ON SEPARABLE POLYNOMIALS OVER A
COMMUTATIVE RING III

TAKASHI NAGAHARA

Throughout this paper, all rings will be assumed commutative with
identity element, B will mean a ring, and all ring extensions of B will
be assumed with identity element 1, the identity element of B. More-
over, B[X] will mean the ring of polynomials in an indeterminate X
with coefficients in B, and all monic polynomials will be assumed to
be of degree = 1. A polynomial f < B[X] is called separable if f is
monic and B[X]/(f) is a separable B-algebra.

This paper is about splitting rings of separable polynomials. In §1,
we shall make a remark on ring extensions generated by a single ekment,
which contains an imbedding theorem: Every projective, separable
B-algebra B[ae] with ranky B[a] (in the sense of [2, Def. 2.5.2]) can
be imbedded in a &-Galois extension of B in which B[z] is &-strong.
In §§ 2 and 3, we study splitting rings of separable polynomials in B[ X]
which are projective over B, and we sharpen the results of DeMeyer
[4, Ths. 2.1 and 2.2].

As to notations and terminologies used in this paper we follow [8].

1. Ring extensions generated by a single element. The main
purpose of this section is to prove the following imbedding theorem which
contains the result of [8, Th. 3.4] and a partial result of [1, Th. A.7].

Theorem 1.1. For a ring extension Blal] of B, the following
conditions are equivalent.

(a) Bla]l =B[X]/(f) (HMa)—— K X)+ (f)) for some separable
polynomial f in B[ X].

(b) Blal is separable over B and can be imbedded in a & Galois
extension of B in which Blal is G-strong.

(c) Blal is a projective, separable B-algebra with ranky Bl a].

Proof. The implications (a)=>(b) =>(c) follow immediately from
the results of [8, Th.3.4] and [3]. We assume (c) and set rankzB[a] =#.
Since B[a] is finitely generated as B-module, by using the result
of [2, Prop. 2.5.4], it is showed that for each maximal ideal M of B,
the factor module B[a]/B[a]M is a free B/M-module of rank », that
is, Bla]=B + Ba+ -+ Ba*'+ B{a]lM. Hence it follows from
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[9, Lemma 9.1] that B[e] =B+ Ba+ - + Ba*"'. Let a"=b, +
ba+ -+ b_ya', =B, andset f=X"—b,_ X" — e —p,X — b,
(€ B[X]). Then we have a B-algebra isomorphism B[X]/(f) —> B[a]
mapping X + (f) into @ (cf. [6, Th.1.2]). Thus we obtain (a).

Remark 1.1. In [6], Miyashita proved a theorem: For any monic
polynomial f in B[X], B[X]1/(f) is a free Frobenius extension of B.
As an alternative to the proof, we shall present a simple proof which is
as follows:

Let f=>robX, b€ B, b,=1, and B[X]/(f) = B[«], where
u= X+ (f). Since the assertion is obvious for » = 1, we may assume
n=2. As is easily seen, {1, u, -, «"'} is a free B-basis of B[u].
For a = Y}5 c.u'€ Blul, we set i(a) = c.-;. Moreover, we set v,_;=

o bt * §=1, -, n. Then {0,y =1, Vn_y, >+, vy} is a free
B-basis of B[x]. If 0<s<n—i then v,_* = 2428 bpoyr!"¥*P*  and
i—(k+1D)+s<n—1 v =2 bt 0, If n—i<<s<
n—1 then v, ' = (Vo™ ") = (D) boat™ Dy Y =
(— 2528 bu)u® Y and j+s—(n—:¢+1)<<n—1. Hence we have
(o,_”) = 0,_,, (Kronecker's delta), » =0, 1, ---, #— 1. Since % isa
B-homomorphism from B[«] to B, it follows that # is a Frobenius homo-
morphism. Thus B[«] is a Frobenius extension of B. (Cf. [6, p. 169]).

Moreover, by using the transitivity of Frobenius extensions and the
result of [8, Cor. 1.1], we see that for any monic polynomial f in B[ X],
the free splitting ring of f in the sense of [8, Def. ] is a free Frobenius
extension of B. (Cf. [6, Prop. 3.1]).

