ON MINIMAL SURACES IN A RIEMANNIAN
MANIFOLD OF CONSTANT CURVATURE

TAKEHIRO ITOH

In the present paper, we shall study minimal surfaces in a Rieman-
nian manifold M of (non-zero) constant curvature c. When M is a
sphere S(1) of constant curvature 1, we find the conditions such that the
immersion is uniquely determined up to a rigid motion of S(1). In §2, we
define the (n-+1)th shape operator (n-th torsion operator) and the n-th
torsion index (Tyindex) for minimal surfaces in M. In §3, we study
complete flat minimal surfaces in M. When M is S(1), we find the
conditions such that the immersion is uniquely determined up to a rigid
motion of S(1). In §4, we give examples of minimal immersions of the
Euclidean plane into a sphere. In the last section, we study compact
minimal surfaces of non-negative curvature (20) in M and prove that

they are generalized Veronese surfaces if they are immersed in M= S(1)
by the immersions with full torsion.

§1. Preliminaries. Let M te a (2+ »)-dimensional Riemannian
manifold of constant curvature ¢, and M a 2-dimensional Riemannian
manifold which is isometrically immersed in M by an immersion x:
M — M. The geodesic codimension of M in M is defined to be the
minimum of codimension of M in totally geodesic submanifolds of ﬁ,
see [7]. We denote by v(resp. V) the covariant differentiation on
M (resp. Z/V\I). Then the (first) shape operator (second fundamental form)
¢, of the immersion is given by ¢,(X, Y)=9:Y — viY for any
tangent vector fields X and Y of M. There holds then ¢,(X, Y) =

F(M) and F(M) denote the orthonormal frame bundles over M and
M, respectively. Let B ke the set of all elements b = (p, ey, €, ***, €24v)
€ F(M) such that (p, e, e,) € F(M), identifying p € M with #(p) and
e; with dx(e;), i=1,2. Then B is a smooth submanifold of F(M). Let
B,y O = —wp, A, B=1,2, -, 24, be the basic and connection forms

7N\
of M on F(M) which satisfy the following structure equations
daA = %: aAB A (38)
d{L;AB = Lov_- ;BAC A Q’cn ’—C‘/'\)A N wg.

11)

19
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In this paper, we use the following convention on the range of indices
i» .7.; e = 17 2> Q, ﬂ: = 3) 4) tt 2 + v

Deleting the hats of @, ®.; on B, as is well known, we have

w, =0,
W = JE hipw;, hi; = h5,
dwy = wy Nej;, 1557,
1
(1- 2) d"’u = ; Wy /\ wyy — Ly, Ly = 32 Rum Wy /\ w,,

Ri;u = C(ama_ﬂ - (}{Laﬂi) + Z“: (h:kh;l - h'i'z/‘ljzc):

dog =2 w0, \wg— Qg Rpg= %2 R0 N\ wj,
T

Ras: = %} (k‘&h% — h?fshgk) .

M is said to be minimal if its mean curvature vector —%— 2 hjse. vanishes
. =

identically, i.e. if trace H, =0 for all @, H, = (h}). The minimal
index at p = M (m-index,M) is defined to be the dimension of the linear
space of all second fundamental forms corresponding to normal vectors at
p with vanishing trace. We easily have m-index ,M < 2 at every point
P E M. We denote the square of the norm of the second fundamental
form by

S = % A

The normal scalar curvature Ky of M in Il//_\f is defined by

KN = 2 (R,.pu)g = E {Z (h?;;hgk, - sz}kh‘ﬂk)}z.
1<J <j ok
a<p o<p

§2. The (n-+ 1)-th shape operator and the n-th torsion index
(Ti-index). In this section, we assume that M is minimal in M. We
define the (#-+ 1)-th shape operator (the »-th torsion operator) and the
n-th torsion index for minimal surfaces in lt//} by induction on .

The (first) shape operator ¢, can be written as

¢ (X, Y) = 1; b (X Yo (Ye,.
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2
Since X hj; =0, for X = e,cos f-+e,5in 6, we have
J=1

(2.1) (X)) : = ¢(X, X)=cos 20+ F,+sin 20 - G,,

where F, =2 hhe. and G, = 2 %5e.. Let S}, be the unit circle in a

tangent space M, to M at p= M. It is clear from (2. 1) that the image
of S, under ¥, is a point, a segment, or an ellipse (a cirele) according
as m-index,M =0, 1, or 2. We easily see that

(2. 2) St — K.»\' = (i'G1 ¢ — 1|FJ|2)2 + 4 < Gn F1 >2;

which is geometrically stated as follows:

S* — Ky = {(length of major axis)® — (length of minor axis)®}*
if m-index,M =2,
S* — Ky =(length of the segment)* if m-index M =1,
SE=Ky=0 if m-index,M =0,
If n/z\-indexpM =0 at every point p = M, then M is totally geodesic
in M. If m-index,M =1 at every point p = M, then the geodesic
codimension of M is 1.

