ON SEPARABLE POLYNOMIALS OVER A
COMMUTATIVE RING 1V

TAKASI NAGAHARA and Atsusai NAKAJIMA

Throughout this paper, all rings will be assumed commutative with
identity element, B will mean a ring, and all ring extensions of B will
be assumed with identity element 1, the identity element of B. More-
over, B[X] will mean the ring of polynomials in an indeterminate X
with coefficients in B, and all monic polynomials will be assumed to be
of degree = 1. Given a monic polynomial f in B[X], a ring extension
S of B is called a splitting ring of f (over B) if S=B [a,, a,, ***, @,] and
f=X—a,) (X—a,)-(X—a,) (cf. [6, Def.]). A polynomial f& B[X] is
called separable if f is monic and B[X]/(f) is a separable B-algebra.
Moreover, a polynomial f & B[X] is called cyclic if f is separable and
f has a splitting ring which is a cyclic extension of B (i.e., a Galois
extension with a cyclic Galois group).

This paper is about splitting rings of cyclic polynomials. In §1, we
shall prove that if f is a cyclic polynomial in B[X] then every splitt-
ing ring S of f which is projective over B and with rank,S is a cyclic
extensionof B. In §§2-3, we shall make some remarks on cyclic p"
extensions and strongly cyclic #-extensions which has been studied in [8]
and [9].

As to notations and terminologies used in this paper we follow [6]-

[9l.

1. Splitting rings of cyclic polynomials. First, we shall prove
the following

Lemma 1.1. (cf. [11, p. 183]). If A is a cyclic extension of B then
any finite direct sum A --- DA is a cyclic extension of B*={(b, -+, b);
b B}.

Proof. Let A be a cyclic extension of B with a Galois group (¢)
of degree #, and T=A@ -+ DA (m-times direct sum). Then we can
construct an automorphism = of T by demanding that « ((%,, -+, %n))=

(o(xm), %, **, %m-,), where (x,, -+, #,)=T. It is obvious that = is of
order mn and the fixring of = in T is B*. Since A is (¢)-Galois over B,
there exist elements a,, -+, a, b,,-*, b, in A so that 3., a,u(b)=

d,.. (Kronecker’s delta) for all # & (¢) (cf. [2, Th. 1.3]). Write here
49
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a, Z(a:, 0, +, 0), e, at'm:((), wee 0, a‘), bmz(bt’ 0, «, 0), ey bym=
(0, -+, 0, b;), where i=1, +--, s. Then it is easily seen that X a., »(b. ;)
=d,. for all » & (c). Hence T is a cyclic extension of B* with Galois
group (7).

Lemma 1.2. Let A be a ring extension of B and & a finite group.
If A is finitely generated, projective over B and A, is & Galois over
B, for all x&Spec <% (B) then A is a O-Galois extension of B, and

conversely.

Proof. Assume that A is finitely generated, projective over B
and A, is &-Galois over B, for all x & Spec<z(B). Then by [7,
Lemma 3. 1] we see that for each x & Spec<# (B), there exists an open
neighborhood U.(={y € Spec£Z(B); ¢ € y}) of x such that A(1—e)
is G-Galois over B(1—e). Hence, employing the compactness of
Spec &Z (B), we can find orthogonal non-zero idempotents e,, **+, ¢, in B
so that 21, e; =1 and the each Ae, is &-Galois over Be;,. Now, for each
cE®, we construct an automorphism ¢ of A by demanding that &
restricted to Ae; be ¢ for i =1, -+, m, and set ®={7; ¢=@}. Then
® is a group of automorphisms of A which is isomorphic to &, and the
fixring of @ in A is B. Since the each Ae; is &-Galois over Be,, this
contains elements @, ***, @, bu, ", bir, such that X, a,o (b)) =ed,o
for all ¢ € @. We may here write n=a,=+=a, If weset u;=2, a;
and v, = 2.,b;; (7 =1, -+, n) then there holds that X, #; 5(v;) =d,5 for
all 7®. Hence A is a G-Galois extension of B. Since =@, A
is &-Galois over B. The converse is easily seen by using the result of
r2, Th. 1.3].

Corollary 1.1. Let A be a weakly Galois extension of B with
rankzA. If rankzA is prime then A is a cyclic extension of B.

Proof. Let p=rankzA be prime. Then, for each x=Spec & (B),
A, is a Galois extension of B, of rank p, and whence A, is a cyclic
extension of B, of rank p (cf. [12, (3.15)]). Therefore by Lemma
1.2, A is acyclic extensicn of B, completing the proof.

