ON RICCI CURVATURES AND EQUIVALENCE
OF RIEMANNIAN MANIFOLDS

TosHIO NASU

introduction

Recently, R.S. Kulkarni has studied in [2] the converse problem of
the so-called “theorema egregium” of Gauss, which asserts the sectional
curvature is a metric invariant, and proved that a diffeomorphism £ of
two n-dimensional Riemannian manifolds (M, g) and (8, g) is conformal
if it preserves the sectional curvature and the set of non-isotropic points
isdense in M. In addition, he has asked whether f is an isometry or
not. This formulation in terms of sectional-curvature-preserving diffeo-
morphisms is one type of the equivalence problem for Riemannian mani-
folds.

Kulkarni has shown that the answer for the above is affirmative if
7#>3. When n = 3, it is known that if we assume furthermore some
global restrictions then f is an isometry (cf. [2], [5], [6]). On the
other hand, very recently, S.T.Yau has given in [6] a local counter
example of Riemannian 3-manifold for this question.

Now, the Ricci curvature is a typical example of curvature structures
of order one as well as the normal curvature of hypersurfaces in a space
of constant curvature. Moreover, it plays the same role as the sectional
curvature for the above equivalence problem for Riemannian 3-manifolds.
In this point of view, we shall ask in the present paper whether a Ricci-
curvature-preserving diffeomorphism f is an isometry or not, assuming
that the set of non-isotropic points with respect to Ricci curvature is
dense in M.

In section 1, we shall prepare some general facts about the conformal
change of metrics. In section 2, starting with the Kulkarni's result,
we shall obtain several formulas satisfied by any Ricci-curvature-preserv-
ing diffeomorphism. In section 3, we shall construct an example of two
metrics g and g* in R™ such that they have the same Ricci curvatures
but are non-isometric to each other, which gives a generalization of Yau’s
one. In section 4, we shall prove a few of theorems which assert the
Ricci-curvature-preserving diffeomorphism is an isometry under some
further global assumptions.

We shall assume, throughout this paper, that each Riemannian
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manifold is connected and of dimension # >>2, its metric is positive
definite, and all manifolds and all diffeomorphisms are of differentiability
class C®. For the terminology and notation, we generally follow [2]
and [5].

I should like to express my hearty gratitude to Prof. R.S. Kulkarni
for his kind communications.

1. Preliminaries

In this section, we shall summarize the transformation formulas of
some geometric objects under the conformal change of metrics, and recall
some well-known facts in Riemannian geometry which will be needed in
the proofs to follow (for the details see Eisenhart’s book [1]).

Let (M, g) and (M, g) be n-dimensional Riemannian manifolds with
metrics g and g, respectively. A diffeomorphism f: (M, g)—> (M, g)
is called a conformal one of (M, g) to (M, g) if the induced metric g*=f*g
of ¢ by f isrelatedto g by
(1.1) g = # g,
where g 1is a positive-valued function on M and is called the associated
function of f. If p is constant, then we say f is homothetic and if
especially p is identically equal to unity, then f is called an isometry.

Let us denote by X(M) the Lie algebra of differentiable vector fields
on M. For the given symmetric bilinear form H, we shall indicate by
H, the corresponding linear transformation of T(M), the tangent bundle
of M, defined by { H(X), Y> =H(X, Y) for any X, Y € X(M),
where < , > denotes the inner product defined by g. Let Vv be the
Riemannian connection with respect to g and R(X, Y)=V xr1—[Vx, Vr]
(X, Y= %(M)) be the curvature operator of y. Then we recall that
the Ricci form is the symmetric bilinear form defined by Ric(X, Y) =
Trace {Z — R(X, Z) Y} for any X, Y& T.(M), the tangent space
at a point m € M, and the scalar curvature Sc: M —> R is defined as
Sc = Trace Ric,. Also we indicate the corresponding quantities with
respect to the metric g* or g by asterisking or by bar ovehead, respec-
tively. Then we know that the above quantities with respect to g*
coincide with the induced ones of the corresponding quantities with res-
pectto g by f.