Henceforth, we consider the case that m-index,M = 2 at every point
P& M. Then, we can choose a local frame field 4 & B such that

(2- 3) (UJal % 0; Wi = Or a;, € {3’ 4}’ for fg = 4-
From (1.1), (1.2) and (2. 3) we may write

Z: }Z:;'(oalﬂ = ;h?ﬁca}k, ﬁ >4 s

1

where A, are symmetric in the indices ¢, 7, & and > 4%, =0. Then,
J

we can consider the 3-linear mapping from M,XM, XM, into the normal
space N,at p as follows
‘i”z(Xn X,, X,) = g’ h?Jk‘”i(Xl)“)J(Xz)‘”k(Xs)eﬁ; X, € M,.
i, j. K
We call this mapping ¢, the second shape operator (first torsion operator)
of M in M. Putting ¢,(X) = ¢.(X, X, X) for X € M,, we get the
mapping ¢, from M, into N, For X=e,cos 0 + ¢, sin 0, we have

(2.4) ¢(X) =cos 39 F, +sin30 - G,,

where F, = g‘, We and G, = gh&eﬂ. We call the dimension of the
4 4
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image of M, under g, the first torsion index of M in M at PEM and
denote it by T,-index,M. It is clear from (2. 4) that the image of S} under
¢. is a point, asegment, or an ellipse (a circle) according as T,-index,M
=0, 1, or 2. We easily see that

{(length of major axis)*—(length of minor axis)?}?

—IFIy
(IIG{”_&I;;!I’)F . if T,-index,M=2,
» %27 71 (length of the segment)* if T,-index,M=1,
0 if T,-index,M=0.

Thus, (|GJf —|F.?)* +4<G, F.,»* is invariant under the rotation of
frames {e,, e¢,} and {e, e,}, so it is a differentiable function on M. If
T,-index,M = 0 at every point p € M, then we see that the geodesic
codimension of M is 2, If T,index,M =1 at every point p € M,
then we see that the geodesic codimension of M is 3, this fact was proved
in Theorem 4 in [ 7 ].

We consider the case that 7T,-index,M = 2 at every point p € M.
Then, we can choose a local frame field satisfying (2. 3) and
2.5) 0., #0, w,=0 a,E(34}, a.={56}, 6<y.

It follows from (1. 1), (1.2) and (2. 5) that we may write

p k:jzktonzr = ; hf';xl‘"t, 6 << I
% .

where Ay, are symmetric in the indices 4, 7, k, / and 3] A}; = 0. Then,
i
we can consider the 4-linear mapping from M, X .- XM, into N, as
follows: for X, €M, j=1, 2, 3, 4,
S"s(Xu X, X, X,) :izklhfm "’i(X1)’”J(Xz)“)k(Xa)‘“z(X4)er-
s
We call this mapping ¢, the third shape operator (second torsion operator)
N\

of M in M. Putting 7.(X) = ¢(X, X, X, X) for X € M,, we get the
mapping ¢, from M, into N,  Particularly, for a unit tangent vector
X = ¢, cos 0 + e, sin 0, we have
(2.6) (X)) = cos 49 - Fy+sin4?- G,,
where F, = ; ke, and G, = %} Hiwe,. We call the dimension of the

>8 76

image of M, under ¢, the second torsion index of M in l/l\'I at p and
denote it by T,-index,M. From (2. 6), we see that the image of S}, under
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¢, is a point, a segment, or an ellipse (a circle) according as T,-index,M
=0, 1, or 2, By the same reason as the case of ¢, we easily see that
(|G — |Fa?)* + 4<{ F,, G,)* is a differentiable function on M.

Now, we assume that T,_,-index,M =2 at every point p=EM, n=2.
Then, we can choose a local frame field such that
(2 7) { “ A1 7& 0 w"l" = 0’ a & I‘ = {2t+1’ 2 + 2}’

a1 € Ty, 2t + 4 <y, t=012,+, n—1.

From (1.1), (1.2) and (2. 7), we may write

rt+1
2 hj VoS e Pa jZ hl, S FALS A 2t + 4<T,
“t+1 3"
where 4., . are symmetric in the indices j, ., -, jis and

;h;-”‘lkz"'kwl =0 for t=0,1, 2, «»-, #—1. Hence, for t =n—1, we

can consider the (n-+2)-linear mapping ¢.., from M,X --- X M, into N,
as follows: for X;EM,, j =1,2,, n-+ 2,

¢n+1(X|, ety X;H-z) = 7>§+,h51-’2""’n+2 (’)Jl(Xl) ot lujn*z(Xn-I-?)er .

Putting ¢,.(X) = ¢an(X, -+, X) for X € M,, we get the mapping .1
from M, into N, We call this mapping ¢, (or @.y,) the (n-+1)-th

shape operator (n-th torsion operator) of M in /Il\l Particularly, for a
unit tangent vector X=e,cos 7 + e;sin 0, we have

(2. 8) gﬂvn.(.l(X) = COS(n+2)0 . Fn-H. + Sin(n+2)ﬁ i Gn+l,

where F,., = Z #..e., and G, = 2_, hi.,.e,. We call the dimension of

>m42 >m+2
the image of M, under ¢,., the n-th forsion index of M in M at pPEM
and denote it by T,index,M. It is clear from (2. 8) that the image of S}
under ¢,., is a point, a segment, or an ellipse (a circle) according as
T.index,M = 0, 1, or 2. By the same reason as the case of &, we
see easily that (|Guuiff —|Faiill)® + 4<{Fps1, Gns1D® is a function on M.

§3. Complete flat minimal surfaces in M. In this section,
we assume that M is a complete, connected and oriented 2-dimensional
Riemanm’a;z\ manifold which is minimally immersed in a Riemannian
manifold M of constant curvature ¢ (=0 ) and that the Gaussian curva-
ture K of M isidentically zero. Then, as is well known, M may be
considered as a Riemann surface. Since K=0 and M is complete, as
is stated in [1], M is parabolic, i.e., a negative subharmonic function
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on M must be constant. We first have

Lemma 1. On M we have only one of the Sfollowing cases :

Sy-case S=c¢ and Ky=0,
C,-case S=c¢ and Ky= 5" = ¢,
E-case S =c¢, Ky= constant >0 and S*— K,;>0.

