ON ISOMORPHISMS OF WEAKLY GALOIS
EXTENSIONS

MIGUEL A, FERRERO

In [5], O.E. Villamayor and D. Zelinsky developed a Galois theory
for weakly Galois extensions over a commutative ring, which generalizes
the Galois theory of S.U. Chase, D.K. Harrison and A, Rosenberg [1]
(in this paper a Galois extension in the sense of [1] is called a strongly
Galois extension). The purpose of this paper is to give a generalization of
[1: Theorem 3. 4] and some related results. The author wishes to express
his hearty thanks to Professor O. E. Villamayor for several suggetions.

Throughout the paper, we suppose that every ring has an identity
element, every extension of a ring has the same identity element, and
that every module is unital. Let SDR be commutative rings (SDR will
mean always a ring extension), and G* = G(S/R) the group of all R-algebra
automorphisms of S. As in [5], B(R) will represent the Boolean ring of
R which consists of all idempotents in R, and Spec B(R) the spectrum
space of B(R) consisting of all prime ideals in B(R). For any x & Spec
B(R), we consider S,=T7'S=S/xS and R,=T'R=R/xR, where T=
1—e; e= g} (see [5; (2.6)]).

By [5] S is said to be a weakly Galois extension of R, if the following
conditions are satisfied :

(a) Sisan f.g. (finitely generated) faithfully projective R-module.

(b) S is a separable R-algebra (abbr. R-separable). :

(¢) p(S)G*=Homg(S, S), where p: S —> Homg(S, S) is the regular
representation of S defined by p(s)(#)=st.

The following remark is due to K. Oshiro:

Remark 1. In the definition of a weakly Galois extension, (a) and (c)
imply (b).

Proof. As is well-known, S is R-separable if and only if S/mS is
R/m-separable for every maximal ideal m of R. Let G’ be the group of all
R/m-algebra antomorphisms of S/mS, and G the subgroup of G’ consisting
of the automorphisms induced by elements of G*. Then, by (c) we have
o(S)QrR/m=Homx(S, S)®:R/m=Homzmn(S/mS, S/mS){for every maximal
ideal m of R, since Sis an f. g. projective R-module. Therefore, we have
p(S/mS) G' C Homgm(S/mS, S/mS)=p(S/mS)G C p(S/mS)G!, where p is
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the regular representation of S/mS over R/m. Henceforth, we may assume
that R is a field. Then, S is semi-simple. In fact, if the Jacobson radical
J of S were non-zero, p(J)G* would be a non-zero nilpotent ideal of the
simple ring Homg(S, S). Let S=Se,P:--PSe,, where e,, :++, e, are primi-
tive orthogonal idempotents. From (a) and (c) we have S =R and (Se,)*:=
Re, for H;= {c= G*; ole))=e;} (i=1, ---, n). It follows then the field Se, is
a strongly Galois extension of Re;, and so R-separable. Therefore, S is
R-separable.

Lemma 1. Let x be in Spec B(R). If f,, =, f. are orthogonal idem-
potents (especially such that 2, f;=1) in S,, then there exist some ortho-
gonal idempotents ey, **+, ¢, in S such that (¢,).= f;(i=1, -+, n), where (e,),
is the image of e; by the canonical homomorphism S—>S,. If X, fi=1
then 2, e=1.

Proof. We shall proceed by the induction on #. The case n=1 is
known by [5; (2.12)]. Now, let f,, «--, f. be orthogonal idempotents in
S.. Then, by the induction hypothesis there exist orthogonal idempotents
ey, ***, és—y in S such that (e¢),=f; (i=1, --», n—1). Furthermore, by [5;
(2. 12)] there exists e, € S such that (¢;).=f.. Since ((e;+ -+ e._1) €,),=
(fi+ -+ fao1) fo=0, by [5; (2.9)] we have (e,+ - +e,.,)e, (1—e)=0 for
some e<x. Putting e,=e,(1—e), e,, -, e, are orthogonal idempotents in
S and (et)z:=.ft (i:]-: R n—l); (en).v=(e:x(1'—x))x=(e7’l)x=fn-

Lemma 2. Let SOR, and x in Spec B(R). Let f,, +++, fx be orthogonal
idempotents in S,, i, ++*, T, elements of G*, and o an element of G (S./R.)
such that o|(S.f) = (z.):|(S: fi) (=1, -, n), where (z)), is the automor-
phism of S:induced by ©;. Then, 7,=¢ for some TE G*.