2. Splitting rings of separable polynomials over a connected
ring. Throughout the rest of this note, a ring is called connected if it
has no proper idempotents. Let f be a monic polynomial in B[X] of
degree n. As in [8, Def. ], aring extension S of B is called a splitting
ring of f (over B) if S = Bla, @, ,a,] and f = (X — a,) (X — a,) -~
(X —a,). Moreover, a splitting ring B[x,, %, -+, x.] of f is called
free if for every splitting ring Bl[a,, @., -, a.] of f, there exists a
B-algebra homomorphism B[%,, %, ‘-, 2.] — Bla,, @, -, @,] mapp-
ing %, into @ for i=1, 2, -, n. By [8, Th. 1.1 and Cor. 1.1], F
has a free splitting ring, which is a free B-module of rank n!. The
following lemma is oktained from the result of Janusz [5, §2]. However,
for the convenience, we present here an alternative proof which is given
as an application of the results on free splitting rings.

Lemma 2.1. Let B be a connected ring, and f a separable poly-
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nomial in B[X].  Then there exists a splitting ring of f which is pro-
jective over B and conmnected. Such splitting rings are Galois over B
and unique up to isomorphism.

Proof. By [8, Th. 1.1], f has a free splitting ring S over B,
which is unique up to B-algebra isomorphism, and by [8, Th. 2.1], S is
a &-Galois extension of B. If S = >}{., S; is a direct decomposition of
S into connected B-algebras, then the each S, is a splitting ring of f
which is projective and separable over B. Since the set of the identity
elements of the S; coincides with the set of all the primitive idempotents
in S, it follows that the set {S,, ---, S.} is invariant under & More-
over, O is transitive in the set {S,, .-, S.}, else there exists a proper
idempotent in S which is invariant under &, whence is contained in B,
contradicting the fact that B is connected. Thus, it follows that all the
'S, are B-algebra isomorphic, and the each S; is Galois over B. Now, let
T be a splitting ring of f which is projective over B and connected.
Then, recalling that S is a free splitting ring of f, we have a B-algebra
epimorphism ¢: S —> 7. The kernel of ¢ is generated by an idempo-
tent (cf. [5, Lemma 1.6]). Since T is connected, it follows that 7 =
S/ker ¢ =S, (as B-algebras), ¢ =1, -+, £. This completes the proof.

Theorem 2.1. Let B be a connected ring,s# f a separable polynomial
in B[ X]. Let S be a splitting ring of f which is projective over B. Then
S is Galois over B. If T is any splitting ring of f which is projective
over B and with rank,T = rank;S then T is B-algebra isomorphic to
S, and conversely.

Proof. As is easily seen, we have S = 3'i_,S; a direct decom-
position of S into connected B-algebras. Then the each S, is a splitting
ring of f which is projective over B and connected. Hence by Lemma
2.1, S, is a ,®-Galois extension of B, and all the S, are B-algebra
isomorphic. ~We choose here one isomorphism ¢;: S, —> S; for each ¢
and construct an automorphism ¢ of S such that «|S; (the restriction
of ¢ to Si) =6.,07" for i <<t and ¢|S,=¢,~'. For r =@, and for
FdO0ZLj<¢t—1), (r, ¢/) will mean an automorphism of S such that
(=, )| Si = ¢’*/z¢™* for each i. Then the set & of the automorphisms
(=, ¢’) will ke a group, and one will easily see that S is ®-Galois over B.
The rest of our assertion will be easily seen by noting the assumption
ranky; T = rankz S and the result of Lemma 2.1.

Remark 2.1. Let f= X*— Xe B[X]. Clearly f is separable
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over B (cf. [8, Th. 2.3]). We show here that if B is not connected
then f has a splitting ring which is projective over B and not Galois
over B. Let B = Be, @ Be,, ¢,¢,=0, e =¢,550(=1, 2), and
Be, [z, x,] afree splitting ring of fe, over Be,, We consider here S =
Be,[x, x,] @ Be,, a direct sum of rings. Then we have S = B[, x, + ¢,]
and f = (X—x) (X—(x, + e.)). Hence S is a splitting ring of f over B.
Since Be,[x, x,] is a free Be,-module of rank 2, S is a projective
B-module, however, without rank;S, and so, S is not Galois over B.