Proof. Since K =0 and K=c¢ — S, we have
S =c¢=constant >0 on M.

We shall prove that K, is constant on M. Since K=0 on M, we
can choose a neighborhood U of a point p & M in which there exist
isothermal coordinates (u, v) and a frame field » € B such that

ds’ = du* + dv?, w, = du, w, = dv,

where ds is the line element of M. We may write «,({ =1, 2 and
3 < a) as follows

Wy, = fuo, + g.w,, 0y, = g0, — fw,,

where f, and g, are differentiable functions on U. Using the structure
equations, we can see that the complex-valued function

w(z,z) = |GF —|Ff* + 2 Fy, Gy

is holomorphic in z = # + iv, where F, =3 f.e. and G, =X g.e..
a3 agld

Hence, |w(z, z)|* is a subharmonic function on M. Since S* — Ky =
|w(z, 2)|* and S = ¢, we see that K, is a non-negative superharmonic
function on M, so it must be constant on M, because M is parabolic,
Thus, we have only one of three cases in Lemma.

By Lemma 1, at every point p € M, the image of S; under 3, isa
segment of the constant length or an ellipse with axes (a circle with
radius) of the constant lengths according as S,-case or E-case (C,-case).

From now on, by S-case, C-case, or E-case we mean the case where
the image of S} under the #th shape operator (the (#—1)-th torsion
operator) ¢, is a segment, a circle, or an ellipse respectively.

In the S,-case, m-index,M = 1 at every point p &M, so the geodesic
codimension of M is 1 by Theorem 1 in [6].

In the C,-case and the E,-case, m-index,M = 2 at every point pE M.
In the E,-case, we can choose a local frame field b & B such that
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(0 ok,

@.1) Haz(kl O)’ e

, Hp=0, 4<3,
o _, ), H, ,

where k, and o, are real constants (40) on M, o¢is=1. From(3.1)
we have

Wy, = g =0,

which implies that on a neighborhood U of a point p € M we can choose
isothermal coordinates (#, v) such that

(3.2) ds* =du’* + dv®, o, =du, ©,=4dv.

In the C,-case, since K =0, on a neighborhood of a point of M we can
choose isothermal coordinates and a frame field satisfying (3. 1) and (3. 2),
where ¢, = 1. Thus, we may consider that the C,-case is a special case
of the E,-case. It follows from (3. 1) and (3. 2) that we have

3.3) @y, + fw,, = k.dZ, z2=u-+iv,

Wy, + 5(924 = io‘lkldz, w, + i(uz = dz B
Since w; =0 (4 <<f), we may write
(3.4) Wyg + 10,0, = (fﬂ + igﬁ)dE, 3<4,

where fs and g are differentiable functions on U. Then, for a unit
tangent vector X = e, cos? + e, sinf, the second shape operator ¢, is
written as

G X)) =cos 30+ F, -+ sin379 - G,,

where F, = klg fees and G, = ’“E gses are normal vector fields on U.
4

Using the structure equations, from (3.2) and (3.4) we see that the
complex-valued function

wl(z, E’) = —ki ﬂZ (ff! _ ig8)2 = ||Gz|‘2 - “Fz!z + 2i< G, Fy>

is holomorphic in z, because k, is constant on M. Since, as te stated
in §2, [w,(z, 2)|* is a differentiable function on M, |w,(z, 2)|* is a
subharmonic function on M. Since ,, =w,, =0, |w,(z, 3)|* < k! {ﬂg (f3
+ gi)}? = 40k} = constant (> 0). Hence |w,(z, z)|* must be constant
on M, bhecause M is parabolic. Then, for the second shape operator
we have S-case, C-case or E-case on M.

In the S-case for . on M, T,-index,M = 1 at every point p € M,
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so the geodesic codimension of M is 3, see § 2,

We next consider the C-case and E-case for ¢,. Since the image of
S, under ¢, is an ellipse with axes (a circle with radius) of constant
length at every point p € M, we can choose a neighborhood U of a point
pPE M in which there exist isothermal coordinates («, v) and a local frame
field » € B satisfying (3. 3) and
(3. 5) ( g5 + 1:0'1(”45 = I.ezds, ) g, =0,

g F oy = to,k.dZ, w,, =0, 6<ry,

where k, is a non-zero complex constant on M and <, is a non-zero real
constant on M. In the C-case for ¥, we may assume that %, is a
non-zero real constant on M and ¢, =1. From (3. 3) and (3. 5), we have
wy, = 0 and we may write

wg, + z."':e“’tzr = (fr -+ ig,)dE, 6<y.

Hence, for X =e¢, cos?0 + e, sind & M,, we write the third shape operator

¢, as
Fo(X) = cos 40 - F; + sin49 - G,,

where F, and G, are real normal vector fields such that F, + G, =
kik, ;‘ (f, + ig,) e, Continuing this way, we have
7>8

Lemma 2. If the image of S, under the i-th shape operator ¢, is
an ellipse with axes (a circle with radius) of constant length at every point
PEM, for t=1, 2 - s, 2Xs, then the image of S, under the
(s+1)-th shape operator ¢... is a segment of constant length or an ellipse
with axes (a circle with radius) of constant length at every point p € M.

