ON MINIMAL SURACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE

TAKEHIRO ITOH

In the present paper, we shall study minimal surfaces in a Riemannian manifold \widehat{M} of (non-zero) constant curvature c. When \widehat{M} is a sphere S(1) of constant curvature 1, we find the conditions such that the immersion is uniquely determined up to a rigid motion of S(1). In §2, we define the (n+1)-th shape operator (n-th torsion operator) and the n-th torsion index $(T_n$ -index) for minimal surfaces in \widehat{M} . In §3, we study complete flat minimal surfaces in \widehat{M} . When \widehat{M} is S(1), we find the conditions such that the immersion is uniquely determined up to a rigid motion of S(1). In §4, we give examples of minimal immersions of the Euclidean plane into a sphere. In the last section, we study compact minimal surfaces of non-negative curvature ($\not\equiv 0$) in \widehat{M} and prove that they are generalized Veronese surfaces if they are immersed in $\widehat{M} = S(1)$ by the immersions with full torsion.

§ 1. Preliminaries. Let \widehat{M} be a $(2+\nu)$ -dimensional Riemannian manifold of constant curvature c, and M a 2-dimensional Riemannian manifold which is isometrically immersed in \widehat{M} by an immersion $x: M \longrightarrow \widehat{M}$. The geodesic codimension of M in \widehat{M} is defined to be the minimum of codimension of M in totally geodesic submanifolds of \widehat{M} , see [7]. We denote by ∇ (resp. $\widehat{\nabla}$) the covariant differentiation on M (resp. \widehat{M}). Then the (first) shape operator (second fundamental form) φ_1 of the immersion is given by $\varphi_1(X, Y) = \widehat{\nabla}_X Y - \nabla_X Y$ for any tangent vector fields X and Y of M. There holds then $\varphi_1(X, Y) = \varphi_1(Y, X)$.

 $F(\widehat{M})$ and F(M) denote the orthonormal frame bundles over \widehat{M} and M, respectively. Let B be the set of all elements $b=(p,e_1,e_2,\cdots,e_{2+\nu})$ $\in F(\widehat{M})$ such that $(p,e_1,e_2)\in F(M)$, identifying $p\in M$ with x(p) and e_i with $dx(e_i)$, i=1,2. Then B is a smooth submanifold of $F(\widehat{M})$. Let $\widehat{\omega}_A$, $\widehat{\omega}_{AB}=-\widehat{\omega}_{BA}$, A, $B=1,2,\cdots,2+\nu$, be the basic and connection forms of \widehat{M} on $F(\widehat{M})$ which satisfy the following structure equations

(1.1)
$$d\hat{\omega}_{A} = \sum_{B} \hat{\omega}_{AB} \wedge \hat{\omega}_{B}, \\ d\hat{\omega}_{AB} = \sum_{G} \hat{\omega}_{AC} \wedge \hat{\omega}_{CB} - c\hat{\omega}_{A} \wedge \omega_{B}.$$

In this paper, we use the following convention on the range of indices

$$i, j, \cdots = 1, 2,$$
 $\alpha, \beta, \cdots = 3, 4, \cdots, 2 + \nu.$

Deleting the hats of $\hat{\omega}_{A}$, $\hat{\omega}_{AB}$ on B, as is well known, we have

$$\begin{split} \omega_{a} &= 0 \,, \\ \omega_{tx} &= \sum_{j} h_{ij}^{a} \omega_{j} \,, \qquad h_{ij}^{a} = h_{ji}^{a} \,, \\ d\omega_{t} &= \omega_{tj} \, \big / \, \omega_{j} \,, \quad i \neq j \,, \\ (1.2) \qquad d\omega_{ij} &= \sum_{k} \omega_{ik} \, \big / \, \omega_{kj} - \varOmega_{ij} \,, \quad \varOmega_{ij} = \frac{1}{2} \sum_{j} R_{ijkl} \, \omega_{k} \, \big / \, \omega_{l} \,, \\ R_{ijkl} &= c(\hat{\sigma}_{ik}\hat{\sigma}_{jl} - \hat{\sigma}_{il}\hat{\sigma}_{jk}) + \sum_{\alpha} \left(h_{ik}^{\alpha} h_{jl}^{a} - h_{il}^{a} h_{jk}^{a} \right) \,, \\ d\omega_{\alpha\beta} &= \sum_{r} \omega_{\alpha r} \, \big / \, \omega_{r\beta} - \varOmega_{\alpha\beta} \, \qquad \Omega_{\alpha\beta} = \frac{1}{2} \sum_{j} R_{\alpha\beta ij} \omega_{i} \, \big / \, \omega_{j} \,, \\ R_{\alpha\beta ij} &= \sum_{k} \left(h_{ik}^{a} h_{jk}^{\beta} - h_{jk}^{\alpha} h_{ik}^{\beta} \right) \,. \end{split}$$

M is said to be *minimal* if its mean curvature vector $\frac{1}{2} \sum_{j,\alpha} h_{jj}^{\alpha} e_{\alpha}$ vanishes identically, i. e., if trace $H_{\alpha} = 0$ for all α , $H_{\alpha} = (h_{ij}^{\alpha})$. The *minimal index* at $p \in M$ (m-index p) is defined to be the dimension of the linear space of all second fundamental forms corresponding to normal vectors at p with vanishing trace. We easily have m-index p ≤ 2 at every point $p \in M$. We denote the square of the norm of the second fundamental form by

$$S = \frac{1}{2} \sum h_{ij}^{\alpha} h_{ij}^{\alpha}$$

The normal scalar curvature K_N of M in \widehat{M} is defined by

$$K_N = \sum_{\substack{i < J \\ a < eta}} (R_{aeta i j})^2 = \sum_{\substack{i < J \\ a < eta}} \{ \sum_k (h_{ik}^a h_{jk}^eta - h_{jk}^a h_{ik}^eta) \}^2.$$

§ 2. The (n+1)-th shape operator and the n-th torsion index $(T_n$ -index). In this section, we assume that M is minimal in \widehat{M} . We define the (n+1)-th shape operator (the n-th torsion operator) and the n-th torsion index for minimal surfaces in \widehat{M} by induction on n.

The (first) shape operator φ_1 can be written as

$$\varphi_1(X, Y) = \sum_{i,j,a} h_{ij}^a \omega_i(X) \omega_j(Y) e_a$$
.

Since $\sum_{j=1}^{2} h_{jj}^{\alpha} = 0$, for $X = e_1 \cos \theta + e_2 \sin \theta$, we have

$$(2.1) \widetilde{\varphi}_1(X) := \varphi_1(X, X) = \cos 2\theta \cdot F_1 + \sin 2\theta \cdot G_1,$$

where $F_1 = \sum_a h_{11}^a e_a$ and $G_1 = \sum_a h_{11}^a e_a$. Let S_p^1 be the unit circle in a tangent space M_p to M at $p \in M$. It is clear from (2.1) that the image of S_p^1 under $\widetilde{\varphi}_1$ is a point, a segment, or an ellipse (a circle) according as m-index pM = 0, 1, or 2. We easily see that

$$(2.2) S^2 - K_N = (\|G_1\|^2 - \|F_1\|^2)^2 + 4 \langle G_1, F_1 \rangle^2,$$

which is geometrically stated as follows:

$$S^2 - K_N = \{(\text{length of major axis})^2 - (\text{length of minor axis})^2\}^2$$

if $m\text{-index}_p M = 2$,
 $S^2 - K_N = (\text{length of the segment})^4$ if $m\text{-index}_p M = 1$,
 $S^2 = K_N = 0$ if $m\text{-index}_p M = 0$.

If m-index_pM = 0 at every point $p \in M$, then M is totally geodesic in \widehat{M} . If m-index_pM = 1 at every point $p \in M$, then the geodesic codimension of M is 1.