Let G = grad p be the gradient vector field of o with respect to g,
and let Hess, be the hessian of p with respect to g. It is given by
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Hess,,(X, Y) = (V.\dP)Y
= < VXG, Y > ’
forany X, Y= X(M). The Laplacian Ap of p is defined by

1.2

(1.3) Ap = Trace (Hessp)n .

Then we know the following transformation formulas under the conformal
change (1. 1) of metric g;

(1.4) Ric*=Ric + %(n-—Z)Hess,,+ % Apg— #(n—-l) | Glte,

(1.5) Sc* = p®Sc + 2(n—1)pAp — n(n—1)| G|},

where we have put |G| = < G, G >%-
Let T be the well-known symmetric bilinear form defined by

(1. 6) T=Ric——%Sc g,

which plays an important role in this paper. Evidently we have
1.7 Trace T, = 0.

The manifold (M, g) is called an Einstein manifold if T7=0. The Weyl's
3-index tensor D is given by

DX, Y,Z)=(V:T) (Y, Z2) — (v+T) (X, 2)

n—2
+ gy (Y. 2> X(80) = <X, 2> Y80},

forany X, Y, Z € X(M), which vanishes if (M, g) is conformally flat.
Suppose n = 3, then it holds

R(X, Y)Z = Ric(X, Z)Y — Ric(Y, Z)X + < X, Z > Ric, ()
(1-8) — <V, Z > RielX) — L 8e(< X, 2> ¥~ L ¥, Z > X),

for any X, Y, Z€X(M), from which we know that a 3-manifold (M, g)
is of constant curvature if and only if it is Einsteinian. Finally we
remark that from the Bianchi’s second identity we have

1.9 Trace {X — (V;Ric,) Y} = % Y(Sc),

for any X, Y € X(M).
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§ 2. Ricci-curvature-preserving diffeomorphisms

In this section, we shall prepare for later use some basic formulas
and lemmas for any Ricci-curvature-preserving diffeomorphism.

First of all, let us recall the general theorem of R.S. Kulkarni on
curvature-preserving diffeomorphisms, which is fundamental for this
paper (in detail, see [3]). Let « be a curvature structure of order p on
the manifold (M, g). Then we may define the corresponding curvature
function K,: G,—> R, being G, the Grassmann bundle of p-plane
sections of M, by the equation

_ s, 6)

@1) Koy = G2,

for any ¢ = G,, where | denotes the norm of a p-vector induced by the
metric g. We say that a point m& M 1is isotropic with respct to o if
K.(o) is constant for every p-plane section ¢C T,(M); otherwise, we
call m non-isotropic. A diffeomorphism f: (M, g) —> (M, g) of two
Riemannian manifolds (M, g), (M, g) with curvature structures @, ® of
same order p is called a curvature-preserving one (or simply K,-preserv-
ing one) if

K; (fy0) = K, (9),
for every 6= G,. Then we have (see Part I, §5 and §6 in [3])

‘General Theorem. Let f: M —> M be & curvature-preserving
diffeomorphism of n-dimensional Riemannian manifolds (M, g, ©), (M,
2, ©) where o, © are curvature structures of order p (<n). Suppose

(*)w ¢ the set of non-isotropic points w. r. t. © is dense.

Then f is conformal. Furthermore, let p be its associated function.
Then we have

@.2) fro = plﬂp w,

if o, w satisfy the Bianchi’s first identity.

Set p=1 and o = Ric in the above theorem. Then the equation
(2. 1) becomes

Ric(X, X)

ch([X]) = W >

where X540 represents the line [X]E G,, being the bundle of lines.
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K:.([X]) is nothing else than the Ricci curvature in the direction X.
We shall call (M, g) nowhere Einsteinian if there does not exist a non-
empty open subset of M, which is an Einstein manifold in the inherited
Riemannian metric. Then the condition (*)i;. is equivalent to

(et (M, g) is nowhere Einsteinian.

And also the equation (2. 2) becomes

(2.3) Ric* = L Ric,

)

from which we obtain

2. 4) Sc* = Sc.