Proof. By induction, from the assumption we can verify that on a
neightorhood U of a point p & M there exist isothermal coordinates
(%, v) and a frame field b & B such that

(')"lﬂl+iﬂ-‘(0“351=k‘+l dz' , dz:du—l—idv::‘ul.l_i{,)z ,
(3 6) (l),lpa+io’;t:)«z%:id,.,.lklﬂdg , (Uﬂlr':wa,r:O ,
) =241, a=2+2,  #=2t+3,  f,=2t+4,
24-4<y, £=0,1,2, -, s—1,

where kb, (2<¢<s) are non-zero complex constant on M and k, and o,
(1<t<s, 0,=1) are non-zero real constant on M. Using the structure
equations, from (3. 6), we obtain
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3.7 @,.=0, «a=2t+1, a.=2t+2 for t=0,1,2 -, s

]

and we may write
(3.8) oy o, = (f,+ig)dz, ai=2s+1, a=2s+2<y.

Let F..; and G;., te real normal vector fields on U such that F,,, +
G, =kk, -k, >Z‘ (f,-+ig,)e,, then for a unit tangent vector X =e,cosf -+
T>2%42

e,sinf € M, the (s+1)-th shape operator ¢.., is written as
?SH(X) = cos(s+2)0 « Foyy + sin (s + 2)9 + G;.1.
From (3. 6),, (3.7). and (3.8), we see that the complex-valued function

u’;(z, E)—_— —(kj-gz"'z;)z >Z (fr-—igr)‘z: ti+]‘i2'_1‘F4"+1|2+2£ < GH»I) Fx+l >
o422

is holomorphic in 2, because k (t=1, 2, .-+, s) are constant on M. Since,
as ke stated in § 2, w.(z, 2)[ is a differentiable function on M, |w/z, )
is a subharmonic function on M. On the other hand, from (3.7),
we have |w.(2,2)| < | kike o k) {207+ gD 2 = [ kaky oo k(1L + X))ot
|k|%/a?-)} * = constant (=>0) on M. Hence the subharmonic function
|w(z, )P must be constant on M, because M is parabolic. Thus, at every
point pEM the image of a unit tangent circle S, to M under ¢.,, is a
segment of constant length, a circle with constant length or an ellipse
with axes of constant length on M.

If the image of S} under ¢.., is a segment of constant length at every
point p € M, then 7 index,M =1 at every point p so the geodesic
codimensionof M is 2s + 1.

If the geodesic codimension of M is even 2s, using the structure
equations, from (3. 6), and (3. 8) we have contradiction. Hence, the
geodesic codimension of M is odd 2m + 1 and the images of unit
tangent circles to M under o,., are segements of constant length on M.
Thus, we have proved the following

Theorem 1. Let M be a 2-dimensional, connected, oriented and
complete Riemannian wmanifold which is minimally immersed in a
(2 + v)-dimensional Riemannian manifold M of non-zero constant cur-
vature c. If Gaussian curvature of M is identically zero and the
image of M under the immersion is not contained in a totally geodesic
submanifold of Z/M\' i.e., v is the geodesic codimension of M, then v
isodd 2m -+ 1. Furthermore, the images of unit tangent circles to M
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under the tth shape operators (L <t < m) are ellipses with axes (or
circles with radius) of constant length and the images of unit tangent
circles to M under the (m -+ 1)-th shape operator ave segments of constant
length on M.

In view of Theorem 1, we see that on a neighborhood of a point of M
there exist isothermal coordinates (%, ») and a local frame field satisfying
(3. 6)m+1, where 7,.,=0 and %,.,, is a positive constant cn M. In general,
however, the constants b, (1<t<m+1) and ¢, (1 <t < m) depend on
the immersions. Using the structure equations, from (3. 7)., we get

(3-9)m (1+ﬂf+|)1kl+1|2:20ﬂ?/(1+ﬂ?), 0'0:1, ”m+l=07 Ogtgm.

Since ¢ >0 from Lemma 1, we consider the case where ﬁ is a
(2m+-3)-dimensional sphere S*"**(¢) of constant curvature ¢. We may
consider S™*¥¢) C E™* andset V¢ % = e@smse. Let E,=eas+ioe., and

E,f*“——a-,_e,,l — ienz, a,=2f+1, o, =2t+2, where £=0,1,2, -+, m. Since

E} = ((1 + o})/26)E, — (1 — 4%)/20.)E,, we have the following Frenet
formulas of M

dx = 2i (Bodz + Ed3), z=u-+iv,

dE,= —cxdz + k,E,dZ,
dE,= —((1+a)k./2)Edz— {((1— o)k, /2)E,—k,E,} dZ,
dE, = —((1+0)%:/26 ) Etdz— (1 —adk./26,) Ef —k,Es) dz,

dE, = —((1+ )k /26, YEr1dz— {(1— o) k/20, ) EX-s— ki E,y) dE,
dEm_l = ’—((1+0§1_])Em~1/20'm_g)§:_2dz
o {((1~0'37l—l)k:n~|/2(7m—2)E*—2—'kmE'm} dE’,
dE.= —((1+ 6 )kn/200)Ex-dz
- {((I_U:z)km/zo'm—l)E:-—x ‘—km+1€zm+3} dz,
dermrs = —(bmer/20m)E2d2—(Rms1/20m)ERdZ .
From (3. 9).. and (3. 10).. we easily see that the vector fields E,, E,, E,, ---,
E., em:s and x = e, satisfy the following equation
(3.11) 0*Y/(6z - 02)=—(c/2)Y .