Proof. By Lemma 1, there exist orthogonal idempotents ¢;, -+, e,E
S such that (¢;),=f; (=1, «--, n). By making use of [5; (2. 9) and (2. 12)],
we can choose inductively orthogonal idempotents e;, -+, ¢, €S (p<n)
such that ¢}, -+, e;, eps1, ***, €, are orthogonal, (¢;),=f; (i=1, ---, p), and
7, (e)), -+, 75(e, ) are orthogonal. Especially, we can find orthogonal idem-
potents e;’, -+-, e, €S such that =, (e'), -+, 7u(e) are orthogonal and (¢;"),=
fi (i=1, -+, n). Since (T &).=2 fi=1=2; o(f}) =(Z; =ile))., there ex-
ists some ¢Ex such that 3; ¢/ (1—e)=X; vi(e;’) (1—e)=X; =, (e (1—e)). If
we put ¢;=¢; (1—e) (=1, ---, ») and e,,,=1—X1; e;, then e, -+, ¢,,, are
orthogonal idempotents in S such that (¢;).=f; (i=1, :*«, 1), (€441),=0, and
that ©,(e,), -+, =.{€,), €ns. are orthogonal idempotents with z,(e,)+--+7,
(e.)+e..:=1. Then we can define an automorphsm & G* by 7(s)=2 I,
7, (se,)+se,.,, which satisfies 7, =g.
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~ Lemma 3. Let S be a weakly Galois extension of R. Let G bea
subgroup of G* such that for every x=Spec B(R) there exists a subgroup
H(x) of G satisfying S¥®:=R,, where H(x).= {o.; oS H(x)}. Then,
there exists a finite subgroup H of G which verifies S"=R.

Proof. From [4; Proposition 1.3], G(S./R.) is a finite group. By
[5; (2.14)] we may assume that H(x) is a finte group. As in [5; (3.6)],
we can choose here x,, ---, x,=Spec B(R) such that there exist respective
neighborhoods V(x;) of «, verifying SY®> =R, for all yV(x;) (i=1, ---, n)
and \U; V(x,)=Spec B(R). Let H be the subgroup of G* generated by \U,
H(x;). Then, by [5; Theorem (2.16)], H satisfies the conditions of our
lemma.

Let S be a weakly Galois extension of R, and x in Spec B(R). Then,
S. is a weakly Galois extension of R, by [5; (3.2)]. Since R, has no
idempotents other than O and 1, by [5; (3.15)] S, is a strongly Galois
extension of R, and its Galois group is a subgroup of G(S,/R.). For a
subgroup G of G*, we say that G verifies (I) if it satisfies the following
condition :

(I) Every S, (x=Spec B(R)) is a strongly Galois extension of R, with
a Galois group H(x)C G..

The following corollaries are easily obtained :

Corollary 1. If S is a weakly Galois extension of R and GCG*
satisfies (1), then there exists a finite subgroup H of G which verifies (I)
and S" =R.

Corollary 2. If S is a weakly Galois extension of R, then there is
a finite subgroup G of G* which satisfies (I) and S° = R.

Proposition 1. Let S be a weakly Galois extension of R, and S'DOR’
commutative rings. Let f: S —>S' be a ring-homomorphism which induces
a monomorphism fIR: R —>R', and G a subgroup of G* verifying (I).
If for each o= G there exists some o' = G(S'[R") such that o'f=fo then f
is a monomorphism. Furthermore, if there exists a group-homomorphism
Wi G—> G(S'/R’) such that W (7)f=fao for all aE G, then f and e are
monomorphisms.