Henceforth, we consider the case that m-index_pM = 2 at every point $p \in M$. Then, we can choose a local frame field $b \in B$ such that

$$(2.3) \omega_{j\alpha} \neq 0, \omega_{j\beta} = 0, \alpha_1 \in \{3, 4\}, \text{for } \beta > 4.$$

From (1.1), (1.2) and (2.3) we may write

$$\sum_{lpha_i} h_{ij}^{lpha_1} \omega_{lpha_1eta} = \sum_k h_{ijk}^eta \omega_k, \qquad eta > 4$$
 ,

where h_{ijk}^{β} are symmetric in the indices i, j, k and $\sum_{j} h_{jjk}^{\beta} = 0$. Then, we can consider the 3-linear mapping from $M_p \times M_p \times M_p$ into the normal space N_p at p as follows

$$\varphi_2(X_1, X_2, X_3) = \sum_{\substack{\beta > 4 \ i,j,k}} h_{ijk}^{\beta} \omega_i(X_1) \omega_j(X_2) \omega_k(X_3) e_{\beta}, \quad X_j \subseteq M_{p^*}$$

We call this mapping φ_2 the second shape operator (first torsion operator) of M in \widehat{M} . Putting $\widetilde{\varphi}_2(X) = \varphi_2(X, X, X)$ for $X \in M_p$, we get the mapping $\widetilde{\varphi}_2$ from M_p into N_p . For $X = e_1 \cos \theta + e_2 \sin \theta$, we have

$$(2.4) \widetilde{\varphi}_2(X) = \cos 3\theta \cdot F_2 + \sin 3\theta \cdot G_2,$$

where $F_2 = \sum_{\beta>4} h_{111}^{\beta} e_{\beta}$ and $G_2 = \sum_{\beta>4} h_{112}^{\beta} e_{\beta}$. We call the dimension of the

image of M_p under $\widetilde{\varphi}_2$ the first torsion index of M in \widehat{M} at $p \in M$ and denote it by T_1 -index_pM. It is clear from (2. 4) that the image of S_p^1 under $\widetilde{\varphi}_2$ is a point, a segment, or an ellipse (a circle) according as T_1 -index_pM = 0, 1, or 2. We easily see that

$$\begin{aligned} (\|G_2\|^2 - \|F_2\|^2)^2 & \text{if } T_1\text{-index}_p M = 2, \\ +4 & < G_2, \ F_2 >^2 = \begin{cases} \{(\text{length of major axis})^2 - (\text{length of minor axis})^2\}^2 \\ & \text{if } T_1\text{-index}_p M = 2, \\ (\text{length of the segment})^4 & \text{if } T_1\text{-index}_p M = 1, \\ 0 & \text{if } T_1\text{-index}_p M = 0. \end{cases}$$

Thus, $(\|G_2\|^2 - \|F_2\|^2)^2 + 4\langle G_2, F_2\rangle^2$ is invariant under the rotation of frames $\{e_1, e_2\}$ and $\{e_3, e_4\}$, so it is a differentiable function on M. If T_1 -index $_pM = 0$ at every point $p \in M$, then we see that the geodesic codimension of M is 2. If T_1 -index $_pM = 1$ at every point $p \in M$, then we see that the geodesic codimension of M is 3, this fact was proved in Theorem 4 in [7].

We consider the case that T_1 -index_pM=2 at every point $p \in M$. Then, we can choose a local frame field satisfying (2.3) and

$$(2.5) \omega_{\alpha_1\alpha_2} \neq 0, \omega_{\alpha_1\gamma} = 0, \alpha_1 \in \{3,4\}, \alpha_2 \in \{5,6\}, 6 < \gamma.$$

It follows from (1.1), (1.2) and (2.5) that we may write

$$\sum_{\alpha_2} h_{ijk}^{\alpha_2} \omega_{\alpha_2 \gamma} = \sum_l h_{ijkl}^{\gamma} \omega_l, \qquad 6 < \gamma,$$

where h_{ijkl}^r are symmetric in the indices i, j, k, l and $\sum_i h_{iljk}^r = 0$. Then, we can consider the 4-linear mapping from $M_p \times \cdots \times M_p$ into N_p as follows: for $X_j \in M_p$, j = 1, 2, 3, 4,

$$\varphi_3(X_1, X_2, X_3, X_4) = \sum_{\substack{i, j, k, l \ r > 0}} h_{ijkl}^r \omega_i(X_1) \omega_j(X_2) \omega_k(X_3) \omega_l(X_4) e_r.$$

We call this mapping φ_3 the third shape operator (second torsion operator) of M in \widehat{M} . Putting $\widetilde{\varphi}_3(X) = \varphi_3(X, X, X, X)$ for $X \in M_p$, we get the mapping $\widetilde{\varphi}_3$ from M_p into N_p . Particularly, for a unit tangent vector $X = e_1 \cos \theta + e_2 \sin \theta$, we have

$$(2. 6) \widetilde{\varphi}_3(X) = \cos 4^{\theta} \cdot F_3 + \sin 4^{\gamma} \cdot G_3,$$

where $F_3 = \sum_{r>6} h_{1111}^r e_r$ and $G_3 = \sum_{r>6} h_{1112}^r e_r$. We call the dimension of the image of M_p under $\widetilde{\varphi}_3$ the second torsion index of M in \widehat{M} at p and denote it by T_2 -index_pM. From (2.6), we see that the image of S_p^1 under

 $\widetilde{\varphi}_3$ is a point, a segment, or an ellipse (a circle) according as T_2 -index_pM=0, 1, or 2. By the same reason as the case of $\widetilde{\varphi}_2$, we easily see that $(\|G_3\|^2-\|F_3\|^2)^2+4\langle F_3, G_3\rangle^2$ is a differentiable function on M.

Now, we assume that T_{n-1} -index_pM=2 at every point $p \in M$, $n \ge 2$. Then, we can choose a local frame field such that

(2.7)
$$\begin{cases} \omega_{\alpha_{l}\alpha_{t+1}} \neq 0, & \omega_{\alpha_{l}\tau} = 0, \quad \alpha_{t} \in I_{t} = \{2t+1, 2t+2\}, \\ \alpha_{t+1} \in I_{t+1}, & 2t+4 < \gamma, \quad t = 0, 1, 2, \dots, n-1. \end{cases}$$

From (1.1), (1.2) and (2.7), we may write

$$\sum_{a_{t+1}} h_{j_1 j_2 \cdots j_{t+2}}^{a_{t+1}} \omega_{a_{t+1} r} = \sum_{j_{t+3}-1}^{2} h_{j_1 j_2 \cdots j_{t+3}}^{r} \omega_{j_{t+3}}, \quad 2t+4 < \gamma,$$

where $h_{J_1J_2\cdots J_{t+3}}^r$ are symmetric in the indices $j_1,\ j_2,\ \cdots,\ j_{t+3}$ and $\sum_j h_{JJk_1k_2\cdots k_{t+1}}^r = 0$ for $t=0,\ 1,\ 2,\ \cdots,\ n-1$. Hence, for t=n-1, we can consider the (n+2)-linear mapping φ_{n+1} from $M_p\times\cdots\times M_p$ into N_p as follows: for $X_j\subseteq M_p,\ j=1,2,\cdots,\ n+2$,

$$\varphi_{n+1}(X_1, \dots, X_{n+2}) = \sum_{r>2n+2} h_{j_1 j_2 \dots j_{n+2}} \omega_{j_1}(X_1) \dots \omega_{j_{n+2}}(X_{n+2}) e_r$$

Putting $\widetilde{\varphi}_{n+1}(X) = \varphi_{n+1}(X, \dots, X)$ for $X \in M_p$, we get the mapping $\widetilde{\varphi}_{n+1}$ from M_p into N_p . We call this mapping φ_{n+1} (or $\widetilde{\varphi}_{n+1}$) the (n+1)-th shape operator (n-th torsion operator) of M in \widehat{M} . Particularly, for a unit tangent vector $X = e_1 \cos \theta + e_2 \sin \theta$, we have

$$(2.8) \qquad \widetilde{\varphi}_{n+1}(X) = \cos(n+2)\theta \cdot F_{n+1} + \sin(n+2)\theta \cdot G_{n+1},$$

where $F_{n+1} = \sum_{r>2n+2} h_{1\dots 1}^r e_r$ and $G_{n+1} = \sum_{r>2n+2} h_{1\dots 1}^r e_r$. We call the dimension of the image of M_p under $\widetilde{\varphi}_{n+1}$ the *n-th torsion index* of M in \widehat{M} at $p \in M$ and denote it by T_n -index $_pM$. It is clear from (2.8) that the image of S_p^1 under $\widetilde{\varphi}_{n+1}$ is a point, a segment, or an ellipse (a circle) according as T_n -index $_pM = 0$, 1, or 2. By the same reason as the case of $\widetilde{\varphi}_p$, we see easily that $(\|G_{n+1}\|^2 - \|F_{n+1}\|^2)^2 + 4\langle F_{n+1}, G_{n+1} \rangle^2$ is a function on M.

§ 3. Complete flat minimal surfaces in \widehat{M} . In this section, we assume that M is a complete, connected and oriented 2-dimensional Riemannian manifold which is minimally immersed in a Riemannian manifold \widehat{M} of constant curvature c ($\neq 0$) and that the Gaussian curvature K of M is identically zero. Then, as is well known, M may be considered as a Riemann surface. Since $K \equiv 0$ and M is complete, as is stated in [1], M is parabolic, i.e., a negative subharmonic function

24 т. ітон

on M must be constant. We first have

Lemma 1. On M we have only one of the following cases:

 S_0 -case S=c and $K_N=0$,

 C_0 -case S = c and $K_N = S^2 = c^2$,

 E_0 -case S = c, $K_N = constant > 0$ and $S^2 - K_N > 0$.