Now, let f be a separable polynomial in B{X], and x&Spec Z(B).
By [7, Lemma 2.1], f, has a splitting ring N, which is projective
over B, and connected; and then N, is a Galois extension of B, with
a Galois group ®, which is unique up to isomorphism. The uniquely
determined group & will be denoted by &(f.).
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Lemma 1.3. Let f be a separable polynomial in B[X], and S a
splitting ring of f which is projective over B and has ranksS. Then,
S is a cyclic extension of B if and oniy if &(f.) is cyclic for all xE
Spec Z (B).

Proof. Let x € Spec &Z(B). As is easily seen, we have S,=
te1 Si, a direct decomposition of S into connected B,-algebras. Then
the S; are faithful B, modules, and so, the each S; is a splitting ring
of f. which is projective over B.. Since f. is a separable polynomial
in B.[X], it follows that the S; are all isomorphic as B,algebras. For
each i, let e¢; be the identity element of S;. Then the each S; is
a Galois extension of B.e (= B,, b.e, < b,) with Galois group &
(=®(f.,), and {e, ---, e} coincides with the set of all primitive
idempotents in S;. Now, assume that S is a cyclic extension of B
with Galois group (r). Then S, is a cyclic extension of B, with Galois
group (z). Hence we have f{e,=7'(e,), ©(e,), -, =7 (e,)} = {ey, -, al}.
This implies that the each S; is a cyclic extension of B.,e; with Galois
group (‘). Thus we obtain that &(f,)==(z') and is cyclic. To see
the converse, we assume that &(f.) is cyclic for all x& Spec.Z (B).
Then S, is a cyclic extension of B,e,, and S, is B,-algebra isomorphic
to the #-times direct sum of S;. Hence by Lemma 1.1, S, is a cyclic
extension of B, with a Galois group () of order s =rankS. There-
fore, it follows from Lemma 1.2 that S is a cyclic extension of B. This
completes the proof.

By using of the result of Lemma 1.3, we obtain the following

Theorem 1.1 Let f be a cyclic polynomial in B[X], and T any
splitting ring of f which is projective over B. If T has rankyT then
T is a cyclic extension of B, and conversely.

As a direct consequence of Th. 1.1 and [1, Th. 2.5.1], we obtain
the following

Corollary 1.2. Let f be a cyclic polynomial in B[X], and T any
splitting ring of. f which is projective over B. Then there exists a
finite set of orthogonal non-zero idempotents {e,, -+, e.} tn T such that

rie:=1, the each Se: is a cyclic extension of Be, and rank,., Se, %=
rank% Se, if 1=iz=j<n.

Remark 1.1. Let f=X*—X& B[X]. Then, by using the result
of [6, Th.2.3], we see that f is a cyclic polynomial. If B is not
connected then, by [8, Remark 2.1], we see that f has a splitting
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ring which is projective over B but has not rank,S.

Next, we shall present an example which implies that in Th.1.1,
the condition of “cyclic” cannot take the place of the condition of
“Galois”. Let @ be the field of rational numbers and ¢ a primitive
4-th root of 1. Moreover, let B=Q[{] P Q and S=Q[f, ¥ 51+
Q[vV'2, V3]. Then F(X)=(@1, 0) (X*—5)+(0, 1) (X*—2) (X*—3)is
a separable polynomial in B[X] and S is a splitting ring of f(X).
Since [Q[f, ¥5]1: QE]]=[Q[v2, V31: Q]=4, we have rank;S
=4. However, the Galois group of the Galois extension @Q[{, 5]/
Q[¢] is not isomorphic to the Galois group of the Galois extension
Q[v'2, ¥31/Q. This implies that S is not Galois over B.

1. On cyeclic p*-extensions. Throughout this section, B will mean
a ring which contains the prime field GF(p) where p70 and GF(p)>31,
the identity element of B. Then, by the results of [8, Lemma 1.1,
Ths.1.1, 1.2], [7, Th.3.1] and Cor.1.1, we see that for every bE B,
the polynomial X? — X —b & B[X] is cyclic, and for a ring extension
A/B, the following conditions are equivalent:

(a) A is a weakly Galois extension of B with rank;4 = p.

(b) A is acyclic p-extension of B.