Proof. If R has no idempotents other than 0 and 1, then S is a
strongly Galois extension with a Galois group HC G by the condition (I).
) life=1
There exist s, **-, Sa, ti, >, t.ES such that 3; s; o(t)= {0 if o] (e=H).

If f(s)=0 for some sES, then f(trg (£:8)=2 cer f(c(t:5))=2 .. o' (F(t:s)
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=3 a'(f(t:) f(s))=0, and by tr, (f, s)ES”=R we have try(t.s)=0, since
SIR is monic. Accordingly, s =3 ,enx = 8 o{ts) 0 ()=3; s tryltss)=0.
In the general case, it suffices to prove the same for the localizations S,,
R, S:=S'"® R, R,=R'@ zR.and f,: S, —> S, by arbitrary x  Spec
B(R). But, R, has no idempotents other than 0 and 1, therefore the first
part is obtained. Next, let «»: G —> G(S'/R') be a group-homomorphism
with \w(e) f=fa for all ¢€ G. If yo(s)=1I for some ¢ G then f (o(8)) = y(a)
(f(s))=f(s), and so o(s)=s for every s€S. Therefore, 4 is a monomor-
phism.

Proposition 2. Let S be a strongly Galois extension of R with Galois
group H, and S'DR' commutative rings. Let f: S——> 8 be a ring-
homomorphism which induces an epimorphism f|R: R——> R', and G'
a finite subgroup of G (S'/R") with S =R'. If for each o' G there
corresponds some o€ H such that o'f=fo and o's~I implies o5~1, then
£ is an epimorphism and S' is a strongly Galois extension of R' with
Galois group G'.

Proof. Let x,, -+, %, ¥4, **+, ¥» be elements of S such that X, x, =(y,)

lif =17
:%%r%lkem'W%mmtman@&ﬂUUm=2iﬂWf@@W=

life=1
F(Z 2 0(9:))= {0 if Z%I‘ In particular, we see that ¢=1 if and only if

3 | —
a'=1. Accordingly, it is obtained that &, f(x:)¢' (F(3))= (1) ﬁ Z,_;§ (o'=
G'). This shows that S’ is a strongly Galois extension of R’ with Galois
group G'. Furthermore, for any 1’ =S’ we have T,.eq o'(f(y:)x')E R
(=1, -+, n). By the assumption on f, there exists some 7, R such that
F(#) = Tpee o' (F(3)x). Hence, we have f(Si £7) = Soree T ()
a'(f(y:))o'(x")=4', thatis, f is an epimorphism.
As a combination of Propositions 1 and 2, we readily obtain

Corollary 3. Under the same assumption as in Proposition 2, if +r:
H —> G(S'/R") is a group homomorphism such that Im () D G' and
o) f=fo for all = H, then f is an epimorphism, » @ monomorphism,
and S' a strongly Galois extension of R' with Galois group G'. Further-
more, if fIR is an isomorphism then f is an isomorphism.

Now, let SOR be rings such that S is an f.g. R-module, and G a
subgroup of G* such that S*=R. If R has no idempotent other than 0 and
1, then there exist orthogonal primitive idempotents e,, --, e, & S such
that 1=X,¢. Weput H;={s=G; ¢=0(e;)} (i=1, --, n). Then, there
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exist @y, -+, . G such that ¢, (¢,)=e: (=1, -, n). Since G=\U, o:H and
H.=¢,H,0;', we have (Se;)”i=Re,. Furthermore, if S is a weakly Galois
extension of R, then Se; is a strongly Galois extension of Re; with Galois
group H,|Se;=G(Se,/ Re;) (=1, -+, ). Then, we have the following
remark.

Remark 2. Let S be a weakly Galois extension of R. If S’ is a
commutative ring and f: S—>5' is a non-zero ring-homomorphism such
that for each ¢= G there exists an endomorphism «' of S satisfying fo=
a'f, then f(e,), -+, f(e,) are non-zero orthogonal idempotents in S'.

Proof. If f(e)=0, then fle;)= f(o;07'(e:))=(0;0.") f(e))=0, and so
f(1)=3, fle)=0. Since f is a ring homomorphism, we obtain f=0,
a contradiction.