Remark. In Theorem 1, it seems to be difficult to prove the rigidity
for the minimal immersion of the Euclidean plane into a sphere without
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any assumption,

Under the assumption of Theorem 1, if the images of unit tangent
circles to M under the #-th shape operators (1 < ¢ < m) are circles with
radius of constant length on M, then we can choose a neighbkorhood of a
point of M in which there exist isothermal coordinates and a local frame
field b € B satisfying (3. 6),., such that ¢,=1 (1=¢t<m), on.n=0 and
k, (1=<¢{<m-1) are non-zero real constants on M. These constants are
independent of the immersion. When ¢=1, in the same way as in §8 of [7],
from (3. 10),,we can verify that M is the surface given by

g €
]/2( T2 Z‘. {Aexp 11/ 2 (u - sm 2( _1*_2) Ttu- coszz(—_l*_—;)'r)

(3'12) - 2j—1+e 2j—1+e_
+A,exp(~i1/§)(u-sm-2(m—'2) -ty - cosz( ) ),

where A,, A,, -, An.. are constant vectors in C™**= E™** such that
AJ'A;’:AJ‘AA.:A}'Z];ZO, Aj'A—jzl, jﬁék,

and ¢ = 0 or 1 according as m = odd or even. Thus, we have proved
the following

Theorem 2. Under the assumption of Theorem 1, if ll//.} is a unit
Sphere and the images of unit tangent circles to M under the t-th shape
operators (1=t<m) are circles with radius of constant length on M,
then the immersion is uniquely determined up to a rigid motion of a sphere.

We are interested in examples of flat minimal surfaces other than
(3.12). In the next section, we shall find examples other than (3. 12).

§4. Examples of minimal immersions of the Euclidean plane
into a sphere of constant curvature 1. In this section, we give examp-
les of flat minimal surfaces in S°(1) and S7(1) other than (3. 12).

We first give examples in S°(1), that is, find solutions of (3.10), in
the case ¢ = 1. Noticing (3.11), we choose three fixed constant vectors
A, A, A, in C* = E® such that

- 3 —_
Aj'AJ’:Aj'Ak:Aj'Ak:O, jZAJ.AJ:l’
=1
j1k=17 2) 37 j%k)

(4.1)
and let

4.2) x= L{A,exp]/—(ze % — Ze™) }—A,expl/ (—ze®i+ze )},
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where the bar denotes the conjugate and «, (f =1, 2, 3) are real constant
numbers. It is clear that x =% and x-x=1 by (4.1). In this case,
we set

E, ng——-ye“" 1{A; exp—=(z¢"s — Ze™"*5)— A,exp——= L —(2e™ " — ze')},
i 1/ V2

8 i 2e" 1 —Ze" ze™s+ Ze~"
Eo = kl]/—z_,e e {A] exp%-l—/—l,expg———y-z-—) R

Ev=15s k02

— OE] (1 ’—'0'|)k E 1 >—1|: 1 0'1 i —31«. .
- S sty 2| [y L

{A,exp]/ (zes—Ze~"s)— A, exp Vli(—ze’“x—hze N} :I

where k,, k, and ¢, are non-zero real constant numters satisfying (3. 9),.
Then, we easily see that these vectors satisfy the equation (3. 10), in the
case ¢ = 1. From the above equations we have

1 E,=E E,=EE,=E,e;=e;x=0,

EvE,=2, E,+E, =1+ 4.
Hence, we see that (4. 2) is a solution of (3. 10), if and only if there hold
the following equalities

xE,=E,+E,=E,¢s=0, EE,=1—g¢}
e, =€, esces=1.
By the above definitions of x, E,, E, and e;, these equations are

equivalent to the following

3 —
(4.3) Y ApAe =0,

J=1
3 —_
(4.4) S ApAety=REA1—d),
J=1
3 —
(4. 5) ZAJ“AJG_M«.’: '—Zk%kz ’
j=1
(4.6)  cos3ay — (1 — )/ + o))cosa; =0 for j=1,2,3.

Now, we shall find constant vectors A, ( =1, 2, 3) and real constant
numbers «; ( = 1, 2, 3) satisfying (4.3) ~ (4.6) under the condition

(3.9),. We consider the following special case:
(4~ 7) A, - Z) =A,- Ezy ) T X = Ky, 2a; = 7.



MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD 31

Then, from (4.1), (4.3) and (4. 7) we have

_— i1 A - _¢os 2«
4.8) A A=A A=gro o, A A= gr o

Hence, in this special case, if there exist A; and «, (F =1, 2, 3) satisfying
(4. 3) ~ (4. 6), the solutions (4. 2) are determined only by one parameter a.
Using (1 + o))k} =1, from (4. 4) and (4. 8) we have

(4.9) cos 2 = {(1 —a})/Q + ) + 1} /2 =1/(1 + o)) = K.

