ON TORSION FREE MODULES OVER
REGULAR RINGS II

KivoicHr OSHIRO

Throughout this paper we assume that all rings considered are com-
mutative rings with identity and all modules are unital. As to undefined
terms, we follow [2] or [7].

For aring R, we denote its maximal ring of quotients by Q(R). If
R is semi-prime, then R has a unique minimal Baer ring of quotints
which is called by Mewborn the Baer hull of R, and denoted by C(R). It
is known that C(R) coincides with the ring generated by the set of all
idempotents of Q(R) over R ([4, Proposition 2.5]).

An R-module M is said to be torsion free if {x € M|Homx(Rx, I(R))
= 0} = 0, where I(R) is the injective hull of R as an R-module. For a
torsion free R-module M, we shall consider again the following conditions
which are cited in [6] :

(¢) M is adirect sum of cyclic R-submodules.

() M is isomorphic to an essential submodule of a direct sum of

cyclic (torsion free) R-modules.

(r) M is isomorphic to a submodule of a direct sum of cyclic
torsion free R-modules.

In case R is semi-prime and C(R) = Q(R), a torsion free R-module
M is finitely generated and injective if and only if M =R/ ], @ --- B R/ ],
(as a module), where J; is an ideal of R such that R/ [, is self-injective
([6, Theorem 3.10]). On the other hand, given a Boolean space X and
a finite field F, the ring R of global sections of the simple F-sheaf over
X determines completely every finitely generated injective R-module as
above ([7, Theorem 23.5]). Therefore it is natural to ask if C(R)
coincides with Q(R). In §2, we shall answer the question in the affir-
mative (Theorem 2., 4).

Let X be a topological space, x in X, and & an arbitrary ordinal
number. Following Pierce, «x is called a &-point if there is a collection
{U,|p<<E} of pairwise disjoint open subsets of X such that x< U, — U,
where U, means the closure of U, in X. The following question has
been asked by Pierce [7, p.109]: What characterizes those Boolean rings
whose corresponding Boolean spaces contain no 3-points? In §3, we
shall give several characterizations of such Boolean rings (Theorem 3.3).
Finally, we shall present an example of a Boolean ring R such that every
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non-isolated point of Spec(R) is an #-point but not an (z + 1)-point.
The author wishes to thank Professor Y. Kurata for many helpful
suggestions during the preparation of this paper.

1. Preliminaries

Let R be aring. B(R) will represent the Boolean ring consisting of
all idempotents of R, and X(R) the spectrum of B(R) consisting of all
prime ideals of B(R). Let x be a point of X(R). Then, for every
element ¢ in x, Uf = {y= X(R)|e=y} is a neighborhood of x and these
neighborhoods form a basis of open subsets in X(R). With this topology,
X(R) becomes a Boolean space (that is, a totally disconnected compact
Hausdorff space) (see [7]). Furthermore, we can define the Pierce sheaf
R(R) whose base space is X(R) and whose stalks are R/xR for x € X(R).
Then, R is isomorphic to the ring of global sections of R(R), and more-
over the category of all R-modules is equivalent to that of all sheaves of
R(R)-modules over X(R). :

Let X be a topological space, and R a ring. Regarding R as a
topological space with discrete topology, the product space X X R be-
comes a sheaf over X with 2 XR (x € X) as its stalks, which is called
by Pierce the simple R-sheaf over X. It is easy to see that if » E R then
the mapping X, given by ¥+ —> 2 X7, x€ X, is a section of the simple
R-sheaf X X R. Let R be a sheaf of rings over a space X. Then I'(X, R)
will represent the ring of global cross sections of R. One may remark
here that if X is a Boolean space, and R a sheaf of fields over X, then
B(I'X, R)) = {o € I'(X, R)|o(x) =0, or 1, for every x in X} = {Xy|M
is an open-closed subset of X}, where 0. and 1, are respectively the zero
element and the identity of the stalk for z, and X, is the section given

by %e={f; (€00

Lemma 1.1.([5]). Let R be a regular ring, and x = X(R). Then,
% is an isolated point in X(R) if and only if the maximal ideal xR of R
is a direct summand of R.