3. Splitting rings of separable polynomials over an arbitrary
ring. Asin [10, (2.1)], <Z(B) will mean the Boolean ring consisting
of all idempotents in B, and Spec <% (B) will mean the Boolean spectrum
of B which is the Stone space consisting of all prime ideals of % (B),
where the family of the subsets U, = {y & Spec Z (B); e= y} (e =
& (B)) forms a base of the open subsets of <# (B). Now, let x¥ be any
element of Spec <Z (B). We denote by B, the ring of residue classes of
B modulo the ideal Y ;c. Bd. Then B, is a connected ring ([10, (2.13)]).
Let M be any B-module. Then, M, denotes the tensor product B, M,
and for any element ¢ € M, a. denotes the image of ¢ under the canoni-
cal homomorphism M —> M,. Moreover, for any B-module N and for
any element ¢ of Homuz(M, N), we denote by ¢. the B,-homomorphism
M, —> N; sending a. into ¢(a),, and for any subset © of Hom,(M, N),
we denote by 9. the set of the homomorphisms ¢., ¢ € 9.

First, we shall present the following lemma; this can be verified by
making use of the same methods as in the proof of [10, (3.15)], however,
will be proved here in some different way.

Lemma 3.1. Let S be a ring extension of B which is finitely
generated and projective over B. Let x be an element of Spec # (B),
® a finite group, and S, a &-Galois extension of B,. Then there exists
an open neighborhood U,(={y € Spec & (B); d € y}) of x such that
S(1 — d) is a G-Galois extension of B(l — d), and the canonical map
S: —> S(1—d). is both a B-algebra and a &-module isomorphism, where
the &-module S(1 — d). is that induced by the &-module SQ1—d).

Proof. By [10, (2. 14)], we can lift @ to a set of B-algebra
automorphisms of S, which will be denoted by . Theset U= {y &
Spec # (B) ; rankBySy = rankaS,,} is open in Spec <& (B) (cf. [2, Th.
2.5.1] and the result of [10, pp.84 —85]). Hence, by [10, (2.9)], the
multiplication table of & that holds at x will hold in an open neighborhood
U, (= {y=Spec Z(B); ¢ € y}) of x which is contained in U, that is,
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if 0,7, = pe(0, 7, pE®) then o,7, = p, for every y € U. Hence &
will be a group in U. and &|S(1—c¢) is a group which is isomorphic to
8. Since S, is &-Galois over B., there are elements a,,, ***, @u; bis
s+, b,y in S, such that i, @u0.(be) = 6., . (Kronecker’s delta) for all
s 8, where ai.=(a)s bz = (b): for all i =1, -, n. Then in an open
neighborhood U, (= {y € Spec &' (B); d € y}) of x which is contained
in U, there holds that X%, a0, (by) = 8., for all # & . Hence we
have 3, a(l —d)o (b,(1 —d)) =40,,, for all e =®. Thus S — d)
is a Galois extension of J(&|S(1 — d)) with Galois group ®|S (1 — d).
There holds here ranksq-4yS(1 — d) = rank;S. = the order of & = the
order of &|S(1 — d) = rank,@sa-0,5(1 — d). This implies B(1 — d) =
J(@|S1 — d). Since $|SQ — d)=G, S1 — d) in a G-Galois extension
of B(1 —d), and S(1—d).,=S, as B-algebras and as &-modules. This
completes the proof,

In [10], Zelinsky and Villamayor introduced the notion of weakly
Galois extensions. A ring extension S of B is weakly Galois if and
only if there exists a finite set of orthogonal non-zero idempotents {e,, -,
e} in B with >!.,e; =1 and with Se, Galois over Be, for each i
(cf. [10, (3.1) and (3.15)]).

Now, we shall prove the following

Theorem 3.1. Let f be a separable polynomial in B[X], and S a
splitting ring of f which is projective over B. Then S is a weakly
Galois extension of B.

Proof. Let x € Spec <# (B). Then B, is a connected ring, f, (€
B.[X]) isseparable over B, and S, is a splitting ring of f. which is
projective over B,. Hence by Th. 2.1, S, is a &-Galois extension of
B,. Therefore by Lemma 3.1, theere exists an open neighborhood
U (={ye Spec & (B); d = y}) of x such that S(1—4d) is a
®&-Galois extension of B(1 —d). We employ here the compactness of
Spec “#(B) to obtain the theorem.