Proof. Since K = 0 and K = c - S, we have

$$S = c = \text{constant} > 0$$
 on M .

We shall prove that K_N is constant on M. Since K=0 on M, we can choose a neighborhood U of a point $p \in M$ in which there exist isothermal coordinates (u, v) and a frame field $b \in B$ such that

$$ds^2 = du^2 + dv^2, \qquad \omega_1 = du, \qquad \omega_2 = dv,$$

where ds is the line element of M. We may write $\omega_{ia}(i=1, 2 \text{ and } 3 \leq \alpha)$ as follows

$$\omega_{1a} = f_a \omega_1 + g_a \omega_2, \qquad \omega_{2a} = g_a \omega_1 - f_a \omega_2,$$

where f_a and g_a are differentiable functions on U. Using the structure equations, we can see that the complex-valued function

$$w(z,\bar{z}) = ||G_1||^2 - ||F_1||^2 + 2i \langle F_1, G_1 \rangle$$

is holomorphic in z=u+iv, where $F_1=\sum\limits_{\alpha\geq 3}f_\alpha e_\alpha$ and $G_1=\sum\limits_{\alpha\geq 3}g_\alpha e_\alpha$. Hence, $|w(z,\bar{z})|^2$ is a subharmonic function on M. Since $S^2-K_N=|w(z,z)|^2$ and S=c, we see that K_N is a non-negative superharmonic function on M, so it must be constant on M, because M is parabolic. Thus, we have only one of three cases in Lemma.

By Lemma 1, at every point $p \in M$, the image of S^1_p under $\widetilde{\varphi}_1$ is a segment of the constant length or an ellipse with axes (a circle with radius) of the constant lengths according as S_0 -case or E_0 -case (C_0 -case).

From now on, by S-case, C-case, or E-case we mean the case where the image of S_p^1 under the t-th shape operator (the (t-1)-th torsion operator) $\widetilde{\varphi}_i$ is a segment, a circle, or an ellipse respectively.

In the S_0 -case, m-index $_pM = 1$ at every point $p \in M$, so the geodesic codimension of M is 1 by Theorem 1 in [6].

In the C_0 -case and the E_0 -case, m-index_pM=2 at every point $p \in M$. In the E_0 -case, we can choose a local frame field $b \in B$ such that

(3.1)
$$H_3 = \begin{pmatrix} k_1 & 0 \\ 0 & -k_1 \end{pmatrix}$$
, $H_4 = \begin{pmatrix} 0 & \sigma_1 k_1 \\ \sigma_1 k_1 & 0 \end{pmatrix}$, $H_\beta = 0$, $4 < \beta$,

where k_1 and σ_1 are real constants $(\neq 0)$ on M, $\sigma_1^2 \neq 1$. From (3.1) we have

$$\omega_{12} = \omega_{34} = 0$$
,

which implies that on a neighborhood U of a point $p \in M$ we can choose isothermal coordinates (u, v) such that

(3.2)
$$ds^2 = du^2 + dv^2$$
, $\omega_1 = du$, $\omega_2 = dv$.

In the C_0 -case, since $K \equiv 0$, on a neighborhood of a point of M we can choose isothermal coordinates and a frame field satisfying (3.1) and (3.2), where $\sigma_1 = 1$. Thus, we may consider that the C_0 -case is a special case of the E_0 -case. It follows from (3.1) and (3.2) that we have

(3.3)
$$\begin{aligned} \omega_{13} + i\omega_{23} &= k_1 d\bar{z}, & z &= u + iv, \\ \omega_{14} + i\omega_{24} &= i\sigma_1 k_1 d\bar{z}, & \omega_1 + i\omega_2 &= dz. \end{aligned}$$

Since $\omega_{i\beta} = 0$ (4 < β), we may write

$$(3.4) \omega_{3\beta} + i\sigma_1\omega_{4\beta} = (f_{\beta} + ig_{\beta})d\overline{z}, \beta < 4,$$

where f_{β} and g_{β} are differentiable functions on U. Then, for a unit tangent vector $X = e_1 \cos \theta + e_2 \sin \theta$, the second shape operator $\widetilde{\varphi}_2$ is written as

$$\widetilde{\varphi}_{2}(X) = \cos 3\theta \cdot F_{2} + \sin 3\theta \cdot G_{2}$$

where $F_2 = k_1 \sum_{\beta>4} f_{\beta} e_{\beta}$ and $G_2 = k_1 \sum_{\beta>4} g_{\beta} e_{\beta}$ are normal vector fields on U. Using the structure equations, from (3.2) and (3.4) we see that the complex-valued function

$$w_1(z, \bar{z}) = -k_1^2 \sum_{\beta} (f_{\beta} - ig_{\beta})^2 = \|G_2\|^2 - \|F_2\|^2 + 2i \langle G_2, F_2 \rangle$$

is holomorphic in z, because k_1 is constant on M. Since, as be stated in § 2, $|w_1(z, \overline{z})|^2$ is a differentiable function on M, $|w_1(z, \overline{z})|^2$ is a subharmonic function on M. Since $\omega_{12} = \omega_{34} = 0$, $|w_1(z, \overline{z})|^2 \le k_1^4 \{\sum_{\beta > 4} (f_{\beta}^2 + g_{\beta}^2)\}^2 = 4\sigma_1^4k_1^8 = \text{constant} \ (>0)$. Hence $|w_1(z, \overline{z})|^2$ must be constant on M, because M is parabolic. Then, for the second shape operator we have S-case, C-case or E-case on M.

In the S-case for $\widetilde{\varphi}_2$ on M, T_1 -index_pM = 1 at every point $p \in M$,

26 т. ітон

so the geodesic codimension of M is 3, see § 2.

We next consider the C-case and E-case for $\widetilde{\varphi}_2$. Since the image of S_p^1 under $\widetilde{\varphi}_2$ is an ellipse with axes (a circle with radius) of constant length at every point $p \in M$, we can choose a neighborhood U of a point $p \in M$ in which there exist isothermal coordinates (u, v) and a local frame field $b \in B$ satisfying (3.3) and

(3.5)
$$\begin{cases} \omega_{35} + i\sigma_1\omega_{45} = k_2d\bar{z}, & \omega_{37} = 0, \\ \omega_{36} + i\sigma_1\omega_{46} = i\sigma_2k_2d\bar{z}, & \omega_{47} = 0, & 6 < \gamma, \end{cases}$$

where k_2 is a non-zero complex constant on M and σ_2 is a non-zero real constant on M. In the C-case for $\widetilde{\varphi}_2$, we may assume that k_2 is a non-zero real constant on M and $\sigma_2 = 1$. From (3.3) and (3.5), we have $\omega_{56} = 0$ and we may write

$$\omega_{5\tau} + i\sigma_2\omega_{6\tau} = (f_{\tau} + ig_{\tau})d\bar{z}, \qquad 6 < \gamma.$$

Hence, for $X = e_1 \cos \theta + e_2 \sin \theta \in M_p$, we write the third shape operator $\widetilde{\varphi}_3$ as

$$\widetilde{\varphi}_{\scriptscriptstyle 3}(X) = \cos 4\theta \cdot F_{\scriptscriptstyle 3} + \sin 4^{g} \cdot G_{\scriptscriptstyle 3}$$
 ,

where F_3 and G_3 are real normal vector fields such that $F_3 + iG_3 = k_1k_2 \sum_{i > 0} (f_i + ig_i) e_i$. Continuing this way, we have

Lemma 2. If the image of S_p^1 under the t-th shape operator $\widetilde{\varphi}_t$ is an ellipse with axes (a circle with radius) of constant length at every point $p \in M$, for $t = 1, 2, \dots, s$, $2 \le s$, then the image of S_p^1 under the (s+1)-th shape operator $\widetilde{\varphi}_{s+1}$ is a segment of constant length or an ellipse with axes (a circle with radius) of constant length at every point $p \in M$.