Since k, 0, 0,50 and (1 + e)ki =1, we have 0 <<k{<<{1, which
implies 0<<cos 2a<<1 by (4.9), so that we may assume that 0 <<a<<7/4.
Then, from (4. 9) we have

cosa=VET D2, sina= VI~ /2.

and from (4, 8) we have

. Lt 1=Aq . An —_ — gt — 1 _
(4.10) A Ai=Ae Ao =grmss A A =1og

We can easily see that these constants satisfy (4. 5) and (4. 6). Thus, we
obtain examples given by

[A, expi(pVB+1—uV1—k)+ A, expi(uy/I=F—0v 1+ i
1/2

(4.11)  +AexpioyV I+ B+uy1— i)+ Aesp(—iloy/ T+ E+uv1—Fk)
+ A, exp (V2 iu)+ A, exp (—1/2 iu)],
where A, A, A, are fixed constant vectors in C*® = E°® satisfying (4. 1)
and (4.10) and k&, is a positive constant smaller than 1.
Next, we shall give examples in S7(1), that is, find solutions of

(3.10), in the case where ¢ =1 and k, = real constant %= 0. Noticing
(3.11), we choose four fixed vectors A,, A., A, A, in C*= E°® such that

(4. 12) AJ A_] Aj Ak A) Ak"‘o ZA AJ 1 ],k 1 2 3 4 ]%k

Let

(4.13) x= —1=é {A exp—1-=(ze"“f—§e"""f) +A expi—(—ze'"1+§e“"“j)}
: V2T 2 V2 ’

where «,(j =1, 2, 3, 4) are real constant numters. It is clear from
(4.12) and (4. 13) that x = % and x-x = 1. We define vectors E,, E,, E,
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and e, as follows

;ED =2Z_§= —ge‘i“ij*,

@10 b= - SRR = o Sl g e} By,
¢ = :ﬁ% + azkaa?kz {12271 E, — lzaflE }
‘:mg{e—m’ }1+Zl+i+2 = 8+£§ 8+:3 _m }B”

where B, = A,exp ((zé"s — Ze" )}/ 2) + ;1, exp ((—ze"s + Ze ™)/ 2)

and B} = Asexp((zei —2e7*)[v/2) — Asexp((—ze™s + Ze™')/1/2) and

ki, ki, ks, o, and o, are real constant numbers satisfying (3. 9),. From

(4. 14) we easily see that

2E,=E.E,=EE,=E; ¢;=E,+E,=E, E,=E,x=FE,*¢, =0,

EU.EO = 2, E1'El = 1+0‘¥, Eg'-E-g = 1 + (fg.

Hence, (4. 13) is a solution of (3. 10), if and only if the following conditions

are satisfied :

(4.15) x-E, =2%x¢, = E,E, 2= EyE,=E,E,=E;+¢; =0,

El'E1=1’_'(T], EQ'E2=1'—6§,

(4. 16) e, is a unit real vector.

- Using (4.12), we see that the conditions (4.15) are equivalent to the
following equalities :

4
[ ?__,-‘AJ'AJ 3*2“']:0,

(4.17) L Ap Ay et =K1 —4),
P
S Aq A e = 2k (1 — o).
j=1

In order to find constant vectors A; in C* and constant numbers «;
(7 =1, 2, 3, 4) satisfying (4.16) and (4. 17), we consider the following

special case:

(4.18) Ay A=A, A,, —aw=ai=a, a,=0, 2a, =n.
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By means of (3. 9), and (4. 12), from (4. 17) we have
(4.19) cos 20 = ki (1 — o)/(201) = K1 — kD) =: k,

AA, = A0 A, = (B —1)/2k — 2),

(4.20) A A, = (B — F))(2k — 2), A,-A, = (k+E)/(2k+2).

Therefore, we have seen that if there exist A, and «;(j =1, 2, 3, 4)
satisfying (4. 12), (4. 16) and (4. 17), then (4. 13) is determined only by two
parametors %k, and k,. In this case, we can show that ¢, is a unit real
vector. Since b = 26i/(1 + ao3), K1 + 4}) =1, 6,50 and 4,50, we
have

0<khi<l1 and <K<z,

which implies |cos 2a] <<1 by (4.19). Hence, we may assume that
0<<a<<w/2. Thus, we obtain examples of minimal immersions of the
Euclidean plane into a sphere S’(1) given by

%= ﬁ [A.expi(vyV1+k—uvV1—k)+Aexpi(uy/T—k—0V1+k)

(4.21) + Awexp (V2 iv)+ Aexp(— V2 iv)
+ Asexp {0V 1+ k—uV/1—k)+A; exp(—i(wyV/1+k—uV1—Fk))
+ Aexp(v/'2 iu)+Asexp(—1/2 iu)],

where A,, A, A, A, are fixed constant vectors in C* = E® satisfying
(4.12) and (4. 20) and % is a constant real number such that

k: =k — k), O<<kl=const. <1, O0<<k!=const. <2.

Remark. We have obtained many examples of the Euclidean plane
minimally immersed into the Euclidean unit spheres S* and S’ other than
Otsuki’s surfaces. When m =1 and m = 2, Otsuki's surfaces (3. 12)
are included in these examples as the special case where ;=1 and ¢}= 1.

§ 5. Compact minimal surfaces of non-negative ( == 0) curvature
in M. In this section, we shall consider connected compact minimal
surfaces of non-negative curvature K (#£0) in a (2 + v)-dimensional
Riemannian manifold M of constant curvature c.