Lemma 1. Let f: (M, g) —> (M, g) be a Kgy-preserving homo-
thety and let us assume (*)pi.  Then f is an isomelry.

Proof. Since f is homothetic, we have by the equations (1.1) and
(1.4)

PZKE ([f+X]) = Kx. ([X]),

so that we get (p*—1)K ([X])=0, because f is Kp.-preserving. There
exists a non-vanishing X & T,.(M) such that K ([X])5+0 at any non-
isotropic point m & M with respect to Ric, hence we have p(m)=1. By
the assumption (*)g;. and the continuity of p we find p=1 on M. Thus
f is an isometry. q.e.d.

In a previous paper, the present author has obtained from the equa-
tions (1. 1) and (2. 3) the following identities (see Lemma 2 in [5]):

(2- 5) TD( G) = Oy
(2.6) pD¥X,Y,Z) — pD(X,Y,Z) = (Yp)T(X, Z)—(Xp) T(Y, Z),

forany X,Y,Z € X(M).

Now we shall show that the equation (2. 5) implies the following two
important identities. First, we find easily from the equations (1.1),
(1. 4), (1. 5) and (1. 6) that the tensor T is transformed under the conformal
change (1. 1) of metric g as follows:

T* = T—‘.—%(n—Z) (Hess,,-—%Apg).

On the other hand, we obtain by the equations (2. 3) and (2. 4)
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T*=#T.

Eliminating T* from these two equations, we have by (1. 2)

_ (1=p" 1
2.7 ViG = Dr—3) Ty(X) + - Ap X,

for any X=%(M). Put X = G in the above, then we find by the equation
(2.5) that the associated function p of any K. -preserving conformal
diffeomorphism satisfies the identity

(2.8) VoG =145 G,
which means the trajectories of the gradient vector field G of p are
geodesic arcs in a neighborhood of an ordinary point of p.
Next, owing to the equation (2. 5) we have
(VaTo)G = —TVG),
for any X € ¥(M). In each hand side of the above, it holds
Trace {X —> (VxT,)G} = Trace {X —> (VRic,) G}
~ L Trace (x— x(50)6)  (by (1.6)

=1 660~ L 60 (by (1. 9))
_n—2
= G G680
and
Trace (X — —Ty(v+6)} = L =L Trace (1) (by (2.7),
p(n—2)

so that, equating these, we have
2.9 p(n—2)* G, grad(Sc) > —2n(p* —1)|T|* =0,

because Trace (T%)=| T|?, where | - | denotes the canonical norm induced
by the metric g in the tensor algebra of (M, g).

Finally, set p=2 and o =TR in General Theorem, where R denotes
the tensor field of type (0, 4) defined by R(X, Y, Z, W) =< R(X, Y)Z, W>
for any X, Y,Z, We X¥(M). Then the equation (2. 1) becomes
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{RX, V)X, Y>

Kﬁ(o') = “X/\ Y"z ’

for any o= {X, Y} € G,, which is nothing else than the sectional curva-
ture of the 2-plane section . We say (M, g) nowhere of constant curva-
ture if there does not exist a non-empty open subset of M, which is a
manifold of constant curvature in the inherited Riemannian metric. Then
the condition (*)z is equivalent to

(Ms7: (M, g) is nowhere of constant curvature.

Lemma 2. Suppose n = 3. Then it holds
(@ <= (M7, and
(3) Kgri-preserving <> Kz-preserving, for any conformal
diffeomor phism.

Proof. Any Riemannian 3-manifold is of constant curvature if and
only if it is Einsteinian, hence we find that (*)s. <= (*)%, from which
we have (@). To check (), let {e,, ¢, e,} be any orthogonal basis of the
tangent space 7., (M) at any point m & M. Then, for the 2-plane sections

o= {e, e,} (k=1, 2, 3) where i, j and k are distinct, we have by the
equation (1. 8)

< R(e,, ey e, e > =Ric (e, er) " e |2 + Ric (e/' ef) ” é: "2
— %scneiuzne,uz,
so that we get

Ki(ow) = ‘; {Kri[e]) + KREC([ej]) — Kri[e)},

or equivalently we have
KRic([ek]) = Ki(s:) + Kfi(o'j) .