Lemma 3.2. Let f be a separable polynomial in B[(X], and S, T
splitting rings of f which are projective over B. Assume that there
exists an element x € Spec & (B) with ranky S, = rank,; T.. Then
there exists an open neighborhood U.(={y € Spec & (B); e € y}) of x
such that S(1 —e)=T({1 —e) as B(l — e)-algebras.
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Proof. By Th.2.1, wesee that S;, 7. are &-Galois extensions of
B, which are B-algebra and @-module isomorhic. Hence by Lemma 3.1,
we can find an open neighborhood U, (= {y € Spec <# (B); d € y}) of
x such that S(1 — d), T(1 — d) are ®-Galois extensions of B(1—d) with
¢: SQA —d)., — T (1 —d), both a B-algebra and a G-module isomor-
phism. Now, by [10, (2.7)], we have the canonical isomorphism

Hom,(S(1 —d) D T(Q —d), SA —d)P TA — d)).

which implies Homy(S(1 — d), T(1 — d)).=Homy(S1 — d)., T(L — d).).
Hence ¢ is induced by some element ¢ of Hom,(S(1 — d), T(1 — d)).
Let S(1 —d) = Ba, + -+ + Ba,. Then, noting that ¢, = ¢ and is both
a B-algebra and a ®-module isomorphism, there is an open neighborhood
U.(= {y = Spec &% (B); e = »}) of ¥ such that U, C U, and for every
¥ = Ub: (,-9.(1 - d)u = (1 - d)w S—g(ala.l)zl = E(ai)ya(aj)w E(d(a-'))y = d(ﬁz(al))w
where ¢, j=1,-, #, and ¢ runs over all the elements of & (cf. [10,
(2.9)]). Hence ¢|S(1 — e) is a B-algebra and ®-module homomorphism,
that is, a B(1 — e)-algebra and &-module homomorphism from S(1 —e) to
T(1 —e). Since S(1 —e) and T(1 — e) are G-Galois over B(1 — ¢), it
follows from [3, Th. 3.4] that ¢|S(1 — ) is a B(1 — e)-algebra isomor-
phism.

Now, by using the result of Lemma 3.2 and the compacteess of
Spec <# (B), we can easily check the following

Theorem 3.2. Let f be a separable polynomial in B[ X], and S, T
splitting rings of f which are projective over B. If rankyS, = ranks T,
for all x € Spec # (B) then S==T as B-algebras, and conversely.

As a direct consequence of the theorem, we obtain the following

Corollary 3.1. Let f be a separable polynomial in B[X], and S, T
splitting vings of f which are projective over B and have ranks over B.
If rank; S = ranky T then S=T as B-algebras, and conversely.

By using the result of Th. 3.2, we shall prove the following corollary
which contains the result of DeMeyer [4, Th. 2.2].

Corollary 3.2. Let f be a separable polynomial in B[X]. Assume
that f has splitting rings S, T which are projective over B and with
Z(S) = FB(T)= & (B). Then S=T as B-algebras.

Proof. For every x € Spec <% (B), f.(E B,[X]) is separable over
B,, and S,, T, are splitting rings of f, which are projective over B, and
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connected; whence we have rankEIS, = rankBlTI by Lemma 2.1. There-
fore the assertion follows immediately from Th. 3.2.

Now, let f be a separable polynomial in B[ X], and x € Spec <% (B).
By Lemma 2.1, f, has a splitting ring N which is projective over B, and
connected ; and then N is a Galois extension of B, with a Galois group &,
which is unique up to isomorphism. The uniquely determined group &
will be denoted by &(f.), and the order of & will be denoted by #(f>).
Next, if S is a splitting ring of f which is projective over B then S, has
a direct decomposition into a finite number of connected B,.-algebras N;;
i=1, 2, », ¢t. The number ¢ will be denoted by »(S,, f.). Moreover,
we shall use the following conventions: Z* = {1, 2, ---}, % =the set of
isomorphism classes of finite groups, and which will be topological spaces
with the discrete topology. Now, under this situation, we shall prove
the following theorem which contains the result of DeMeyer [4, Th.2.1].

Theorem 3.3. Let f be a separable polynomial in B[ X]. Then
the following conditions are equivalent.

(a) f has a splitting ring E over B with <7 (E) = & (B) which
is projective over B.

(b) The map ¢,: Spec & (B) —> ., ¢.(x) = the class containing
G(f.), is continuous.

(¢c) The map ¢,: Spec Z(B) — Z°, ¢.(x) = u(f.), ts continuous.

(d) For any splitting ring S of f which is projective over B,
the map ¢,: Spec B (B) —> Z~, ¢ (%) =v(S,, fa), is continuous.

(e) Any splitting ring of f which is projective over B contains a
subring E D B which is a splitting ring of f over B with <% (E) =
A (B) (whence it is projective over B).