Proof. By induction, from the assumption we can verify that on a neighborhood U of a point $p \in M$ there exist isothermal coordinates (u, v) and a frame field $b \in B$ such that

$$(3.6), \begin{cases} \omega_{\alpha_{1}\beta_{1}} + i\sigma_{t}\omega_{\alpha_{2}\beta_{1}} = k_{t+1} d\bar{z}, & dz = du + idv = \omega_{1} + i\omega_{2}, \\ \omega_{\alpha_{1}\beta_{2}} + i\sigma_{t}\omega_{\alpha_{2}\beta_{2}} = i\sigma_{t+1}k_{t+1}d\bar{z}, & \omega_{\alpha_{1}r} = \omega_{\alpha_{2}r} = 0, \\ \alpha_{1} = 2t + 1, & \alpha_{2} = 2t + 2, & \beta_{1} = 2t + 3, & \beta_{2} = 2t + 4, \\ 2t + 4 < \gamma, & t = 0, 1, 2, \dots, s - 1, \end{cases}$$

where k_t $(2 \le t \le s)$ are non-zero complex constant on M and k_1 and σ_t $(1 \le t \le s, \sigma_0 = 1)$ are non-zero real constant on M. Using the structure equations, from $(3.6)_s$ we obtain

(3.7), $\omega_{\alpha_1 \alpha_2} = 0$, $\alpha_1 = 2t+1$, $\alpha_2 = 2t+2$ for $t = 0, 1, 2, \dots$, s and we may write

(3.8)
$$\omega_{a_{1}\bar{i}} + i\sigma_{s}\omega_{a_{2}\bar{i}} = (f_{1} + ig_{2})d\bar{z}, \quad a_{1} = 2s + 1, \quad a_{2} = 2s + 2 < \gamma.$$

Let F_{s+1} and G_{s+1} be real normal vector fields on U such that $F_{s+1} + iG_{s+1} = k_1k_2 \cdots k_s \sum_{\tau > 2s+2} (f_{\tau} + ig_{\tau})e_{\tau}$, then for a unit tangent vector $X = e_1\cos\theta + e_2\sin\theta \in M_p$ the (s+1)-th shape operator $\widetilde{\varphi}_{s+1}$ is written as

$$\widetilde{\varphi}_{s+1}(X) = \cos(s+2)\theta \cdot F_{s+1} + \sin(s+2)\theta \cdot G_{s+1}$$

From (3.6), (3.7), and (3.8), we see that the complex-valued function

$$w_s(z, \overline{z}) = -(k_1 \overline{k}_2 \cdots \overline{k}_s)^2 \sum_{\tau > 2s+2} (f_{\tau} - ig_{\tau})^2 = |G_{s+1}|^2 - |F_{s+1}|^2 + 2i < G_{s+1}, F_{s+1} >$$

is holomorphic in z, because k_t $(t=1,2,\cdots,s)$ are constant on M. Since, as the stated in § 2, $|w_s(z,\overline{z})|^2$ is a differentiable function on M, $|w_s(z,\overline{z})|^2$ is a subharmonic function on M. On the other hand, from $(3.7)_s$ we have $|w_s(z,\overline{z})|^2 \leq |k_1k_2\cdots k_s|^4 \{\sum (f_7^2 + g_7^2)\}^2 = |k_1k_2\cdots k_s|^4 \{(1+\sigma_{s-1}^2)\sigma_s^2 \cdot |k_s|^2/\sigma_{s-1}^2\}^2 = \text{constant } (>0)$ on M. Hence the subharmonic function $|w_s(z,\overline{z})|^2$ must be constant on M, because M is parabolic. Thus, at every point $p \in M$ the image of a unit tangent circle S_p^1 to M under $\widetilde{\varphi}_{s+1}$ is a segment of constant length, a circle with constant length or an ellipse with axes of constant length on M.

If the image of S^1_p under $\widetilde{\varphi}_{s+1}$ is a segment of constant length at every point $p \in M$, then T_s -index_pM = 1 at every point p so the geodesic codimension of M is 2s + 1.

If the geodesic codimension of M is even 2s, using the structure equations, from $(3.6)_s$ and (3.8) we have contradiction. Hence, the geodesic codimension of M is odd 2m+1 and the images of unit tangent circles to M under $\widetilde{\varphi}_{m+1}$ are segements of constant length on M. Thus, we have proved the following

Theorem 1. Let M be a 2-dimensional, connected, oriented and complete Riemannian manifold which is minimally immersed in a $(2+\nu)$ -dimensional Riemannian manifold \widehat{M} of non-zero constant curvature c. If Gaussian curvature of M is identically zero and the image of M under the immersion is not contained in a totally geodesic submanifold of \widehat{M} , i.e., ν is the geodesic codimension of M, then ν is odd 2m+1. Furthermore, the images of unit tangent circles to M

28 Т. ІТОН

under the t-th shape operators $(1 \le t \le m)$ are ellipses with axes (or circles with radius) of constant length and the images of unit tangent circles to M under the (m+1)-th shape operator are segments of constant length on M.

In view of Theorem 1, we see that on a neighborhood of a point of M there exist isothermal coordinates (u, v) and a local frame field satisfying $(3.6)_{m+1}$, where $\sigma_{m+1}=0$ and k_{m+1} is a positive constant on M. In general, however, the constants k_t $(1 \le t \le m+1)$ and σ_t $(1 \le t \le m)$ depend on the immersions. Using the structure equations, from $(3.7)_m$ we get

$$(3.9)_m (1 \div \sigma_{t+1}^2) |k_{t+1}|^2 = 2c\sigma_t^2/(1+\sigma_t^2), \quad \sigma_0 = 1, \quad \sigma_{m+1} = 0, \quad 0 \le t \le m.$$

Since c>0 from Lemma 1, we consider the case where \widehat{M} is a (2m+3)-dimensional sphere $S^{2m+3}(c)$ of constant curvature c. We may consider $S^{2m+3}(c) \subset E^{2m+4}$ and set $\sqrt{c} x = e_{2m+4}$. Let $E_t = e_{\alpha_1} + i\sigma_t e_{\alpha_2}$ and $E_t^* = \sigma_t e_{\alpha_1} - ie_{\alpha_2}$, $\alpha_1 = 2t+1$, $\alpha_2 = 2t+2$, where $t=0,1,2,\cdots,m$. Since $E_t^* = ((1+\sigma_t^2)/2\sigma_t)\overline{E}_t - ((1-\sigma_t^2)/2\sigma_t)E_t$, we have the following Frenet formulas of M

$$dx = \frac{1}{2} (\overline{E}_0 dz + E_0 d\overline{z}), \qquad z = u + iv,$$

$$dE_0 = -cxdz + k_1 E_1 d\overline{z},$$

$$dE_1 = -((1 + \sigma_1^2)k_1/2)E_0 dz - \{((1 - \sigma_1^2)k_1/2)\overline{E}_0 - k_2 E_2\} d\overline{z},$$

$$dE_2 = -((1 + \sigma_2^2)\overline{k}_2/2\sigma_1)\overline{E}_1^* dz - \{((1 - \sigma_1^2)k_2/2\sigma_1) E_1^* - k_3 E_3\} d\overline{z},$$

$$(3.10)_m \qquad \qquad \qquad \qquad dE_t = -((1 + \sigma_t^2)\overline{k}_t/2\sigma_{t-1})\overline{E}_{t-1}^* dz - \{((1 - \sigma_t^2)k_t/2\sigma_{t-1}) E_{t-1}^* - k_{t+1}E_{t+1}\} d\overline{z},$$

$$dE_{m-1} = -((1 + \sigma_{m-1}^2)\overline{k}_{m-1}/2\sigma_{m-2})\overline{E}_{m-2}^* dz$$

$$- \{((1 - \sigma_{m-1}^2)k_{m-1}/2\sigma_{m-2})E_{m-2}^* - k_m E_m\} d\overline{z},$$

$$dE_m = -((1 + \sigma_m^2)\overline{k}_m/2\sigma_{m-1})\overline{E}_{m-1}^* dz$$

$$- \{((1 - \sigma_m^2)k_m/2\sigma_{m-1})E_{m-1}^* - k_{m+1}e_{2m+3}\} d\overline{z},$$

$$de_{2m+3} = -(k_{m+1}/2\sigma_m)\overline{E}_m^* dz - (k_{m+1}/2\sigma_m)E_m^* d\overline{z}.$$

From $(3.9)_m$ and $(3.10)_m$ we easily see that the vector fields E_0 , E_1 , E_2 , ..., E_m , e_{2m+3} and $x = e_{2m+4}$ satisfy the following equation

$$(3.11) \qquad \qquad \hat{\sigma}^2 Y/(\hat{\sigma}z \cdot \hat{\sigma}\overline{z}) = -(c/2)Y.$$

Remark. In Theorem 1, it seems to be difficult to prove the rigidity for the minimal immersion of the Euclidean plane into a sphere without

any assumption.