Since the orthogonality of vectors is preserved under any conformal change
of metrics, we have the relation (7). q. e. d.

Remark. In Lemma 2, we can prove () more easily by making use

of the equation R* = ;;E, which is obtained by setting p =2 and

o =R in the equation (2.2). However, the above relation Letween the
sectional curvatures and the Ricci curvatures in Riemannian 3-manifolds is
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helpful for the next section.

3. A generalization of Yau’s example

S. T. Yau has given in [6] a local example of Riemannian 3-manifolds
with only non-isotropic points with respect to R where a sectional-curva-
ture-preserving diffeomorphism is not an isometry. On account of Lemma
2, we may regard it as a local counter example for our equivalence problem
in terms of the Ricci curvature, From this point of view, let us generalize
it to n-dimensional manifolds.

Following Yau, let the metric g in R* be given in the form

(3.1) ds* = ﬁ eM(dx') + (d)?

where (x%, «%, ..., ") is the natural coordinate system of R" and each
h (i=1,2,...,n—1) is a function of x” alone. Let g* be an another metric
in R" defined by the equation (1.1) in which p is also a function of x"
alone. We denote by prime ordinary differentiation with respect to x".
In the following we shall show that we can choose, in the local, the func-
tions h,, A, ..., B,y and p, such that

(@ p'##0 and p+#1,
(b) K* = Kxi,
(c) all points are non-isotropic with respect to Ric.

First, let us compute the Ricci form, the hessian of p and others

with respect to g. We assume that the indices ¢ and j run over the
range {1, 2,..., n—1} and the indices 4, g, v and & run over the range
{1, 2,. ., n}. Let {E;} be an orthonormal frame field over R" defined by

E.=e¢™" 9/0x and E, = 8/0z".

The Christoffel’s symbols of the Riemannian connection Vv of g with
respect to the natural frame field {8/6'} which are defined by

n}
Va/az”(a/ax“) = é {“Ay}a/axl 1)
are given by
(3.2) {ini} = —e™ h; and {izn} = h,

the other symbols being zero. Hence the components of curvature tensor
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R with respect to {0/0x'} which are defined by
R(3/0x°,8]6")8)0x" = 32 R,pnd/0 ,
K=]

are given by
Ryl = —e™ ki k; E+#7,
(3.3) R = —e™i{n{ + (h)°},
an£ = - {hli,+ (h:)z} )
the components of another types being zero. Thus we find that the Ricci
form is given by
Ric(E,, E.) =0 (A5 ),
n-]
(3.4) Ric (E;, E)= —{h{ + i ;‘ hi},
=1
=1
Ric (E,, E.) = — X {A7+ (h)).

As for the gradient vector field G and the hessian of p with respect to
the metric g, we have

(3.5) G = p'E,,
and by the equation (3. 2)
0 (£
(3.6) Hess, (E,, E.) =1 hip! (A= p=1)
L p" (l=pn=mn)

respectively, so that we obtain by the equation (1. 3)
n—=1
3.7 Ap = pl' + o' ; k.

Now the conditions (b) and (c) can be expressed in terms of the func-
tions {#;} and p asfollows. First, owing to the equation (1. 1) we see
that (b) <= (2. 3), and furthermore by (1.4) the latter is equivalent to
the equation

(1—p?) Ric(X, Y) = p(n—2) Hess,(X, Y)+ pApl{X, Y >
—n=1D|GIP <X, YD,

for any vector fields X, Y= X(M). By the equations (3.5), (3.6) and
(3. 7) this can be rewritten
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n—1
(1—p*)Ric(E,, Ei) = pp" + pp'{(n—2)h; + jZ} ky} —(n—1)p"
(3.8) act
(=P )Ric(E,, En) = (n —1)pp" + pp' 2 b — (n—1)p".
Jj=1
By substituting (3. 4) into (3. 8) we get

=1 —p°) (b + ki z B} + pp

n—1
3.9 +pp' { ;j‘ hy + (n—2)h} — (n—1)p" =0,

n-1
&= Q=) L7 + B} + (—Dpo”
n—1
TPt Lk — (n—=1)p"* = 0.
Z

Next, suppose that a point m & R" is isotropic with respect to Ric, that
is, Kgi([X]) = const. for every non-vanishing vector X € T,.(M). Then
we have easily by the equation (3. 8)

1"

hy=hy = =l = o

at m, if p'(m)s£0. Accordingly, in order to be valid (c) it suffices that
there exist some indices ¢ and j such that

(3.10) I 5= k), everywhere.