Let U be a neighborhood of a point p & M in which there exist
isothermal coordinates (%, ») and a frame field b € B such that

(5.1) ds* = E{du® + dv*’}, o,=vE du, w©,=VE dv,
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where ds is the line element of M and E = E(w, v) is a positive function
on U. Inthis case, we may write

lulu = .fn‘ul + gaﬂ)z) (Uer = gna)l - .ftx(')2) 3 < a;

where f, and g. are functions on U. Then, using the structure equations,
we can verify that the complex valued function

(5.2) wiz, z)=FE* (“Glug—“F1”2)+21Ez CFy, Gy)y Fi= 3. foln, Gi= Zgaem

is holomorphicin z = «# + fv. Then, we have the following

Lemma 3. We have S* — Ky =0 on M.

Proof. By an easy computation, we see that S*— Ky =|w(z, 2)|*/E*
on M. If §* — K, = 0 does not hold identically on M, S* — K, takes
its positive maximum A at some p, € M. Let U be a neighborhood of
p, in which S* — K, >0 and there exist isothermal coordinates (%, v)
and a frame field » € B satisfying (5.1). Then, from (5. 2) we have

(5.3) Alog (S* — Ky) = —4Alog E = 8EK, A = 9*/0u® + 6%/ds?,

because the Gaussian curvature K is given by K= —(1/2E)Alog E. If
K =0, the function log{(S* — K,) is a subharmonic function on U, so it
must be constant A on U. Therefore, the closed set {p=EM|S*—Kx=A
at p} of M isopenin M. Since M is connected, S*— K is identically
a positive constant A on M. It follows from this fact and (5. 3) that K
is identically zero, which contradicts K==0 on M.

By Lemma 3, if m-index,M %= 0 at every point p € M, then we can
choose a neighborhood U of a point p € M in which there exist isothermal
coordinates and frame fields satisfying (5.1) and

(5.4)

{ W, = ki, = wy,, W = W =0,

Wy = — Ry, = —wy,, 4<<p3,

where k, is a positive differentiable function M. Using the structure
equations, from (5. 4) we have

wyy = 2wy, — (log ky)yw, + (log ky) 0, ,
where d(log k,) = = (log k,)sw;. Furthermore, from (5.4) we may write
j=1

(5. 5) Wy = faw, 4+ gaw, ,- Wy = gaw, — faw, 4 <J,

and define two normal vector fields F, = § Jees and G, = § Zees on U.
>4 B>+
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Then, we can write the second shape operator ¢, as
@(X) = ky{cos30+ F, +sin30-G,}, X =e,cosl + ¢,sinf = M,.

Using the structure equations, from (5. 5) and (5. 6) we see that the
complex-valued function

w; (2, 2) = E*R(|G* — |F.F) + 2B Fo Gy

is holomorphic in z. Asstated in §2, we see that |w, (2,2)|*/E* =
E{ (|G —|F.)*+4 { G,y F,>? is a differentiable function on M. Hence,
by the same reason as the proof of Lemma 3, we can prove

Lemma 4. If m-index,M =0 af every point p = M, then, at each
point p = M, theimage of S, under the second shape operator is a point
p or a circle according as T,-index, M = 0 or 0.

By Lemma 3 and Lemma 4, if m-index,M -0 and T, -index,M =0
at every point p € M, then we can choose a neighborhood U of a point
p € M in which there exist isothermal coordinates (%, ») and a frame field
b € B satisfying (5.1), (5.4) and

5.7) g5 = Rytv; = g, Wy, = wy, =0,
Wy = ko, = —wy, 6<r,

where k, is a positive differentiable function on M. Let i, = k%, and
2
d(log %,) = T (log 4,),, then from (5. 7) we have
Jj=1
(5. 8) wsg = 3wy, — (log 4,),@, + (IOg A5),00,
and we may write
ws, = froy + g0, @y = g, — flo,, 6<r.

Hence, for a unit tangent vector X = e¢,cos ¢ + ¢,sin 6 € M,, the third
shape operator ¢, is written as

¢s(X) = 2, {cos 40+ F; + sin 49- G},

where F, = g fe, and G, = gsg,e, are normal vector fields on U.
T 7.

Continuing this way, we have the following

Theorem 3. Let M be a 2-dimensional, connected and compact

Riemannian manifold of non-negative curvature (£ 0) which is minimally
2\

immersed in a (2 -+ v)-dimensional Riemannian mani fold M of constant
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curvature ¢. If we have
(A) the image of M is not contained in a totally geodesic submani-
Sold of ﬁ, i.e., v is the geodesic codimension of M,
(B) m-index,M 5% 0 at every point p E M,
(C) T,index,M (n =1, 2, ---) are defined at every point p € M and
Trindex,M 5= 0 at every point pEM for n=1,2, -, [2] — 1,
then v must be even 2m and the image of unit tangent circles to M
under the n-th shape operators ¢, (1 = n=<m) are circles.

Proof. For the (first) shape operator and the second shape operator,
we have proved our latter assertion in Lemma 3 and Lemma 4. By the
induction on 7z, we shall prove that the image of a unit tangent circle S}
under the n-th shape operators (1 < # < [%]) are circles for every pE M.
Now, we assume that the above assertion holds for all #<s — 1. Then,
we can choose a neighborhood U of a point p € M in which there exist
isothermal coordinates (%, v) and a frame field & B satisfying (5. 1) and

“'29?. ) “)a]r = luazr = 0 »

1 g8 = ke, = o
(041]32 = kt(‘)g = ’—(Uuzgl, 2l + 2 < ‘r y
a, =2t -1, =2t pf=2t+1 p=2t+2,

t=12 - s—1,

(5.9)

where k£, (1<t <s—1) are positive differentiable functions on M. Using
- the structure equations, from (5. 9) we have

(5.10)-1 - @y, = (¢ + 1) w;, — (log 4)s, + (log 2,),0,,
where Fi=2t+1, f,=2t+2 4 :=k,ky-+k and d(log 2) =
;2_;1 (log 4)y0; for ¢t =1,2, -+, s —1. From (5.9), we may write

Wy = frwy + gyw,, @y =25 —1,

oy = gy — frwp, @y =2s, 2s<y.