(c) A isa B-algebra isomorphic to B[X]/(X?— X—¥b), the ring
of residue classes of B[X] modulo (X?—X—5) for some polynomial
X*—X—b in B[X].

(d) A is asplitting ring of some polynomial X*—X—b& in B[X]
which is projective over B and with rankzA = p.

Now we shall prove first the following

Lemma 2.1. Let B be connected, and A a splitting ring of a
polynomial f(X)=XP—X—0b in B[X] which is projective over B and
connected. Then rankzA=p or 1. Moreover, rankzA=p if and only
if £(")540 for all b'EB, which is equivalent to that f (X) is irreducible
over B.

Proof. Since A is a splitting ring of f(X), there exists an
element ¢ in A so that f(g)=0, and then f(X)=(X—a) (X—a—1)--
(X—a—p+1) (cf. [8, Lemma 1.1]). Hence by [5, Cor. 6], we have
A=B[a]. By Th.1.1, A is a cyclic extension of B with Galois group
(¢). Since o(a) is a root of f(X), we have o(a) = ¢ + ¢ for some
0<i<p—1 (cf. [5, Cor.6]). If i=0 then (s) is of order 1, and so,
rankzsA=1. If {540 then (o) is of order p, and so, rankz;A=p. Hence
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rank;A=p if and only if e+idB for {=0,1, ---, p—1, which is equiva-
lent to that fF(8")5~0 for all p'€B. The other assertion follows from
[8, Lemma 1.2].

In (3], F. DeMeyer introduced the notion of uniform separable
polynomials. By [7, Th. 3. 3], we see that a separable polynomial f(X)
in B[X] is uniform if and only if f(X) has a splitting ring S which
is projective over B and with <#(S) = & (B).

Proposition 2.1. Let f(X)=X?—X—be B[X]. Then, 5(X)
is uniform if and only if E={x <= Spec & (B); f(0").5%40, for all ¥ in
B} is an open set.

Proof. Given an element x & SpecZ (B), the result of Lemma
2.1 implies that the order of G(f(X).)=p if and only if f (#'),50 for
all ¥’B. Hence E coincides with the set {x&Spec<# (B); the order
of &(f(X),)=p}. Therefore, if f(X) is uniform then E is open by
[7, Th. 3.3]. To see the converse, we assume that E is open. By
Lemma 2.1, the complement E° of E in Spec & (B) coincides with
the set {r< Spec#(B); the order of ® (f(X),) =1}. Hence by {7,
Th. 3.3], it suffices to prove that E° is open. Let E®=~® and x=E°.
Then there exists an element ' in B such that f(%'),=0.. Hence by
[12, (2.9)], there exists an open neighborhood U of x such that for
every ye U, f(¥'"),=0,; whence the order of &(f(X),)=1. Thus E°
is an open set.

Proposition 2.2. For a ring extension A/B, the following condi-
tions are equivalent.

(a) A is a cyclic p-extension of B with & (A)= <& (B).

(b) A=B[X]1/(f(X)) (as B-algebras) for some polynomial f(X)=
X?*—X—beE B[X] so that f(b).~0, for all 'EB and for all x=
Spec &Z (B).

Proof. By [8, Ths.1.1, 1.2], it suffices to prove that for a poly-
nomial f(X)=X?—X—-be B[X], Z(B[X]/(f(X))=<2(B) if and
only if f(#').50, for all b’ B and for all x = Spec & (B). We set
S=B[X]1/(f(X)). Then S is a splitting ring of f(X) which is projec-
tive over B and with rank;S =p. If <Z(S) = £2(B) then, by [12,
(2.13)], for every x<Spec && (B), S, is a connected ring, and this a
splitting ring of f(X). which is projective over B, and with ranky S,
=p, whence by Lemma 2.1, f(8"),540, for all ¥ <= B. Conversely,
if f(0),50, for all ¥ B and for all x< Spec & (B) then, by
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[8, Th.1.6], S, is a connected ring for all x=SpecZ (B). Hence, if
e’=¢ES then B, + (¢B), = B. for all x & Spec < (B), and so, by [12,
(2.11)], B+eB=B, thatis, e= B. This implies that £Z(S) = & (B).

Proposition 2.3. Let B be a regular ring (in the sense of Von
Neumann). Then, for a ring extension A|B, the following conditions
are equivalent.

(@) A is acyclic p-extension of B with & (A)= % (B).

(b) A=B[X]/ (f(X)) (as B-algebras) for some polynomial f(X)=
X?—X—beE B[X] sothat for every b'E B, f(b') isinversible in B.