Under the assumption of Theorem 1, if the images of unit tangent circles to M under the t-th shape operators $(1 \le t \le m)$ are circles with radius of constant length on M, then we can choose a neighborhood of a point of M in which there exist isothermal coordinates and a local frame field $b \in B$ satisfying $(3.6)_{m+1}$ such that $\sigma_t = 1$ $(1 \le t \le m)$, $\sigma_{m+1} = 0$ and k_t $(1 \le t \le m+1)$ are non-zero real constants on M. These constants are independent of the immersion. When c=1, in the same way as in §8 of [7], from $(3.10)_m$ we can verify that M is the surface given by

$$(3.12) \begin{array}{c} x = \frac{1}{\sqrt{2(m+2)}} \sum\limits_{j=1}^{m+2} \left\{ A_{j} \exp i \sqrt{2} \left(u \cdot \sin \frac{2j-1+\varepsilon}{2(m+2)} \pi + v \cdot \cos \frac{2j-1+\varepsilon}{2(m+2)} \pi \right) + \overline{A}_{j} \exp \left(-i \sqrt{2} \right) \left(u \cdot \sin \frac{2j-1+\varepsilon}{2(m+2)} \pi + v \cdot \cos \frac{2j-1+\varepsilon}{2(m+2)} \pi \right) \right\}, \end{array}$$

where A_1, A_2, \dots, A_{m+2} are constant vectors in $C^{m+2} = E^{2m+4}$ such that

$$A_j \cdot A_j = A_j \cdot A_k = A_j \cdot \overline{A}_k = 0, \quad A_j \cdot \overline{A}_j = 1, \quad j \neq k,$$

and $\epsilon = 0$ or 1 according as m = odd or even. Thus, we have proved the following

Theorem 2. Under the assumption of Theorem 1, if \widehat{M} is a unit sphere and the images of unit tangent circles to M under the t-th shape operators $(1 \le t \le m)$ are circles with radius of constant length on M, then the immersion is uniquely determined up to a rigid motion of a sphere.

We are interested in examples of flat minimal surfaces other than (3.12). In the next section, we shall find examples other than (3.12).

§ 4. Examples of minimal immersions of the Euclidean plane into a sphere of constant curvature 1. In this section, we give examples of flat minimal surfaces in $S^{5}(1)$ and $S^{7}(1)$ other than (3.12).

We first give examples in $S^5(1)$, that is, find solutions of $(3.10)_1$ in the case c=1. Noticing (3.11), we choose three fixed constant vectors A_1 , A_2 , A_3 in $C^3=E^6$ such that

(4.1)
$$A_{j} \cdot A_{j} = A_{j} \cdot A_{k} = A_{j} \cdot \overline{A}_{k} = 0, \quad \sum_{j=1}^{3} A_{j} \cdot \overline{A}_{j} = 1,$$
$$j, \quad k = 1, 2, 3, \quad j \neq k,$$

and let

$$(4.2) x = \frac{1}{\sqrt{2}} \sum_{j=1}^{3} \{A_{j} \exp \frac{1}{\sqrt{2}} (ze^{i\alpha_{j}} - \bar{z}e^{-i\alpha_{j}}) + \bar{A}_{j} \exp \frac{1}{\sqrt{2}} (-ze^{i\alpha_{j}} + \bar{z}e^{-i\alpha_{j}})\},$$

30 Т. 1ТОН

where the bar denotes the conjugate and α_j (j=1,2,3) are real constant numbers. It is clear that $x=\bar{x}$ and $x\cdot x=1$ by (4.1). In this case, we set

$$\begin{split} E_0 &= 2\frac{\hat{o}x}{\hat{o}\bar{z}} = -\sum_{j=1}^{3} e^{-i\alpha_j} \left\{ A_j \exp\frac{1}{\sqrt{2}} (ze^{i\alpha_j} - \bar{z}e^{-i\alpha_j}) - \bar{A}_j \exp\frac{1}{\sqrt{2}} (\bar{z}e^{-i\alpha_j} - ze^{i\alpha_j}) \right\}, \\ E_1 &= \frac{\hat{o}E_0}{k_1\hat{o}\bar{z}} = \frac{1}{k_1\sqrt{2}} \sum_{j=1}^{3} e^{-2i\alpha_j} \left\{ A_j \exp\frac{(ze^{i\alpha_j} - \bar{z}e^{-i\alpha_j})}{\sqrt{2}} + \bar{A}_j \exp\frac{(-ze^{i\alpha_j} + \bar{z}e^{-i\alpha_j})}{\sqrt{2}} \right\}, \\ e_3 &= \frac{\hat{o}E_1}{k_2\hat{o}\bar{z}} + \frac{(1-\sigma_1^2)k_1\bar{E}_0}{2k_2} = \frac{1}{2k_1k_2} \sum_{j=1}^{3} \left[\left\{ \frac{1-\sigma_1^2}{1+\sigma_1^2}e^{i\alpha_j} - e^{-3i\alpha_j} \right\} \right]. \\ &\cdot \left\{ A_j \exp\frac{1}{\sqrt{2}} (ze^{i\alpha_j} - \bar{z}e^{-i\alpha_j}) - \bar{A}_j \exp\frac{1}{\sqrt{2}} (-ze^{i\alpha_j} + \bar{z}e^{i\alpha_j}) \right\} \right], \end{split}$$

where k_1 , k_2 and σ_1 are non-zero real constant numbers satisfying (3. 9)₁. Then, we easily see that these vectors satisfy the equation (3. 10)₁ in the case c = 1. From the above equations we have

$$x \cdot E_0 = E_0 \cdot E_1 = E_0 \cdot \overline{E}_1 = E_1 \cdot e_5 = e_5 \cdot x = 0$$
,
 $E_0 \cdot \overline{E}_0 = 2$, $E_1 \cdot \overline{E}_1 = 1 + \sigma^2$.

Hence, we see that (4.2) is a solution of $(3.10)_1$ if and only if there hold the following equalities

$$x \cdot E_1 = E_0 \cdot E_0 = E_0 \cdot e_5 = 0, \quad E_1 \cdot E_1 = 1 - \sigma_1^2,$$

 $e_5 = \overline{e}_5, \quad e_5 \cdot e_5 = 1.$

By the above definitions of x, E_0 , E_1 and e_5 , these equations are equivalent to the following

$$(4.3) \qquad \sum_{j=1}^{3} A_{j} \cdot \overline{A}_{j} e^{-2i\alpha_{j}} = 0,$$

(4.4)
$$\sum_{i=1}^{3} A_{i} \cdot \overline{A}_{i} e^{-4i\alpha_{i}} = k_{1}^{2} (1 - \sigma_{1}^{2}),$$

(4.5)
$$\sum_{j=1}^{3} A_{j} \cdot \overline{A}_{j} e^{-6i\alpha_{j}} = -2k_{1}^{2}k_{2}^{2},$$

(4.6)
$$\cos 3\alpha_j - ((1-\sigma_j^2)/(1+\sigma_j^2))\cos \alpha_j = 0 \text{ for } j=1,2,3.$$

Now, we shall find constant vectors A_j (j=1,2,3) and real constant numbers α_j (j=1,2,3) satisfying $(4.3) \sim (4.6)$ under the condition

(3.9)₁. We consider the following special case:

$$(4.7) A_1 \cdot \overline{A}_1 = A_2 \cdot \overline{A}_2, \quad -\alpha_1 = \alpha = \alpha_2, \quad 2\alpha_3 = \pi.$$

Then, from (4.1), (4.3) and (4.7) we have

$$(4.8) A_1 \cdot \overline{A}_1 = A_2 \cdot \overline{A}_2 = \frac{1}{2(1 + \cos 2\alpha)}, \ A_3 \cdot \overline{A}_3 = \frac{\cos 2\alpha}{1 + \cos 2\alpha}.$$

Hence, in this special case, if there exist A_j and α_j (j=1,2,3) satisfying $(4.3) \sim (4.6)$, the solutions (4.2) are determined only by one parameter α . Using $(1 + \sigma_j^2)k_1^2 = 1$, from (4.4) and (4.8) we have

(4.9)
$$\cos 2\alpha = \{(1-\sigma_1^2)/(1+\sigma_1^2)+1\}/2 = 1/(1+\sigma_1^2) = k_1^2$$

Since $k_1 \neq 0$, $\sigma_1 \neq 0$ and $(1 + \sigma_1^2)k_1^2 = 1$, we have $0 < k_1^2 < 1$, which implies $0 < \cos 2\alpha < 1$ by (4.9), so that we may assume that $0 < \alpha < \pi/4$. Then, from (4.9) we have

$$\cos \alpha = \sqrt{(k_1^2+1)/2}, \quad \sin \alpha = \sqrt{(1-k_1^2)/2}.$$

and from (4.8) we have

(4.10)
$$A_1 \cdot \overline{A}_1 = A_2 \cdot \overline{A}_2 = \frac{1}{2(1+k_1^2)}, \quad A_3 \cdot \overline{A}_3 = \frac{k_1^2}{1+k_1^2}.$$

We can easily see that these constants satisfy (4.5) and (4.6). Thus, we obtain examples given by

$$x = \frac{1}{\sqrt{2}} \left[A_1 \exp i(v\sqrt{k_1^2 + 1} - u\sqrt{1 - k_1^2}) + \overline{A}_1 \exp i(u\sqrt{1 - k_1^2} - v\sqrt{1 + k_1^2}) + A_2 \exp i(v\sqrt{1 + k_1^2} + u\sqrt{1 - k_1^2}) + \overline{A}_2 \exp (-i(v\sqrt{1 + k_1^2} + u\sqrt{1 - k_1^2})) + A_2 \exp (\sqrt{2} iu) + \overline{A}_3 \exp (-\sqrt{2} iu) \right].$$

where A_1 , A_2 , A_3 are fixed constant vectors in $C^3 = E^6$ satisfying (4. 1) and (4. 10) and k_1 is a positive constant smaller than 1.