Thus, to construct our example it suffices to show that we can choose #
functions {%#} and p which satisfy simultaneously the conditions (a),
(3.9) and (3. 10).

Beforehand, let us recall that the associated function p of any Kgi-
preserving conformal diffeomorphism satisfies the equation (2.8), which
can ke rewritten in the present case

n—1
(3.11) (n—1)p'" = p’?_j, ki,

by the equations (3. 2), (3.5) and (3. 7), if p's£0. Assume (3.11), then
we obtain by (3. 9)

n-1 n=1 n—1
L& =0-,)1{Z hi+ (S} + (n—1)pp"

n—1
+ (2n—3)ep' 3 hy — (n—1)p"
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= (n—D{A—p*)p'* {p" p' + (n—2)p""}
+ (n—1) 2pp"—p")]  (by (3.11)).

Hence, when constructing our example, we may suppose the function p
satisfies the differential equation

(3.12) P (=D I (260" — p) = 0.

To simplify our argument, let us set especially
h=~"h, and k= h, = - = h,_,,

where the functions # and %k, of course, depend on x" alone. Then
the equations (3.9), (3.10) and (3. 11) are transformed as follows, respec-
tively. First, the equation (3. 9) becomes

A= (1—p") (1" + " + (n—=2)'k'} + pp"
+ pp' {(n—D)1' + (n—2)k'} — (n—1)p"” =0,
B=(1—p){k" + k' + (n=2)k"} + pp"

3. 9)
3.9 + po' {B' + 2(n—2)k'} — (n—1)p"” =0,
C=1—p») (A" + (n=2)k" + B + (n—2)k"} -+ (n—1) pp"’
+ pp’ (B + (n—2)F'} — (n—1)p" =0,
where we have put A =%, B=FK = =%, and €=F,. With

reference to Remark in section 2, we put
n—2)B=A+ (n—2)8 — ¢,
n—-2)Q=—-A+ #n—-2)8+C,
R=N—n-2)B+C.
Then we find that the equation (3. 9)' is equivalent to
B =1—p) {20k + (n—3)k") +2p0' (B + (n—2)k"} —(n—1)p"* =0,
(8.9 T =(1—p*) {28+ (n—1)k"} + 2pp" + 2(n—2)pp'k! —(n—1)p"”* =0,
R=1—p) 28" + 24" — (n—2)(n—3)k"*} + 2pp"
+2pp' (B —(n—2) (n—3)k'} + (n—1)(n—4)p" = 0.
The equations (3. 10) and (3. 11) become evidently

(3.10)! h' = k!, everywhere,
(3.11) (n—1)p" = p'{W+(n—2)k'},

respectively. Moreovere, suppose (a) then we can solve %' and k' from



12 T. NASU

the equations (3.11) and % = 0. An elementary calculation shows that
a necessary and sufficient condition in order to be valid (3. 10) is

{’_" 2 zppll___plz
(3.13) (ﬂ,) + 2> 0.

Thus our problem has been reduced finally to showing that we can choose
three functions %, % and p under the condition (a) such that the equa-
tions (3. 9)", (3.11) and (3. 13) hold simultaneously.

Now, let us solve the equation (3.9)'. We reverse the argument and
let o be asolution of the differential equation (3. 12) satisfying

0<<p<l, p'5=0 and (3.13),

at some initial point m,. The existence theorem of the ordinary differ-
ential equations assures such a solution p exists in a sufficiently small
neighborhood of x"(m,). Having chesen p, let ¢ be be a solution of
the differential equation, which is obtained from £ =0 by setting &' = ¢,

2 (o P

+ (n—1)$*} + 2pp"
+ 2(n—2)pp'dp — (n—1)p"” = 0,

satisfying the initial condition

2 n 1 ,
(3. 15) p* — :, b= @e" =) =0 at m,.