Lemma 1.2. Let R be aregular ving. If M is a non-empty open
subset of X(Q(R)), then there exists an idempotent r in R such that v&Em
is @ non-empty subset of M.

Proof. Since M is a non-empty open subset, there exists an idempo-
tent ¢ in Q(R) such that U¥™ is non-empty and contained in M. Then,
¢ 1, and hence 0 2 s(1 — ¢) € R for some idempotent s in R. To
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be easily seen, r =1 — s(1 — e) is the one requested.

Lemma 1.3. Let R be a regular ring. If y is a non-isolated point
of X(Q(R)) and contains an idempotent e, then there exists an idempotent
7 in R suchthat r €y and U™ is a non-empty subset of U¥P,

Proof. By Lemma 1.1, there exists an idempotent s in R such
that 03 s(1 —e) € yQ(R) N R. To be easily seen, »r=1— s(1 — ¢) is
the one requested.

2. Simple F-gheaf

Proposition 2.1. Let X be @ Boolean space, and F a field. Then,
every element o in I'(X, X X F) can be expressed in the form

o=0X, + < + X

where {c, -, 0.} is a set of orthogonal idempotents of I'X, X X F)
and {f, -, fr} is a subset of F. :

Proof. Let e I'X, X X F), and x = X. Then, o(x) = X,(x) =
x X f for some f in F. Hcnce, by [7, p.11], there is a neighborhood
M of x in X such that o(y) = X(y) for all y = M. By making use of
the partition property (see [7, p.12]), we obtain a finite family {M,, -,
M.} of open-closed subsets of X and a finite subset {f,, ---, fi} of F
such that

X = UiaM,
MyNM=¢ if j=k
o(y) = in(y) forall ye M, i=1, 2, -, 7.

Then, {Xu, -, er} is a set of orthogonal idempotents of I'(X, X X F)
and ¢ = Xy X; + - + Xu X, .

Incase F= {0, f,, *-+, fa} is a finite field in the above proposition,
every element ¢ in I'(X, X X F) can be expressed uniquely in the form
o=aX;, + - +0.X,, where {0, -+, 7,} is a set of orthogonal idempo-
tents of I'(X, X X F). Since any p-ring R in the sense of McCoy and
Montgomery [3] is commutative regular and is isomorphic to I'(S(R),
GF(p)) (see [7, p.52]), we readily obtain the following :

Corollary 2.2. ([1], [8]). Ewvery element a in a p-ring R can be
expressed uniquely in the form a = e, + 2¢, + -+ + (p — 1)e,—;, Where
{e., -+, ew_s} is a set of orthogonal idempotents of R
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We claim here that if R is a regular ring then the canonical mapping
givenby x —> 2 N R, » € X(Q(R)), is a continuous (and hence closed)
mapping of X(Q(R)) onto X(R).

Proposition 2.3. Let X be a Boolean space, F a field, and Y =
XQUI'X, XX F)). Then I'* =T(Y, Y X F) is a ring of quotients
of I' =I'(X, X X F), and moreover coincides with the Baer hull C(I").

Proof. Let v be the canonical mapping of Y onto X(I"). By [7,
p. 20], there exists then a homeomorphism / of X(I") onto X. Now, let
A=ypv eI, and y € Y. Then there exists f, in F such that ¢(2(y))
= A(y) X f,. Here, it is easy to see that the mapping ¢* given by
y —>yXf, yEY, isasectionof Y X F over Y. Hence, identifying
¢ with ¢*, I' may be regarded as a subring of I'*. Accordingly, if
F& F then Y,= X, and if r is an idempotent of I" then Y un= Xucwhs.
Now, let ¢ Le an arbitrary element of I"'*. Then, by Proposition 2.1,
there is a family {M,, ---, M.} of open-closed subsets of Y and a subset
{(fu = £} of F such that o = Y Y, + = + Yu YV, =Yy X, + -+
Yy X,. In particular, if =% (0 then YﬂiX,i=\=0 with some i. By
Lemma 1.2, there exists an idempotent » in I such that U*"™ is a non-
empty subset of M. Then, 0= Yo = X,y = Xuw'r X, which
means that I'* is an essential extension of I' as a I'-module. On the
other hand, since Y =~ X(I'*), I'* coincides with the Baer hull C(I").