Next, we shall give examples in $S^7(1)$, that is, find solutions of $(3.10)_2$ in the case where c=1 and $k_2=$ real constant $\neq 0$. Noticing (3.11), we choose four fixed vectors A_1 , A_2 , A_3 , A_4 in $C^4=E^8$ such that

(4.12)
$$A_j \cdot A_j = A_j \cdot A_k = A_j \cdot \overline{A}_k = 0$$
, $\sum_{j=1}^4 A_j \cdot \overline{A}_j = 1$, $j, k = 1, 2, 3, 4, j \neq k$.

Let

$$(4.13) \ \ x = \frac{1}{\sqrt{2}} \sum_{j=1}^{4} \left\{ A_{j} \exp \frac{1}{\sqrt{2}} (ze^{i\alpha_{j}} - \overline{z}e^{-i\alpha_{j}}) + \overline{A}_{j} \exp \frac{1}{\sqrt{2}} (-ze^{i\alpha_{j}} + \overline{z}e^{-i\alpha_{j}}) \right\},$$

where α_j (j=1, 2, 3, 4) are real constant numbers. It is clear from (4.12) and (4.13) that $x=\bar{x}$ and $x \cdot x=1$. We define vectors E_0 , E_1 , E_2

32 T. 1TOH

and e_7 as follows

$$\left\{ E_0 = 2 \frac{\partial x}{\partial \overline{z}} = - \sum_{j=1}^4 e^{-ia_j} B_j^*, \\ E_1 = \frac{\partial E_0}{k_1 \partial \overline{z}} = \frac{1}{k_1 \sqrt{2}} \sum_{j=1}^4 e^{-2ia_j} B_j, \\ E_2 = \frac{\partial E_1}{k_2 \partial \overline{z}} + \frac{(1-\sigma_1^2)k_1 \overline{E}_0}{2k_2} = \frac{1}{2k_1 k_2} \sum_{j=1}^4 \left\{ \frac{1-\sigma_1^2}{1+\sigma_1^2} e^{ia_j} - e^{-3ia_j} \right\} B_j^*, \\ e_7 = \frac{\partial E_2}{k_3 \partial \overline{z}} + \frac{(1-\sigma_2^3)k_2}{2k_3 \sigma_1} \left\{ \frac{1+\sigma_1^2}{2\sigma_1} \overline{E}_1 - \frac{1-\sigma_1^2}{2\sigma_1} E_1 \right\} \\ = \frac{1}{2\sqrt{2}} \sum_{k_1 k_2 k_3} \sum_{j=1}^4 \left\{ e^{-4ia_j} - \frac{1-\sigma_1^2}{1+\sigma_1^2} + \frac{1-\sigma_2^2}{1+\sigma_2^2} e^{2ia_j} - \frac{(1-\sigma_1^2)(1-\sigma_2^2)}{(1+\sigma_1^2)(1+\sigma_2^2)} e^{-2ia_j} \right\} B_j,$$

where $B_j = A_j \exp\left((ze^{i\alpha_j} - \bar{z}e^{-i\alpha_j})/\sqrt{2}\right) + \bar{A}_j \exp\left((-ze^{i\alpha_j} + \bar{z}e^{-i\alpha_j})/\sqrt{2}\right)$ and $B_j^* = A_j \exp\left((ze^{i\alpha_j} - \bar{z}e^{-i\alpha_j})/\sqrt{2}\right) - \bar{A}_j \exp\left((-ze^{i\alpha_j} + \bar{z}e^{-i\alpha_j})/\sqrt{2}\right)$ and k_1 , k_2 , k_3 , σ_1 and σ_2 are real constant numbers satisfying (3.9)₂. From (4.14) we easily see that

$$x \cdot E_0 = E_0 \cdot E_1 = E_0 \cdot \overline{E}_1 = E_0 \cdot e_7 = E_1 \cdot E_2 = E_1 \cdot \overline{E}_2 = E_2 \cdot x = E_2 \cdot e_7 = 0,$$

$$E_0 \cdot \overline{E}_0 = 2, \qquad E_1 \cdot \overline{E}_1 = 1 + \sigma_1^2, \qquad E_2 \cdot \overline{E}_2 = 1 + \sigma_2^2.$$

Hence, (4.13) is a solution of (3.10)₂ if and only if the following conditions are satisfied:

(4.15)
$$x \cdot E_1 = x \cdot e_7 = E_0 \cdot E_0 = E_0 \cdot E_2 = E_0 \cdot \overline{E}_2 = E_1 \cdot e_7 = 0,$$

$$E_1 \cdot E_1 = 1 - \sigma_1^2, \qquad E_2 \cdot E_2 = 1 - \sigma_2^2,$$

$$(4, 16)$$
 e_{τ} is a unit real vector.

Using (4.12), we see that the conditions (4.15) are equivalent to the following equalities:

$$(4.17) \begin{cases} \sum_{j=1}^{4} A_{j} \cdot \overline{A}_{j} \ e^{-2ia_{j}} = 0, \\ \sum_{j=1}^{4} A_{j} \cdot \overline{A}_{j} \ e^{-4ia_{j}} = k_{1}^{2} (1 - \sigma_{1}^{2}), \\ \sum_{j=1}^{4} A_{j} \cdot \overline{A}_{j} \ e^{-6ia_{j}} = -2k_{1}^{2} k_{2}^{2} (1 - \sigma_{2}^{2}). \end{cases}$$

In order to find constant vectors A_j in C^4 and constant numbers α_j (j=1, 2, 3, 4) satisfying (4.16) and (4.17), we consider the following special case:

$$(4.18) \quad A_1 \cdot \overline{A}_1 = A_3 \cdot \overline{A}_3, \quad -\alpha_1 = \alpha_3 = \alpha, \quad \alpha_2 = 0, \quad 2\alpha_4 = \pi.$$

By means of $(3.9)_2$ and (4.12), from (4.17) we have

(4.19)
$$\cos 2\alpha = k_1^2 (1 - \sigma_2^2)/(2\sigma_1^2) = k_1^2 (1 - k_3^2) = k_1^2$$

$$(4.20) \quad \begin{array}{l} A_1 \cdot \overline{A}_1 = A_3 \cdot \overline{A}_3 = (k_1^2 - 1)/(2k^2 - 2), \\ A_2 \cdot \overline{A}_2 = (k - k_1^2)/(2k - 2), \quad A_4 \cdot \overline{A}_4 = (k + k_1^2)/(2k + 2). \end{array}$$

Therefore, we have seen that if there exist A_j and α_j (j=1, 2, 3, 4) satisfying (4.12), (4.16) and (4.17), then (4.13) is determined only by two parameters k_1 and k_3 . In this case, we can show that e_7 is a unit real vector. Since $k_3^2 = 2\sigma_2^2/(1 + \sigma_2^2)$, $k_1^2(1 + \sigma_1^2) = 1$, $\sigma_1 \neq 0$ and $\sigma_2 \neq 0$, we have

$$0 < k_1^2 < 1$$
 and $0 < k_3^2 < 2$,

which implies $|\cos 2\alpha| < 1$ by (4.19). Hence, we may assume that $0 < \alpha < \pi/2$. Thus, we obtain examples of minimal immersions of the Euclidean plane into a sphere $S^{7}(1)$ given by

$$x = \frac{1}{\sqrt{2}} \left[A_1 \exp i(v\sqrt{1+k} - u\sqrt{1-k}) + \overline{A}_1 \exp i(u\sqrt{1-k} - v\sqrt{1+k}) \right]$$

$$(4.21) + A_2 \exp (\sqrt{2} iv) + \overline{A}_2 \exp(-\sqrt{2} iv)$$

$$+ A_3 \exp i(v\sqrt{1+k} - u\sqrt{1-k}) + \overline{A}_3 \exp(-i(v\sqrt{1+k} - u\sqrt{1-k}))$$

$$+ A_4 \exp(\sqrt{2} iu) + \overline{A}_4 \exp(-\sqrt{2} iu) \right],$$

where A_1 , A_2 , A_3 , A_4 are fixed constant vectors in $C^4 = E^8$ satisfying (4.12) and (4.20) and k is a constant real number such that

$$k := k_1^2(1-k_3^2), \quad 0 < k_1^2 = \text{const.} < 1, \quad 0 < k_3^2 = \text{const.} < 2$$

Remark. We have obtained many examples of the Euclidean plane minimally immersed into the Euclidean unit spheres S^5 and S^7 other than Otsuki's surfaces. When m=1 and m=2, Otsuki's surfaces (3.12) are included in these examples as the special case where $\sigma_1^2=1$ and $\sigma_2^2=1$.