Since we have the inequality (3. 13) at m,, we know that such a solution
¢ exists in a sufficiently small neighborhood of x"(m,) in consequence
of the existence theorem of ordinary differential equations. Let %k bea
function of %" such that k' = ¢. Finally, let # be any function of x
such that

— n
(3. 16) W= (—’% — (n—2)k' .
We remark that the initial condition (3. 15) means now
3.17) B =0 at m,,

because by substituting (3. 16) into the expression 3 we have

!
B = (n=1)p" 1) (k" = 2o — s @pp" =)

Therefore, we see that (3. 10) holds in a neighborhood of x"(sn,) from
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our choice of %, k and p.

In the following, we shall prove that the functions % k and p
defined in the above satisfy identically the equation (3. 9)". Since Q=0
in (3. 9)" is automatically satisfied, it suffices to prove that P=R=0.
First, we have

(3.18) =—2(n—2)%

In fact, eliminate two functions p'" and k" from the equation which is
obtained by differentiating (3. 16), by making use of two equations (3. 12)
and 2 =0, respectively. And then substitute the resulting relation
into the expression |. Then we find (3. 18) by straightforward calcula-
tions. On the other hand, we get directly

diB_
dx"

21— p )RR +2(1—p*) (B +(n—3)k' } k"' —2p0"{2h'k' + (n—3)k* }
+2p0" {B"+ (n—2)F"} +2(0"+ pp") (K +(n—2)k'} —2(n—1) p' p".

Eliminating %" and k' from the above by using the expression R and
the equation - Q = 0, respectively, we find by (3. 16)

Zs"iwsw B (1~ p) '+ B (27K + (n—3) k")

—2pp' {(n—l- 1) BB+ B - (20--5) B”*} + (n—1)p"* (W' + k")

2(" 1) pp' 2pp'" — p*),

from which we obtain furthermore by using the expression P

a¥ _ b 4 J’—sn (W' +E) B—2pp' (2h'R!+ (n—3)k™}

dz"
__ 2(n—1) 1) oo
1—p° ep' (2pp o)
— bl pp’ —(n ' _ 2pp'
=k fR+1 PZER (F+ENB s pz?B.

Substituting (3. 18) into the above, we get

(3.19) P — — W+ @n- + E2=D o) .

The uniqueness theorem of the ordinary differential equations and the
initial condition (3.17) imply =0 from (3. 19), hence it holds =0
by the equation (3. 18).
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Thus we have proved our three functions p, # and % defined in a
sufficiently small neighborhood of x"(1,) satisfy identically the conditions
(a), (3.9)" and (3.10). Hence we conclude

Theorem 1. There exist, in the local, two metrics g and g* in R"
(n>2) such that
(1) g*= ;zg, where dp=~0 and p 1,

( 2 ) K:ic* = K,
(3) all points are non-isotropic with respect to Ric.

4. Theorems

In this section, we shall give several affirmative answers under some
further glotal hypothesis for the equivalence problem of Riemannian
manifolds in terms of K, -preserving diffeomorphisms. Throughout this
section, we assume :

Let f: (M, g) —> (M, g) be a Kg.-preserving diffeomorphism
and the condition (*)n. be satisfied.

(A)

First, we have

Theorem 2. Under the assumption (A), f is an isometry if (M, g)
satisfies any one of the following conditions :

(i) (M, g) is conformally flat.

(ii) The scalar curvature Sc of (M, g) is constant.