We give here the following definition that is analogous to the one in
[4]: Let SOR be commutative rings, G a subgroup of G* and e;, -:-, e,
orthogonal idempotents in S with >3, ¢,.=1. We say that G is faf respect
to e, *, @, if every element o€ G* verifying «|Se; € G| Se, is contained
in G

Proposition 3. Let S be a weakly Galois extenston of R such that
S=R for a subgroup G of G*. Suppose that R has no tdempotents other
than 0 and 1 and e, -+, e, are orthogonal primitive tdempotents in S such
that 3 e;=1. Let S' D R' be commutative rings such that S’ =R' for a
finite subgroup G' of G(S'/R'), and f: S —> S' a ring-homomorphism
which induces an epimorphism fIR: R—> R'. If(a) G' is fat respect
to fle), -, fle.), (b) for each o= G there exists some o' G such that
¢ f=fo, and (c) for each <'EG' there corresponds some ~E G such that
o'f=fr and <'s= I implies v~ 1, then f is an epimorphism and S' is
a weakly Galois extension of R'. Furthermore, if G verifies (I) and f|R
is an isomorphism, then f is an tsomorphism.

Proof. As is well-known, Sg; is strongly Galois over Re; with Galois
group Gi= {a!Se;; o= G, ale))=e;}. Since s.(e,)=e¢, for some o= G, there
is some ;= G’ such that a; (f(e))=f(a(e,))= f(e:) (i=1, ---, n). Noting
that S’=R' and ; f(e)=1, the subgroup Gi={d¢'|S'f(e); +'EG,
o'(f(e)) = fle)} of G(S'f(e)/R fles)) satisfies (S'f(e))% = R'f(e) (i =1,
... #1). For each ¢'|S'f(e;)E G;, by (c) we can find some ¢ G such that
o' f=fo. Then, «|Se; is in G, Because, f(e:;)=a"(f(e))=Ff(ale;)) and a(e;)
is one of ¢,, *--, ¢,. However, by Remark 2 we have 0 £ f(e,)=1(e:) f(e))
=f(a(e) fle.)=f(o(e))e,), therefore o(e)e;, =0, and so o(e,) = e¢.. Next,
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if 6/|S'f(e;) 7= I then ¢|Se; ~ 1. To see this, we consider ' G(S'/R!)
defined by «'| S’ f(e.)=0'|S'f(e.) and <'|S' f(e;)=1 (j % i). Then, by (a) ¢’
is in G/, and there exists some t< G such that fI=t/f=fr. Since SOR is
strongly Galois with Galois group G., there exist u,, ==+, #n, Uy, =+, V,E S
such that 3 ; 7'(u.-)v.-=[é g :%ﬁ (r€ G,). Asis well-known, t=3 e, e,7
with pairwise orthogonal idempotents ¢, €S such that 33, ¢,=1. Noting
that f(z(x)y)=F(z(x)) f(3)=1(2) f(9)=F(xy) for every x, yES, we obtain
f(Z, e,) =]1= f(l) =3 f(uivi) =2 f(T (ui)vl) = El,r f(er T(ui) vf) =f(€1),
whence by Remark 2 it follows ¢,=1 and e,=0 (7 5% I), which implies r=
I. Therefore, by (c) ©'=1, and of course '|S'f(e;)=7'|S'f(e,)r =1, which
is a contradiction. Accordingly, by Proposition 2 the ring-homomorphism
fl1Se,: Se; —> S’ f(e,) is an epimorphism and S'f(e;) is a Galois extension
of R'f(e:), and therefore by [5; (3.15)], S'is a weakly Galois extension
of R’. The remaining is clear by Proposition 1.
From the last proposition we readily obtain the following :

Corollary 4. Under the same assumption as tn Proposition 3, if :
G—>G' is a group-epimorphism such that \(e) f=fao for all € G and if
G' is fat respect to fle,), -+, f(e.), then f is an epimorphism. Furthermore,
if Goerifies (1) and f| R is an isomorphism, then f and +r are isomorphisms.