Movreover, if there hold the conditions then A is a regular ring.

Proof. Since B is aregular ring, B, is a field for all x=Spec <% (B).
Hence, if there holds (a) then the each A, is a field, and this implies
that A is a regular ring. Now we shall prove that (a)<=2>(b). By
Prop. 2.2, it suffices to prove that f(b');%0. for all b'EB and for
all x < Spec & (B) if and only if f(§') is inversible in B for all 3'&B.
Let & be an arbitrary element of B, and assume that f('),s<0, for
all x € Spec&Z (B). Then, we have that for every x & Spec & (B),
f(@"), is inversible in B,, andso, f(0")B.=B.. Hence by [12, (2.11)],
we obtain f(®")B = B. Thus f(b') isinversible in B. The converse
is obvious.

For cyclic p*extensions, we have the following

Proposition 2.4. Let A be a cyclic pt-extension of B with a Galois
group (c), where e=>0. Let A, bethe fixring of (6*)in A. Then

(1) A, is a cyclic p-extension of B.

2) F(A)=Z(B) if and only if F(A) = F (B).

() If B is a regular ring and F(A) = F(B) then A is a
regular ring. ’

Proof. The first assstion is obvious. Now, let x &€ Spec Z (B).
Then A, is a cyclic p*-extension of B, with Galois'-‘group (6;), and A,,
is the fixring of (¢7) in A., where ¢, is a B,-algebra automorphism
of A, induced by «. Hence, by [8, Th.1.8], A,. is connected if
and only if A, is connected. If % (A,)=F (B) then A,, is connected
for all x € Spec &Z (B), and conversely. Therefore, it follows that
F(A,) = Z (B) if and only if &Z(A)= < (B). If B is a regular ring
and Z (A,)=% (B) then A, is a field for all x=Spec.Z (B), which
implies that A is a regular ring.

Now, we shall prove the following
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Theorem 2.1. Let e be any positive integer. Then

(1) there is a cyclic p-extension A, of B with % (A,)= (B) if
and only if there is a cyclic p-extension A of B with B (A)=# (B).

(2) Let B be aregular ring. If there is a cyclic p-extension A,
of B with F(A)=% (B) then there is a cyclic p*extension A of B
whick is a regular ring and with B (A)=Z (B).

Proof. We assume that there exists a cyclic p-extension A, of B.
Then, by [8, Th.1.3], there exists a cyclic p’extension A of B with
Galois group (¢) such that A contains A, D B and A, is the fixring of
(s?) in A. Hence our assertion follows from the result of the preceding
proposition. ’

In virtue of [8, Th.2.3], we have the following proposition, which
is proved by making use of the same methods as in the proof of Prop. 2. 4.

Proposition 2.5. Let A be an abelian (p4, ---, p's)-extension with a
Galois group (o)X - X(a,), where ¢,>0, i =1, s. Let A, bethe
fixring of (a.7)---(a") in A. Then

: s

(1) A, is an abelian (p, --+, p)-extension of B.

(2) F(A,) =7 (B) if and only if B (A)=Z (B).

(8) If B is aregular ring and Z (A,)=Z (B) then A is a regular
ring.

By [8, Ths. 1.3, 2.1, 2.2] and Prop. 2.5, we obtain the following

Theorem 2.2. Let e, (1<i<s) be positive integers. Then
5
(1) there is an abelian (p, -, p)-extension A, of B with F(A,)=
B (B) if and only if there is an abelian (P4, -, p°)-extension A of B
with 2 (A)=F (B).

S

- . h‘—‘\ -

(2) Let B be aregular. If there is an abelian (p, -+, p)-extension

A, of B with & (A,)= & (B) then there is an abelian (p4, -, p%)-
extension A of B which is a regular ring and with % (A)= <% (B).

3. On strongly cyclic n-extensions. Throughout this section, B
will mean a ring which contains a primitive n-th root { of 1 such that n
and 1—¢'(4=1, 2, ---, n—1) are inversible in B. Then by [9, Lemmas
1.1,1.2, Th.1.1], we see that for any divisor k& of #, X*—b¢& B[X]
is separable if and only if & is inversible in ‘B, and in this case, the
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polynomial X*—p is cyclic. The results in this section are similar to
those of §2, and the proofs proceed as in those of §2. Hence the details
may be omitted.

Our first lemma follows from the results of [9, Lemma 1. 2],
(5, Cor.6], Th.1.1 and [9, Lemma 1. 4].