Proof. Suppose (i) holds. Then the manifold (M, g*) is also
conformally flat, so that we have D*=D =0(. Hence, the equation
(2. 6) gives

for any X, Y, Z = X(M). Set X = G in the above, then we have by
the equation (2. 5)

IGI* T (Y,Z2) =0,
for any Y, Z € ¥(M). This implies 7 =0 in a neighborhood of an
ordinary point of p, if there is any. This fact contradicts the assump-
tion (*)xi. Thus G=0 on M, thatis tosay, f is homothetic. Hence

f is an isometry by Lemma 1.
Next, suppose (ii) holds. Then the equation (2. 9) implies 7 =0 in
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a neighborhood of a point m € M such that p(m) 1, if there is any.
This contradicts the assumption (*)z.. Thus we have p=1 on M.
q. e. d.
R. S. Kulkarni has proved independently the above theorem in the
case (i) (see Theorem 2 in [4]).
Next, we have

Theorem 3. Under the assumption (A), suppose that M is compact
and all the points of M are non-isotropic with respect to Ric. Then f is
an isometry.

Proof. On the contrary, assume p 1 on M. Then, considering
the maximum or minimum point of p, Wwe may suppose that there exists
a point m € M such that p(m)1 and |G|. =0. From the equation
(2. 9), we find at once T =0 at m. This says that the point m is
isotropic. This fact contradicts the assumption of Theorem 3. Thus
=1 on M. q. e. d.

Suppose # =3 in Theorem 3. Then, we may replace the Ricci
curvature by the sectional curvature in consequence of Lemma 2. In this
meaning, Theorem 3 generalizes S. T. Yau’s result (see Theorem 3 in [6]).

Finally, modifying the technique developed in the proof of Theorem
6 in [2], we obtain the following

Theorem 4. Under the assumption (A), f is an isometry if the
manifold M is compact and for every point m € M it holds

(4. 1) r Sc — § Kkgc ([X]) < 0,

for some non-vanishing X € T,.(M), where r and s are arbitrary con-
stants such that

(4.2) Min {r,r (n — 1)} = % .
Proof. To prove Theorem 4, we introduce symmetric bilinear forms
S and S defined by
S =#Scg —sRic and S=7Scz — s Ric,

on (M, g) and (M, g), respectively, where » and s are the arbitrary
constants satisfying (4.2). Then we have K ([X]) = 7 S¢ — sKz:.([X])
for any non-vanishing X € T.(M). It follows from the equations (1. 1),
(2. 3) and (2. 4) that
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4.3) S*==8,

‘ON[H

which implies f is also Kgpreserving. On the other hand, by a straight-
forward computation we can derive from the equations (1.1), (1.4) and
(1.5)
1
S* =8 - = n — 2)Hess,+ pAp{s —2r (n —1
+ (n—1)(nr —s)|GF g].

Eliminating S* from the equations (4. 3) and (4. 4), we have

(0" = DE(LXD = ps (n—2) Hess, (5 1)

(4.5)
_ +pAp (s—2r(n—1)} +(n—1) (nr—s) |G|}

for any non-vanishing X € T..(M).

On the contrary, suppose f is non-isometric, thatis, p#1 on M.
Then we may assume that the maximum value p(m,) of p is greater than
unity. In fact, since f is K preserving, we can consider f~* which

has the associated function %, if necessary. Let Xe& Tmo(M ) be the

tangent vector satisfying (4. 1) or equivalently Ks([X])<C0. Let

{e. =W‘§—H, Coyereren , €.} be an orthonormal basis of T'»(M). Since IG |lm0=0,

we have from the equations (1. 3) and (4. 5)
(0*—1)Es([X]) = p(n—1)(s—2r) Hess,(e,, e.)

(4.6) + p{s—2r (n—1)} ;Z, Hess, (e, ).

The hessian Hess, is equal to the usual one at any critical point of p,
so the form Hess, is negative semi-definite at the maximum point m, of
p. Thus, it follows from (4. 2) that the right hand side of (4.6) is non-
negative. On the other hand, owing to the equation (4. 1) the left hand
side of (4. 6) is negative, because p(m,)>>1. This is a contradiction.
Hence wehave p=1 on M, q. e d

Setting » =0 and s = —1 in Theorem 4, we have

Corollary. Under the assumption (A), f is an isometry if M is
compact and for every point m & M it holds Ric(X, X)<<0 for some
X € To(M).
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