 1 values
0, 1, --», @, independently. This proves the proposition.
From Proposition 6. 1 we have easily

zgr,(n)gn +1,
(g — 1) =g and 7, (g") =2.
Hence

(6.1) lim sup%”) =1 andliminf 7(s) =2,

Proposition 6.2.

IOg%g(g +1)

oz & log x + O(1).

log 33 7(n) =
0snzz
Proof. From Proposition 6.1 we have

T am= T I (@m+D)

0Snsg 0snxgh =1
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=2 2 e Nm

1sm; 8¢ 1Smy3¢ 1sm,S¢ i=1

| AT * . Cn
= b _k——_llzz...gV:(%g(g—l—]_))k.

T4yt =k fl 7’2 "'rv!

Hence

(L ale+ D)< 3 w0 < (L ale + D),

0sng2

and the proposition follows at once from this inequality.

Proposition 6.3. For any fixed number & >0 the inequality

1) log 2

(1— 5)%10;; n<logt,(n)<<(1+ 8)(g2 log fog

holds for almost all positive integers n.

Proof. This follows from Propositions 3. 2. and 4. 2. and the follow-
ing obvious relation :

2% < o) < 2%, #=0.
7. The function o, (n)

Proposition 7.1. 7,(n) = % nc,(n), n=1.
Proof. By induction on the value of wy(n). If w,(n) =1; that is,
n=ag' forsomee, 1<a<g—1 and =0, then
L ; 1 . 1
on) =37 g = 5 ala+ 1)g' = 5-nr,(n)
3= 2 2
(using Proposition 6.1). Let » =1 be an integer. Suppose that the
formula is true for all positive integer m satisfying w,(m) =». Let
n be any integer such that wyn) =» + 1. Then 7z can be written in
the form

v+l

n—Zb;g

where 1<bh,<g—1 and 7,57, prov1ded {5~ j. Hence by the
definition of &,(n) we have
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by by bys1 pa1
0‘.;(")’-22 ter Z leg
l1=-0 12-0 L+l=° i=0

by - r+1 ”.
= lz:,ﬂ (zo(m) L, g + o,(m)), m = ‘ZE' b, g’
‘ =

{

b,(b, + 1)z, (m)g™ ~ (b, +1) % m ,.(m)

1
2
% g0 n) + = 2 m (n) = o n.z(n).

By (6.1) and the preceding proposition, we have

lim sup —3~ ”"(n) = and lim inf A =1.
oo 2 N—=vo n
Proposition 7.2.
1 1 r
og glg+1)
log 3 ayn) = ( ezt 1)-x + 0q1).

Proof. By partial summation (using Propositions 6.2 and 7..1).

Proposition 7.3. For any given nnmber ¢ >0 we have
_ o ((le=Dlog2 |
a e)( e 1) log

<log ) < (1 + o) (B 1182 1) 10g

Sfor almost all positive integers n.

Proof. This follows at once from Propositions 6. 3. and 7. 1.

8. g-adical analogue of the zeta function

As is widely recognized, the zeta function of Riemann plays sub-
stantial and important roles in analytic number theory, so it will be of
some interest to make a g-adical analogue of this function. Along this
line we shall treat power series as the generating functions of some
arithmetical functicns introduced in section 1. The g-adical zeta func-
tion is defined by the power series

E,(s) = Y‘s"z—l—, Is|<<1.
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Then from Proposition 1. 2. we have

which may be compared to the Euler factorization of the ordinary zeta
function. (This fact was also pointed out in [1] for the special case of
g = 2). Consider two convergent power series

f(s) = i a, s* and h(s) = i‘:l b,s"
Nw() nm
where, to simplify the discussion we assume, @, =0 and 5,=0. We
define the product f(s) = k(s) as follows;

£&) w M) =5 C

where C} = a; ba_4. Since

dlﬂ“

aobn - anb'l _S_ C: g 2 adb n-d
0sdsn
the convergence of the product series f(s) * A(s) is assured. Taking
account of this fact and (3. 1), Propositions 6.1 and 7.1, we can consider
the corresponding generating functions and their product whenever
|s|<<1. Now we shall exhibit several identities. The first is

(8.1) £(s) » 3 mln) s = 1,

which is obvious from Proposition 2. 1. Next, by the definition of = (n)
and o,(n)

(8.2) £ * L) = T, (n)s”,

(8.3) &) * s &ols) = g a(n)s".

Put
A () = {g‘ if n=jg" forsome j(0<j<g) and {=0,
A = 0 otherwise.

Then
2 A,(d) =mn.
dlgn
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and so we have
(8.4) £(5) * 2 o) s = sL(s).
By (8.2), (8.3) and (8. 4) we find

(8.5) 2 (s « B 4,)s" = 2 o)

n=

The product * being, by definition, associative, we have
(8.6) &y(s) * %Q" (n)s™ = % ,,Z,:', T,(n) 2, (n) s™.

Indeed > 9,(n)
d| ot

k(n)

= ¥ em 3m
0sm; ga(n) 0Sm,Sap(n) i=1

=¥ n@m+)_ 5 m

Smysa(n)

) k()
=5 (@ (n) + 1) % a (n)==,(n) o (7).
Also
8.7) £s) + 33 L) |57 = T 2% 7.
In fact | #,(d) | is the number of such g-adical divisors d of #» that

dlqn

k
d =36, g where
im=]
5_{0 or 1 if a(n)>0
! 0 if a(n) =0,
and so this sum is equal to 2°™
Finally we give two identities which can be readily verified :

(8.8) I + £ 57+ £ 6% o 4970 5@ D0 = 3345 g
k=0 n=0
o = W n)
(8.9) T (142 8" + 289 et £ 5970) = 40 g
kes} n=0

where ¢ is any fixed positive number.
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Remark. After we had completed this research the paper of G.C.

Rota [4] came into our attention, in which he generalized the M&bius
function p to some partially ordered sets and obtained the corresponding
inversion formula. Some of our settings and results (the definition of
#,(n) and the product * of power series and the inversion formula) are
particular cases of Rota [4].

[1]
[2]
f3]
[4]
[s]
f6]
[71]
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