Lemma 3.1. (cf. Lemma 2. 1). Let B be connected, q a prime
divisor of n and A a splitting ring of a separable polynomial f(X)=
X°—b in B[X] which is projective over B and connected. Then rankzA
=q or 1. Moreover, rankzA=q if and only if f(b")5%~0 for all b'E B,
which is equivalent to that f(X) is irreducible over B.

In virtue of Lemma 3.1, we have the following proposition which is
proved by making use of the same methods as in the proof of Prop. 2. 1.

Proposition 8.1. (cf. Prop. 2.1). Let q be a prime divisor of n
and f(X)=X*—0b a separable polynomial in B[X]. Then f(X)is
uniform if and only if E = {x & Spec# (B); f(b").5%0 for all .b' € B}
s an open set.

The next propositition is a consequence of the results of [9, Ths.
1.1, 1.2], Lemma 3.1 and [9, Lemma 1.4, Th. 1.8].

Proposition 3.2. (cf. Prop.2.2). Let q be a prime divisor of n.
Then, for a ring extension A/B, the following conditions are equivalent.

(@) Aisa strongly cyclic g-extension of B with % (A)= < (B).

(b) A=A[X]/(f(X)) (as B-algebras) for some separable polynomial
f(X)=X"—be B[X] sothat f(b"),5~0, for all b'EB and for all x
Spec & (B).

By virtue of Prop. 3.2, we have the following

Proposition 3.3. (cf. Prop. 2.3). Let B be a regular ring, and q
a prime divisor of n. Then, for a ring extension A|B, the following
condttions are equivalent.

(@) A is a strongly cyclic q-extension of B with % (A)=<# (B).

(b) A=B[X]1/(f(X)) (as B-algebras) for some separable polynomial
f(X)=X"—be B[X] so that for every b'E B, f(b') is inversible in B.

Moreover, if there hold the conditions then A is a regular ring.

The next proposition follows from the result of [9, Ths. 1. 4, 1.12].

Proposition 3.4. (cf. Prop. 2. 4). Let A be a strongly cyclic (o,
n)-extenston of B, k the product of all different prime divisors of n,
and A, the fixring of (¢*) in A. Then
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(1) A, isa strongly cyclic k-extension of B.

2) F(A)=<F(B) if and only if Z (A)=5% (B).

(8) If B isaregular ring and 7 (A,)=Z (B) then A is aregu-
lar ring.

Now, by [9, Th. 1. 3] and Prop. 3.4, we obtain the following

Theorem 3.1. (cf. Th.2.1). Let k be the product of all different
prime divisors of n. Then

(1) there ts a strongly cyclic k-extension A, of B with <% (4,) =
F(B) if and only if there is a strongly cyclic n-extension A of B with
B (A)y= F(B).

(2) Let B be a regular ring. If there is a strongly cyclic k-exten-
sion A, of B with Z(A,)) = 5 (B), then there is a strongly cyclic
n-extension A of B which s a regular ving and with 7% (A)= <7 (B).

The following proposition can be proved by making use of the same
methods as in the proof of [9, Th.2. 3].

Proposition 3.5. (cf. Prop. 2.5). Let n, (1 <i<s) be divisors of
n and k, the product of all different prime divisors of n,. Let A bea
strongly abelian (o, -, as; #,, -, n)-extension of B and A, the
fixring of (6)X - X(a8)in A. Then

(1) A, isa strongly abelian (k,, -, k,)-extension of B.

2) F(A) = F(B) if and only if 2 (A) = <7 (B).

(3) If B is a regular ring and 5 (A,)=.5 (B) then A is a regular
ring.

Finally, we shall present the following theorem which follows from
the results of [9, Ths.1.3, 2.1, 2.2] and Prop. 3. 5.

Theorem 3.2. (cf. Th.2.2). Let n, 1 <i<s) be divisors of n
and k; the product of all different prime divisors of n,. Then

(1) there is a strongly abelian (k,, ---, ki)-extension A, of B with
B(A,) = Z(B) if and only if there is a strongly abelian (n,, -+, n,)-
extension A of B with <% (A) = <7 (B).

(2) Let B be a regular ring. If there is a strongly abelian (k,, -,
k)-extension A, of B with 5 (A,) = 55 (B) then there is a strongly
abelian (n,, -, n.)-extenston A of B which is a regular ring with
B (A) = & (B).
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