Now, let SOR and S'DR' be commutative rings. Suppose that S is a
weakly Galois extension of R and f: S—— S'is a ring-homomorphism
such that f| R is an isomorphism of R to R'. Then, for each x&Spec B(R)
=Spec B(R') there exist orthogonal primitive idempotents e¢(x),, ---, e(x).,

=S, with I, e(x);=1, since R, has no idempotents other than 0 and 1.
For a subgroup G’ of G(S'/R'), we say that G' verifies (II), if the follow-
ing conditions are satisfied :
(I,) Every o' € G(S'/R') verifying ¢'|S'¢' = 77| S'' and o'|S'(1 —e')
=17,|S8'(1—e¢') for some 7;, ;& G' and some idempotent ¢’ S’ is in G'.
(II,) For every x=Spec B(R), G. is fat respect to f(e(x),), ---, Sle(x),).

We claim here that G (S'/R’) verifies (II,) (Lemma 2), and hence (II).

Theorem 1. Let SDOR and S' D R' be commutative rings, and f:
S —> 8" a ring-homomorphism. Suppose that S is a weakly Galois
extension of R and f induces an isomorphism fIR: R—> R'. If1)a
subgroup G of G* verifies (), 2) a subgroup G' of G(S'/R’') verifies (II),
3) there is a finite subgroup H' of G' such that S = R', and 4) there
is a group-homomorphism »: G—> G' such that (o)f = fo for all
cE G, then f is an isomorphism, S' is a weakly Galois extension of R,
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and +r is an isomorphism. Furthermore, if G' = G(S'/R') then the
condition 2) is necessarily verified and G coincides with G*.

Proof. From Proposition 1, fis a monomorphism and +- is (a mono-
morphism and so) an isomorphism. For every £ =SpecB(R), S, is a
weakly Galois extension of R, and K, has no idelppotents other than Q
and 1. By [5; (2.17)], we have S%-=R, and S'é: = R,. Obviously, f.:
S,— S; is a ring-homomorphism and induces an isomorphism f,|R,: R,
—> R.. Now, we shall show that the group-homomorphism 4: G—> G/
induces a group-homomorphism +,: G,—> G;. To our end, it suffices to
show that ¢, —> (y-(0)). is well-defined. We suppose o,=1. Then, for
each s€S we have (¢ (s)—s) (1—e,)=0 for some ¢;=x. Since Sis anf. g
R-module, we can find some e=z such that (¢(s)—s) (1—e)=0 for all s&
S. And then, (y(a) (f(s))—f(s)) (1—5(e))=0 for all sES. We can define
now an R'-algebra-automorphism ¢’ of S’ by o'(s")=s'f(1—e)-+y{a)(s") f ().
Since ¢'|S'f(1—e)=1|S'f(1—e) and ¢'|S'f(e)=1(0)|S'f(e), o' is in G' by
the condition (H). If o= G is such that ¢'=1(0), then we have f(p(s))=
' (f(N=F()fA—e)+y(a) (f())f(e) =) (f (N f(1—e)— (y(o) (f(s))—
£(s)) and (1—7(e)) +yola) (f(s)) f ()=o) (f(s)) f(1—e)+(o) (F(s))f(e)=
(@) f(s)=1(a(s)) for all sES. But, f being a monomorphism, p=e¢. Since
e.=0, it follows that (y(0)).= (y(p))>=0% and o7 (S2) = (¢'(s"))s =52/ ((1—
).) +(Y(0))2(s2) f2(es) = 5. (f(1—e)),=s; for all s'&S’. Therefore, we have
(w(o)s=0.=1, i.e., a.—> (y(0)), is Well-defined. Since v is an epimor-
phism, v, is a group-epimorphism such that n.(p) f;=f.p for all pEG..
From the condition (II) and Corollary 4, it follows then that £, is
an epimorphism for every & & Spec B(R), and so f is an epimorphism.
Finally, if G'=G(S'/R') then G’ verifies (I) and G=G*. In fact, given
an arbitrary ¢ G*, ¢'=fof""' is in G' and there exists some 7€ G such
that () =¢' and (r)f=fr, thatis, ¢=f""o¢'f=7r=G.