§ 5. Compact minimal surfaces of non-negative $(\not\equiv 0)$ curvature in \widehat{M} . In this section, we shall consider connected compact minimal surfaces of non-negative curvature K ($\not\equiv 0$) in a $(2 + \nu)$ -dimensional Riemannian manifold \widehat{M} of constant curvature c.

Let U be a neighborhood of a point $p \in M$ in which there exist isothermal coordinates (u, v) and a frame field $b \in B$ such that

(5.1)
$$ds^2 = E \{ du^2 + dv^2 \}, \quad \omega_1 = \sqrt{\overline{E}} \ du, \quad \omega_2 = \sqrt{\overline{E}} \ dv,$$

where ds is the line element of M and E = E(u, v) is a positive function on U. In this case, we may write

$$\omega_{1a} = f_a \omega_1 + g_a \omega_2, \quad \omega_{2a} = g_a \omega_1 - f_a \omega_2, \quad 3 < \alpha$$

where f_a and g_a are functions on U. Then, using the structure equations, we can verify that the complex valued function

$$(5.2) w(z,\bar{z}) = E^2(\|G_1\|^2 - \|F_1\|^2) + 2iE^2 \langle F_1, G_1 \rangle, F_1 = \sum f_\alpha e_\alpha, G_1 = \sum g_\alpha e_\alpha,$$

is holomorphic in z = u + iv. Then, we have the following

Lemma 3. We have
$$S^2 - K_N = 0$$
 on M.

Proof. By an easy computation, we see that $S^2 - K_N = |w(z, \overline{z})|^2 / E^4$ on M. If $S^2 - K_N = 0$ does not hold identically on M, $S^2 - K_N$ takes its positive maximum A at some $p_0 \in M$. Let U be a neighborhood of p_0 in which $S^2 - K_N > 0$ and there exist isothermal coordinates (u, v) and a frame field $b \in B$ satisfying (5.1). Then, from (5.2) we have

(5.3)
$$\Delta \log (S^2 - K_y) = -4\Delta \log E = 8EK, \quad \Delta = \frac{\partial^2}{\partial u^2} + \frac{\delta^2}{\partial v^2},$$

because the Gaussian curvature K is given by $K = -(1/2E)\Delta \log E$. If $K \ge 0$, the function $\log(S^2 - K_N)$ is a subharmonic function on U, so it must be constant A on U. Therefore, the closed set $\{p \in M | S^2 - K_N = A \text{ at } p\}$ of M is open in M. Since M is connected, $S^2 - K_N$ is identically a positive constant A on M. It follows from this fact and (5.3) that K is identically zero, which contradicts $K \not\equiv 0$ on M.

By Lemma 3, if m-index $_pM \neq 0$ at every point $p \in M$, then we can choose a neighborhood U of a point $p \in M$ in which there exist isothermal coordinates and frame fields satisfying (5.1) and

(5.4)
$$\begin{cases} \omega_{13} = k_1 \omega_1 = \omega_{24}, & \omega_{1\beta} = \omega_{2\beta} = 0, \\ \omega_{23} = -k_1 \omega_2 = -\omega_{14}, & 4 < \beta, \end{cases}$$

where k_1 is a positive differentiable function M. Using the structure equations, from (5.4) we have

$$\omega_{34} = 2\omega_{12} - (\log k_1)_2\omega_1 + (\log k_1)_1\omega_2$$

where $d(\log k_1) = \sum_{j=1}^{2} (\log k_1)_j \omega_j$. Furthermore, from (5.4) we may write

(5.5)
$$\omega_{3\beta} = f_{\beta}\omega_1 + g_{\beta}\omega_2, \quad \omega_{4\beta} = g_{\beta}\omega_1 - f_{\beta}\omega_2, \quad 4 < \beta,$$

and define two normal vector fields $F_2 = \sum_{\beta \geq 1} f_{\beta} e_{\beta}$ and $G_2 = \sum_{\beta \geq 1} g_{\beta} e_{\beta}$ on U.

Then, we can write the second shape operator $\widetilde{\varphi}_2$ as

$$\widetilde{\varphi}_2(X) = k_1 \{\cos 3\theta \cdot F_2 + \sin 3\theta \cdot G_2\}$$
, $X = e_1 \cos \theta + e_2 \sin \theta \in M_p$.

Using the structure equations, from (5.5) and (5.6) we see that the complex-valued function

$$w_1(z,\bar{z}) = E^3 k_1^2 (\|G_2\|^2 - \|F_2\|^2) + 2iE^3 k_1^2 \langle F_2, G_2 \rangle$$

is holomorphic in z. As stated in § 2, we see that $|w_1(z,\bar{z})|^2/E^6 = k_1^4\{(\|G_2\|^2-\|F_2\|^2)^2+4\langle G_2, F_2\rangle^2\}$ is a differentiable function on M. Hence, by the same reason as the proof of Lemma 3, we can prove

Lemma 4. If m-index_p $M \neq 0$ at every point $p \in M$, then, at each point $p \in M$, the image of S_p^1 under the second shape operator is a point p or a circle according as T_1 -index_pM = 0 or $\neq 0$.

By Lemma 3 and Lemma 4, if m-index $_pM \neq 0$ and T_1 -index $_pM \neq 0$ at every point $p \in M$, then we can choose a neighborhood U of a point $p \in M$ in which there exist isothermal coordinates (u, v) and a frame field $b \in B$ satisfying (5.1), (5.4) and

(5.7)
$$\begin{aligned} \omega_{35} &= k_2 \omega_1 = \omega_{46}, & \omega_{37} &= \omega_{47} = 0, \\ \omega_{36} &= k_2 \omega_2 = -\omega_{45}, & 6 < \gamma, \end{aligned}$$

where k_2 is a positive differentiable function on M. Let $\lambda_2 = k_1 k_2$ and $d(\log \lambda_2) = \sum_{j=1}^{2} (\log \lambda_2)_j \omega_j$, then from (5.7) we have

(5.8)
$$\omega_{56} = 3\omega_{12} - (\log \lambda_2)_2 \omega_1 + (\log \lambda_2)_1 \omega_2$$

and we may write

$$\omega_{57} = f_7 \omega_1 + g_7 \omega_2, \quad \omega_{67} = g_7 \omega_1 - f_7 \omega_2, \quad 6 < \gamma.$$

Hence, for a unit tangent vector $X = e_1 \cos \theta + e_2 \sin \theta \in M_p$, the third shape operator $\widetilde{\varphi}_3$ is written as

$$\widetilde{\varphi}_3(X) = \lambda_2 \left\{ \cos 4\theta \cdot F_3 + \sin 4\theta \cdot G_3 \right\},$$

where $F_3 = \sum_{r>6} f_r e_r$ and $G_3 = \sum_{r>6} g_r e_r$ are normal vector fields on U. Continuing this way, we have the following

Theorem 3. Let M be a 2-dimensional, connected and compact Riemannian manifold of non-negative curvature ($\not\equiv 0$) which is minimally immersed in a $(2 + \nu)$ -dimensional Riemannian manifold \widehat{M} of constant

curvature c. If we have

- (A) the image of M is not contained in a totally geodesic submanifold of \widehat{M} , i.e., ν is the geodesic codimension of M,
- (B) m-index_p $M \neq 0$ at every point $p \in M$,
- (C) T_n -index_pM $(n = 1, 2, \cdots)$ are defined at every point $p \in M$ and T_n -index_p $M \neq 0$ at every point $p \in M$ for $n = 1, 2, \cdots, \left[\frac{\gamma}{2}\right] 1$, then ν must be even 2m and the image of unit tangent circles to M under the n-th shape operators $\widetilde{\varphi}_n$ $(1 \leq n \leq m)$ are circles.