Now, combining Proposition 2.3 with [7, Corollary 24.5], we obtain
at once the principal theorem of this section:

Theorem 2.4. Let X be a Boolean space. If F is a finite field
then C(I'(X, X X F)) coincides with Q(I'(X, X X F)), and the converse
is true, provided X is infinite.

Finally, the next isonly a combination of Theorem 2.4 and [6, Theo-
rems 3.7 and 3.10].

Corollary 2.5. Let X be @ Boolean space, F a finite field, and
R =TI(X, X X F). Then the following statements hold :

(1) Every finitely generated torsion free R-module satisfies the con-
ditions (8) and (7).

(2) A finitely generated torsion free R-module M is injective if and
onlyif M=R}], P -+ D R}]. (as a module), where each ] is an ideal
of R suchthat R|]: is self-injective.

Remark 1. Corollary 2.5 (2) has been given by Pierce [7, p.102]
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without the assumption that M is torsion free. However, it is no longer
valid for arbitrary commutative regular rings (see [6, Example CJ).

3. n-point

Recently, in [6, Example A], the author has given a counter example
to the Pierce’s question (4) of [7, p. 109]. We claim first that [6, Theorem
3.7] together with [7, Proposition 20.1] provides a more severe result :

Proposiiton 3.1. Let R be a regular ring, and C(R) = Q(R). If
X(R) contains a 3-point, then there exists a finitely generated torsion free
R-module which satisfies the conditions (3) and (v) but not (a).

Proposition 3.2. Let R be a regular ring, and + the canonical
mapping of X(Q(R)) onto X(R). Then the following conditions are
equivalent :

(a) x is an n-point of X(R).

(b) =x ¢s a non-isolated point of X(R) such that n<<|."'(x)| (the
number of elements of 2~ '(x)).

Proof. (a)=(b). I x is an n-point of X(R), then there exists a
family {U,, -+, U.,} of pairwise disjoint open subsets of X(R) such that
x€U, —U, i=1, 2,--, n. Let W;= (1"(U))". Then, since X(Q(R))
is an extremely disconnected space (see [7, p. 102]), it is easy to see that
W, .., W, are pairwise disjoint. On the other hand, as 24 is a closed
mapping, we obtain U; € /(W). Hence, we have n <|17'(x)|

(b) => (a). Let x be a non-isolated point of X(R) such that »<C|i7'(x)].
Then, we can chocse idempoints e;, -+, ¢, in Q(R) such that UZ®, ---,
UX™ are pairwise disjoint and every Z(USR_(R’) contains x. Put A, =
{r€e B(R) | U¥® C U¥P, x ¢ (UF)}, and U, = tEJ| U™y, Then,

Lemma 1.3 enables us to see that each U; is a non-empty open subset of
X(R) such that x € U; — U,. This means that x is an #-point of X(R).

Concerning the Pierce’s question (7) of [7, p. 109], we can state the
following :

Theorem 3.3. Let R be a Boolean ring, and 1 the canonical map-
ping of X(Q(R)) onto X(R). Then, the following conditions are equiva-
lent :

(a) |2 '(x)| <2 forall xin X(R).

(b) X(R) contains no 3-points.

(c) Every finttely generated torston free R-module satisfies the
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condition (a).

(d) Every finitely generated R-submodule of Q(R) satisfies the
condition (a).

(e) Ewvery R-submodule of Q(R) with two generators satisfies the
condition ().

(f) Re+ Rf contains ef for each e, [ in Q(R).