Remark 3. In the proof of Theorem 1, if we assume that S’ is a
weakly Galois extension of R’ then the fact that f is an epimorphism will
he seen very easily: Since S is R-separable, f(S) is separable over R'=
S(R). By [5; (3.8)], there is a finite subgroup F' of G’ such that f(S)=
S, K we set F=+"'(F") then f(S7)=(f(S))""=/(S). Recalling that fis
a monomorphism, we obtain S*=S, whence F=1I, F'=1I and f(S)=8.

Proposition 4. Let S be a weakly Galois extension of R, and A a
commutative R-algebra. Then, SQr A is a weakly Galois extension of
A. If all the idempotents of A are contained in R, then the subgroup G*
R Iof G(S Qr A/ A) verifies ().
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Proof. If R has no idempotents other than 0 and 1, S is a strongly
Galois extension of R with Galois group HC G*, And, by [1; Lemma 7],
S @rA is a strongly Galois extension of A with Galois group H® I == H..
Therefore, G* @ I verifies (I). If R is general, then by Corollary 2 we
can choose a finite subgroup G of G* such that G verifies (I). For each x&
Spec B(R), S. is a strongly Galois extension of R, with Galois group H(x)
C G,. From the first part of this proof, we have (S, ®R=r A)B'=A,, and
$0 A, C (S®zA)F); = (5:Q5,4.) ¥ C(S.Qr AV = A, for every x&
Spec B(R). Therefore, we have A= (S ®zA) and S ®zA is a weakly
Galois extension of A by [5; (3.6)]. Furthermore, if all the idempotents
of A are contained in R then B{(A)=B(R), and so G* @ I verifies (I).

Finally, we consider commutative rings ADB and ADS. Suppose
that S is G(A/B)-invariant, i.e., ¢(S)=S for all ¢ G(A/B), and that
SeiB =R, We denote by ¢ : S @zB—>A the contraction homomorphism
defined by ¢(x @ y)=xy. Then, we consider the following conditions :

(A) Every R-algebra-automorphism of S can be uniquely extended to
a B-algebra-automorphism of A.

(B) Every R-algebra-automorphism of S can be extended to a B-
algebra-autorphism of A and G(A/Im(¢)) = I.

(C) Every R-algebra-automorphism of S can be extended to a B-
algebra-automorphism of A and the homomorphism G(A/B)—> G*: ¢——>
¢| S is a monomorphism.

(D) The homomorphism G(A/B)—> G*: ¢ —>¢|S is an isomorphism.

(E) ¢: S zB—>A is an isomorphism.

Lemma 4. Let ADB and ADS be as above. Then the conditions (A),
(B), (C) and (D) are equivalent, and (E) implies (A).

Proof. (E)=>(B), (C)=>(D) and (D)=>(A) are obvious, and the proof
of (A)=>(B) and (B)=>(C) will be completed in an obvious way.

Theorem 2. Let ADB and ADS be as above. Suppose that a finite
subgroup H of G* verifies A" =B and S"=R, all the idempotents of B are
contained in R, and that S is a weakly Galois extension of R. Then,
the conditions (A), (B), (C), (D) and (E) are equivalent. Furthermore,
if one of the conditions (A)-(E) is satisfied then A is a weakly Galois
extension of B and the correspondence G* —> G(SQrB/B): o1—>
o @ I is an isomorphism.

Proof. Suppose the condition (D). Obviously, the contraction homo-
morphism ¢ is a B-algebra-homomorphism. By Proposition 4, S@Q B is a
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weakly Galois extension of B, and the subgroup G* ® I of G(S ®: B/B)
verifies (I). If »: G* —> (A/B) is the inverse of the isomorphism given
in (D), then we have y{o)¢ =¢o for all ¢= G*. Accordingly, by Theorem 1
we obtain (E). Thus, by Lemma 4 we have the first part of the theorem.
The other part is evident by (D) and (E).
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