Proof. For the (first) shape operator and the second shape operator, we have proved our latter assertion in Lemma 3 and Lemma 4. By the induction on n, we shall prove that the image of a unit tangent circle S_p^1 under the n-th shape operators $(1 \le n \le \lceil \frac{\nu}{2} \rceil)$ are circles for every $p \in M$. Now, we assume that the above assertion holds for all $t \le s - 1$. Then, we can choose a neighborhood U of a point $p \in M$ in which there exist isothermal coordinates (u, v) and a frame field $b \in B$ satisfying (5.1) and

(5.9)
$$\begin{cases} \omega_{\alpha_{1}\beta_{1}} = k_{t}\omega_{1} = \omega_{\alpha_{2}\beta_{2}}, & \omega_{\alpha_{1}7} = \omega_{\alpha_{2}7} = 0, \\ \omega_{\alpha_{1}\beta_{2}} = k_{t}\omega_{2} = -\omega_{\alpha_{2}\beta_{1}}, & 2t + 2 < \gamma, \\ \alpha_{1} = 2t - 1, & \alpha_{2} = 2t, & \beta_{1} = 2t + 1, & \beta_{2} = 2t + 2, \\ t = 1, 2, \dots, s - 1, \end{cases}$$

where k_t $(1 \le t \le s - 1)$ are positive differentiable functions on M. Using the structure equations, from (5.9) we have

(5. 10)_{s-1}
$$\omega_{\beta_1\beta_2} = (t+1)\omega_{12} - (\log \lambda_t)_2\omega_1 + (\log \lambda_t)_1\omega_2$$
, where $\beta_1 = 2t+1$, $\beta_2 = 2t+2$, $\lambda_t := k_1 \cdot k_2 \cdots \cdot k_t$ and $d(\log \lambda_t) = \sum_{j=1}^{2} (\log \lambda_t)_j\omega_j$ for $t=1,2,\cdots$, $s-1$. From (5. 9), we may write
$$\omega_{a_1\tau} = f_{\tau}\omega_1 + g_{\tau}\omega_2, \quad a_1 = 2s-1,$$

$$\omega_{a_2\tau} = g_{\tau}\omega_1 - f_{\tau}\omega_2, \quad a_2 = 2s, \quad 2s < \tau.$$

Hence, for a unit tangent vector $X = e_1 \cos \theta + e_2 \sin \theta \in M_p$, the s-th shape operator $\widetilde{\varphi}_s$ is written as

$$\widetilde{\varphi}_s(X) = \lambda_{s-1} \{ \cos(s+1)\theta \cdot F_s + \sin(s+1)\theta \cdot G_s \},$$

where $F_s = \sum_{r>2s} f_r e_r$ and $G_s = \sum_{r>2s} g_r e_r$ are normal vector fields on a neighborhood U of $p \in M$. Using the structure equations, from (5. 9) and (5. 10)_{s-1} we can verify the complex-valued function

$$(5.11) w_{s-1}(z,z) = E^{s+1}\lambda_{s-1}^2(\|G_s\|^2 - \|F_s\|^2) + 2iE^{s+1}\lambda_{s-1}^2 \langle G_s, F_s \rangle$$

is holomorphic in z=u+iv. Since λ_{s-1} is a differentiable function on M, as be stated in §2, $|w_{s-1}(z,\bar{z})|^2/E^{r_s+2}=\lambda_{s-1}^4\{(\|G_s\|^2-\|F_s\|^2)^2+4\langle G_s,F_s\rangle^2\}$ is a differentiable function on M. Therefore, by the same way as the proof of Lemma 3, we see that at each point $p\in M$ the image of a unit tangent circle S_p^1 to M under the s-th shape operator $\widetilde{\varphi}_s$ is a point p or a circle according as T_{s-1} -indexpM=0 or $\neq 0$. Since T_{s-1} -index $pM\neq 0$ at every point $p\in M$ if $s\leq \left\lfloor \frac{\nu}{2}\right\rfloor$ from (C), at each point $p\in M$ we can choose a neighborhood U of a point p in which there exist isothermal coordinates (u,v) and a frame field $b\in B$ satisfying(5.1), (5.4), (5.9) for every $t\leq s$ and

$$\omega_{a_1b_1}=k_s\omega_1=\omega_{a_2b_2}$$
, $\omega_{a_1r}=\omega_{a_2r}=0$, $\omega_{a_1b_2}=k_s\omega_2=-\omega_{a_2b_1}$, $b_1=2s+1$, $b_2=2s+2$, $2s+2<\tilde{r}$,

where k_i is a positive differentiable function on M.

Thus, it is clear that the geodesic codimension ν of M is even 2m (m a positive integer).

Using the structure equations, from (5.4), (5.9) and $(5.10)_m$ we obtain

$$(5.12) \begin{cases} \Delta(\log \lambda_t) = E\{(t+1)K - 2k_t^2 + 2k_{t+1}^2\}, \ t = 1, 2, \dots, m-1, \\ \Delta(\log \lambda_m) = E\{(m+1)K - 2k_m^2\}, \end{cases}$$

where $\Delta = \partial^2/\partial u^2 + \partial^2/\partial v^2$. From (5.12) we have

(5.13)
$$\Delta \log (\lambda_1 \cdot \lambda_2 \cdots \lambda_m) = E\left\{\frac{m(m+3)}{2}K - 2k_1^2\right\} = E\left\{\frac{(\nu+2)(\nu+4)}{8}K - c\right\},$$

because $K=c-2k_1^2$ and $\nu=2m$. Therefore, if $(\nu+2)(\nu+4)K-8c$ does not change its sign, $\log(\lambda_1\cdot\lambda_2\cdots\lambda_m)$ is a subharmonic or superharmonic function on M, so it must be constant, because M is compact. Hence, $K=8c/(\nu+2)(\nu+4)=\text{constant}>0$ and so k_t $(1\leq t\leq m)$ are constant on M. Supposing K=1, from (5.12) we get

$$k_t^2 = (m - t + 1) (m + t + 2)/4$$
 for $t = 1, 2, \dots, m,$
 $c = (m + 1) (m + 2)/2.$

Let $E_t = e_{2t+1} + ie_{2t+2}$, $t = 0, 1, 2, \dots, m$. Then, the Frenet formulas of M can be written as follows

$$dx = \frac{1}{h} \left(\overline{E}_0 dz + E_0 d\overline{z} \right), \qquad z = u + iv,$$

$$\begin{split} DE_0 &= \frac{1}{h} \, E_0(\bar{z}dz - zd\bar{z}) + \frac{2k_1}{h} \, E_1d \, , \\ DE_1 &= -\frac{2k_1}{h} E_0dz + \frac{2}{h} \, E_1(\bar{z}dz - zd\bar{z}) + \frac{2k_2}{h} \, E_2d\bar{z} \, , \\ & \dots \\ DE_t &= -\frac{2k_t}{h} \, E_{t-1}dz + \frac{t+1}{h} \, E_t(\bar{z}dz - zd\bar{z}) + \frac{2k_{t+1}}{h} \, E_{t+1}dz \, , \\ & \dots \\ DE_m &= -\frac{2k_m}{h} \, E_{m-1}dz + \frac{m+1}{h} \, E_m(\bar{z}dz - zd\bar{z}) \, , \end{split}$$

where D denotes the covariant differentiation of \widehat{M} and $h=1+z\overline{z}$. Now, let \widehat{M} be a (2m+2)-dimensional sphere $S^{2m+2}(R)$ with radius $R=1/\sqrt{c}=\sqrt{2/(m+1)(m+2)}$. We may consider $S^{2m+2}(R)\subset E^{2m+3}$ and put $x=Re_{2m+8}$. By an computation analogous to the one in [7], we can verify that M is a generalized Veronese surface. Thus, we have proved

Theorem 4. If the assumptions of Theorem 3 are satisfied and $(\nu+2)(\nu+4)K-8c$ does not change its sign, then K is a positive constant on \widehat{M} . Let K=1 and \widehat{M} be a $(\nu+2)$ -dimensional sphere of constant curvature (m+1)(m+2)/2. Then M is a generalized Veronese surface.

BIBLIOGRAPHY

- [1] T. Itoh: Complete surfaces in E⁴ with constant mean curvature, Kodai Math. Sem. Rep. 22 (1970), 150—158.
- [2] T. Itoh: Minimal surfaces with m-index 2, T₁-index 2 and T₂-index 2, Kodai Math. Sem. Rep. 24 (1972), 1—16.
- [3] T. Itoh: Minimal surfaces in a 4-dimensional Riemannian manifold of constant curvature, Kodai Math. Sem. Rep. 24 (1972), 451—458.
- [4] T. Iton: Minimal surfaces in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep. 25 (1973), 202—214.
- [5] T. Otsuki: A theory of Riemannian submanifolds, Kodai Math. Sem. Rep. 25 (1968), 282—295.
- [6] T. Otsuki: Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145—173.
- [7] T. OTSUKI: Minimal submanifolds with M-index 2 and generalized Veronese surfaces,
 J. Math. Soc. Japan 24 (1972), 89—122.

TOKYO UNIVERSITY OF EDUCATION

(Received May 14, 1973)