Proof. We shall give a cyclic proof : (e) =>(a) 2 (b) =(c) =>(d) = (e).
By [8, Th. 1.1], f has a splitting ring S which is projective over B.
If E is a subring of S containing B which is a splitting ring of f over
B then E is a separable B-algebra, which is projective over B by
[5, Prop. 1.5]. This implies (e) =>(a). Assume (a), and let E be asplitt-
ing ring of f with .22 (E) = .2’ (B) which is projective over B. Let
x € Spec # (B). Then E, is aconnected ring. Since E, is a splitting
ring of f.(€ B.[X]) which is projective over B,, E,. is a Galois exten-
sion of B, with a Galois group ®; whence & =G (f,) (Lemma 2,1).
Hence by Lemma 3.1, we can find an open neighborhood U,(= {y €
Spec “# (B); d € y}) of x such that E(1 —d) is a ®-Galois extension of
B(1 —d). Then, it is easily seen that for every y € U,, E, is a &-Galois
extension of B,, andso, G&(f,)=®=8(f,). Thus we obtain (a) = (b).
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The implication (b) => (c) follows from the fact that ¢, is the product of
¢, and the continuous map # —> Z* sending C € & into the order of
agroup in C. Next, to see that (c) = (d)=>(e), S will be a splitting
ring of f which is projective over B. Then, by using the results of Lemma
2.1 and [3, Lemma 4.1], it is easily seen that ranks S, = p(f)¥Ss, 1)
for every x € Spec 2 (B). Since the map Spec & (B) — Z* sending
x into rankz S, is continuous, it follows that (c)=>(d). Now, let x be
an element of Spec <Z (B), and set

t =S, f:).

Then we have a direct decomposition of S, into connected B,-algebras S,u,,
(uiz = (ul').n, i= 1, °* t), Where

(Al) UiUjz = Oyjtiz (i; j =1, e t); and Zf‘=1ulz =1,

Moreover, we have ring isomorphisms B,= B.u,, (b, — b,u,) and
B,.-algebra isomorphisms &, : S,%,,—>S,u,;, where =1, +-+, £. Construct
a B,-algebra automorphism ¢, of S, by demanding that ¢,|S,u,, = 6,,,6,7"
for :<<t¢ and o,.|S;u,, = ¢,7', and lift ¢, to a B-algebra automorphism
of S, which will be denoted by ¢ (cf. [10, (2.14)]). Then there holds
that

(A,) ”z(uu) = w1z for i <{, o'.r(uu:) = Ux.

Now, let S = Bla,, --:, @,] where f= TTl.(X — ), and set a/ =

2iss of(awu,) (B =1, -+, m). As is easily seen, we have that
fx = R 1’:-1 (-Xlx - ak;) >
B[al” ..., all’]x E B[a;) -." anl].l'ulm = Slulf'

We shall here assume (d). By [10, (2.9)], we can find an open neighbor-
hood U.(= {y € Spec & (B); ¢ € y})of x in which «(S,, f,) =t (i.e.,
constant), and there hold the relations (A,) and (A,). Then, for every »
e U, Bla/, -+, a.'], is a splitting ring of f, which is connected. Hence,
by using the rresult of [10, (2.11)], it is seen that B[a,/, ---, @,’]J(1 — ¢)
is a splitting ring of f(1 —¢) over B(1 —¢) with <2 (B[a,', ‘-, a.']-
(1 —e) = & (B —¢). Employing the compactness of Spec .7 (B),
it follows that S contains a subring E D B which is a splitting ring of
f over B with &Z(E) = &' (B). Thus we obtain (¢). This completes
the proof.
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Remark 3.1. In [4], DeMeyer introduced the notion of uniform
separable polynomials. By the result of Th. 3.3, we see that a separable
polynomial f in B[X] 1is uniform if and only if f satisfies one of the
conditions (a) —— (e) in Th. 3.3.

Remark 3.2. Let f be a monic polynomial in B[X] of degree =,
and S a splitting ring of f over B which is a projective B-module of rank
n!. Then S is a free splitting ring of f. Indeed, by [8, Th. 1.1 and
Cor.1.1], f has afreesplitting ring T over B which is a free B-module of
rank »!, and this is B-algebra homomorphic to S. Since rank;7=rank; S,
it follows that T and S are B-algebra isomorphic. However, in case f
is not separable, we can not see that any two splitting rings S’ and T’ of
f which are projective over B and with rank; S/ =ranky; T’ are B-algebra
isomorphic.
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