Proof. Clearly, |[i7'(x)| =1 for any isolated point % of X(R)
(Lemma 1.1). Hence the equivalence of (a) and (b) is contained in Proposi-
tion 3.2. The equivalence of (b) and (c) is shown by Pierce [7, Proposition
20.1 and Theorem 20.4], and that of (e) and (f) follows from [6, Lemma
3.1]. Since the implications (c) 2> (d)=>(e) are trivial, it remains only
to prove (f)=>(a). To see this, suppose that there exists a point x in
X(R) such that 3 <|27'(x)]. Then, X(Q(R)) contains pairwise disjoint
open-closed subsets W,, W, W, such that every i(W,) contains x. Here,
one may remark that R = I'(X(R), R(R)) = I'(X(R), X(R)X F) and Q(R)
= P(X(Q(R)), R(Q(R))) = I'(X(Q(R)), X(Q(R))x F), where F=GF(2).
Now, by the hypothesis, Y\, is contained in I'(X(R), F(R)) (Y., + Yi)
+ I'(X(R), RR)) (Y, + V), thatis, Y = (X)* (Y, +Yu)+(X*
(Yy, + Yy,) with some open-closed subsets P and Q of X(R), where
(Xp)* and (Xy)* are respectively the associated sections in I'(X(Q(R)),
R(Q(R))) for X, and X, mentioned in the proof of Proposition 2.3. Then,
it is obvious that A(W,) S P U Q and (A(W) N (W) N (P U Q) = ¢,
which contradicts x € A(W,) N A(W,) N A(W;).

As was shown in [7, p.92], there exists a Boolean space which con-
tains 2-points but no 3-points. In what follows, we shall show that there
exists a Boolean ring R such that every non-isolated point in X(R) is an
n-point but not an (n# + 1)-point.

Example. Let {S,, ‘-, S,} be arbitrary pairwise disjoint countably
infinite sets: S;= {a@,, ***, @ ---}. We consider the set @ of all subsets
of S=S5,US,U -~ US, Then, @ becomes a Boolean ring under the
operations: a+b=(aUbd) N(a N D), ab=a N b, where (z N b)f
denotes the complement of ¢ N b in S. Now, let ¢;,: S;,—> S, be the
mapping given by @, —> @ (s =1, 2, ---). Let R be the set of all x
in @ such that @,((S. N x)U F..) =(S; N x) U F,. with some finite
subsets F,, of S, (¢, § =1, 2, «»-, n). Then, it is easy to see that R
is a subring of @ and Q(R) coincides with @. Putting U = {z, =
Rda|s=1,2, -}, {U, -, U} is a set of pairwise disjoint open subsets
of X(R) and U= U, U -+ U U, is the set of all isolated points of X(R)
(Lemma 1.1). Now, let & be an arbitrary non-isolated point in X(R). K
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x contains # in R then it is easy to see that S, N7 = S;, which provides
xe U, — U,. Hence, x is an n-point. Next, suppose that x is an
( +1)-point. Then, there exist pairwise disjoint open subsets V. -,
Va, Vuo of X(R) such that x€ V, — V, i=1, -, n -+ 1. Since U
is a dense open subset of X(R), without lcss of generality, we may assume
that every V, is contained in U. Obviously, we can find some k and
p = ¢ such that both V, N U, and V,N U, are infinite. There exists
then some b in x suchthat UfF N V,=¢ or UfN V,=¢, whichisa
contradiction. Thus, X(R) contains no (» + 1)-points.

Remark 2. In the last example, let S, be denoted by e,.

(1) Q =Re P - Re, and e, R for n=2.

(2) If n=2, then X(R) contains no 3-points, and then every finitely
generated torsion free R-module satisfies the condition («) (Theorem 3.3),
but R is not self-injective.

(3) If =3, then there exists a finitely generated torsion free R-
module which satisfies the conditions (;*) and (y) but not (¢) (Proposition
3.1). In fact, R(e, + ¢.,) + R(e. +¢) is such a module, Obviously,
R(e, + ¢,) + R(e. + ¢.) is a submodule of Re -~ Re. -+ Re, not containing
¢, and hence it does not satisfy the condition («) (Theorem 3.3).
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