Hence, for a unit tangent vector X = e,cosf + e,sind = M,, the s-th
shape operator ¢, is written as
G:(X) = A1 {cos(s+ 1)« F,+sin(s + 1)0 - G},

where F,=3 fie, and G,=X g,e, are normal vector fields on a neighbor-
>% >

hood U of p& M. Using the structure equations, from (5. 9) and (5. 10),_,
we can verify the complex-valued function
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(5.11) w2 2) = EVHL(GI — |FF) + 2E™' 22, { G, F. )

is holomorphicin z = u + {v. Since 2,_, is a differentiable function on
M, as be stated in §2, |w._,(2, 2)|*/E=* =2, {(|IGJ — |F?)* +4<G,, F>¥
is a differentiable function on M. Therefore, by the same way as the
proof of Lemma 3, we see that at each point p € M the image of a unit
tangent circle S, to M under the s-th shape operator ¢s is a point p
or a circle according as T;-,index,M = 0 or = 0. Since T._-index, M=~ 0

at every point pE M if s [%] from (C), at each pointpE M we

can choose a neighborhood U of a point p in which there exist isothermal
coordinates (%, v) and a frame field b € B satisfying(5. 1), (5.4), (5.9)
for every ¢+ < s and

n)"l"l = ktml = “)azbz ’ ma]y = (‘)u’r = 0 2

=hkv, = —,,, by=2s+1, by=25+2, 2s+2<7,

g p,

where k. is a positive differentiable function on M.

Thus, it is clear that the geodesic codimension » of M is even 2m
(m a positive integer).

Using the structure equations, from (5.4), (5.9) and (5.10), we
obtain

Allog 2)=E{(t + 1)K — 28 + 2k}, £=1, 2, v, m—1,
A(log 4m) = E {(m + 1)K — 283} ,

where A = 9*/0u® + 0°/0v®. From (5. 12) we have

(5.12) {

2

because K = ¢ — 2k} and v = 2m. Therefore, if (+* +2)(v+4) K—8¢
does not change its sign, log(4,+4,:-:+2,) is a subharmonic or superharmo-
nic function on M, so it must be constant, because M is compact.
Hence, K = 8¢/(v + 2) (++4) = constant > 0 and so %k, (1 << m) are
constant on M. Supposing K =1, from (5.12) we get

(5.18)  Alog (2, - dyedn) = E{’”_("’ii)K—Zkf}=E{%WK— c},

BE=(m—t+1)(m+t+2)/4 for t=1,2 -, m,
c=(m+1)(m+ 2)] 2.

Let E, = eys1 + teysn, £t =0,1, 2, -, m. Then, the Frenet formulas of
M can be written as follows

dx = %(E‘oa’z + E,dZ), 2=y -+ iy,
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DE, = % E,(Zdz — 2d3) + % Ed -,

— 2k
h

---------------------------------

DE,

I

Eodz + % E(Fdz — zd7) + % E.dz,

DE,= — 3,’5—‘ E._dz + ihl E.(Zdz — zd3) + % Eondz,

...........................

DE,= — % g dz+ m+1 E.(zZdz—2zdz),

where D denotes the covariant differentiation of 7 and h=1+2z. Now,
let M bea (2m + 2)-dimensional sphere S™**(R) with radius R=1/v"¢
= vV 2/(m+1)(m~+2). We may consider S****(R)C E*™*® and put x =
Re:nis. By an computation analogous to the one in [7], we can verify
that M is a generalized Veronese surface. Thus, we have proved

Theorem 4. If the assumptions of Theorem 3 are satisfied and
(v +/2\)(V+4)K-—80 does not change its sign, then K is a positive constant
on M. Let K=1 and i be a (v + 2)-dimensional sphere of constant
curvature (im+1) (m+2)/2. Then M is a generalized Veronese surface.

BIBLIOGRAPHY

[1] T. Trou: Complete surfaces in E* with constant mean curvature, Kodai Math. Sem.
Rep. 22 (1970), 150—158.

[2] T. ItoH: Minimal surfaces with m-index 2, Ti-index 2 and Ti-index 2, Kodai Math,
Sem. Rep. 24 (1972), 1—16.

[3] T. Iror: Minimal surfaces in a 4-dimensional Riemannian manifold of constant curva-
ture, Kodai Math., Sem. Rep. 24 (1972), 451—458.

[4] T. Itom: Minimal surfaces in a Riemannian manifold of constant curvature, Kodai Math.
Sem. Rep. 25 (1973), 202—214.

[5] T. Orsuri: A theory of Riemannian submanifolds, Kodai Math. Sem. Rep. 25 (1968),
282—295,

[6] T. Orsuki: Minimal hypersurfaces in a Riemannian manifold of constant curvature,

Amer. J. Math. 92 (1970), 145—173.
[ 7] T. Orsuk:: Minimal submanifolds with M-index 2 and generalired Veronese surfaces,
J. Math, Soc. Japan 24 (1972), 89—122.

TOKYO UNIVERSITY OF EDUCATION

(Recetved May 14, 1973)



