ON A GROUP OF CYCLIC EXTENSIONS OVER
COMMUTATIVE RINGS II

ATsusHi NAKAJIMA

Let R be a commutative ring with identity and let G be a finite
abelian group. Let E(GR) (resp. SE(GR)) be the group of isomorphism
classes of commutative abelian extensions (resp. strongly abelian exten-
sions) of R with group G. In [8], the author computed the abelian group
E(GR) for G of prime order p and an algebra R over GF(p), and
obtained the following group isomorphisms for a connected ring R;

E(GR)=R*/{r* — r; r € R} = Hom.(T, G) = H* (R, G),

and for strongly cyclic extensions of a connected ring R with group G
of prime order p, we obtained the following group isomorphisms

E(GR) 2SE(GR) == U(R)/ U(R)" = Hom./1, G) = H*(R, G),

where 77 is the group of automorphisms of a separable closure of R [4,
Def. 5], H*(R, G) is the second cohomology group in the sense of D, K.
Harrison and U(R) is the group of all invertible elements in R (see, [8,
Cor.2.8 and Th. 3.6]). In §1, if J—> G—— G/]J is an exact sequence
of finite abelian groups, then we have an exact sequence 0 —> E(JR) —>
E(GR) —> E((G/ J)R) which is essentially obtained in [3, Th.3]. In §2,
we show that if G is a finite abelian group, then E(GR) is isomorphic
to Hom,(7I, G) as sets, and if R is an algebra over GF(p), G is a cyclic
group of order p™ and J is an arbitrary subgroup of G, then 0 —>
E(JR)—> E(GR)——> E((G/ J)R)—>0 is exact. In the last section, we
give an example of a connected ring R and a group G such that SE(GR)
is properly contained in E(GR).

Throughout this paper R will denote a commutative ring with identity,
and unadorned @ will mean &), Moreover, every ring has identity
which preserved by every homomorphism, every module is unital, and
all ring extensions of R will be assumed to be commutative and have
identities coinciding with the identity of K. As to other notations and
terminologies used in this paper, we follow [8].

1. An exact sequence. Let G be a finite abelian group. Then
the group algebra RG of G over R isa finite Hopf R-algebra with the
usual diagonal and counit maps [1, p. 59], and GR = Homp(RG, R) is
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also a finite Hopf R-algebra [1, p.55]. For brevity, we shall denote by
4 the diagonal map of GR. When discussiong several diagonal maps
simultaneously, we shall sometimes write 4 = 45z in order to avoid
confusion. Let 9 be the category of commutative R-algebras and
R-algebra homomorphisms, and .%°% the category of GR-objects and
GR-morphisms in %7 [1, p.33]. If J isasubgroupof G and p, =1,
P2+, pe is the complete representative system of G/J = G, then
the canonical exact sequence /| —— G ——> G/J induces the following
sequence of finite Hopf R-algebras

f g
(G/J)R—> GR—> JR.

Explicitly, f is defined by f(u;) = Z,Eval,, and g is defined by v,——>

S" g: g ﬁ , where {u;} and {v,} are the dual bases of {p,} (C RG) and

{e} (C RG), respectively. (Note that the map f is independent of the
choice of the representative system for G/J.) Let E(x) be the group
of *-isomorphism classes of commutative Galois *-objects[8, p. 164]. Then
by [1, Th.2.20], we obtain a sequence of abelian groups

—~

g f
(1) 0 —> E(JR) —> E(GR) —> E((G/J)R).

Here for (A) in E(JR) with the structure map «,: A—>A @ JR
[8, §1], Z(A) is defined by the following equalizer diagram in %

i (1Re@DARY)
(2y (BA-—AQGR — A® JR® GR
a, Q1

with the structure map ;¢ : g(4) —F(A) ® GR such that the
diagram

z(4) > A® GR
(2) Qrtay J 1®A
7(A) ® GR A® GR® GR
i®1

is commutative, and for (B) in E(GR) with the structure map ¢®;: B
—> B ® GR, F(B) is defined by the following equalizer diagram in &

o
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v 1R/ ®N1®)
(3) f(B)—>B Q@ (G/))R } BQ GR® (G/])R
a1

with the structure map ®5a: f(B) —> f(B) @ (G/J)R such that the
diagram -

f(8) - » BQ® (G/J)R
(39 (e 472 l l 1R 4
F(B)® (G/J)R—— B (G/J)R @ (G/NR
Q1

is commutative, where ¢ and i’ are the canonical inclusions. Under
these notations, we have the following

Theorem 1.1. (1) is an exact sequence.

Proof. First, we show that E is a monomorphism. Let (A4) be an
element in E(JR) such that g(A) is isomorphic to GR in &% We
define an R-algebra homomorphism hi: A— A Q® GR by the formula
hi(a) = 3k Toeso(a) @ vop, (@ in A). Then we have the following
diagram in .97,

: (1Re®1) 1RQ4)
g(A)— AR GR 3A® JR® GR

[ a1
h

A

and (0, @1k, =1 Qg ®1)(1Q Nk, where ¢ is the canonical inclu-
sion. Therefore there exists an R-algebra homomorphism #": A — g(A)
such that #-¢” = h,. Now let g’ be the canonical inclusion from JR to
GR, and consider the following diagram in

i” ~ ? g
A —7 (A) > GR » JR

ay lv Qi J dsr l der

AR JR ZF(A)® GR —— GR® GR —— JRQ JR
"R g ¢r®1 gQeg
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where ¢ is an isomorphism in %%, By (2') and the definition of g,
the middle and right squares are commutative, we have

(g@(eR@D(E"Rg) a.=(gR2) e @Dazy * i = dyr * goi''.
Thus g¢i"’: A——> JR is a homomorphism in %% and by [1, Th.1.
12], (A) = (JR), thatis, g is a monomorphism.

Next, we shall prove that Ker(f) contains Im(g). Noting that R

is the zero object in the category of commutative Hopf R-algebras, we
have the commutative diagram

gf
(G/J)R—> JR

N/

R

and 7-g(A) = gf(A) = 7¢(4) by [1, p.20] ((A) € E(JR)), where &(u,)
=1; &(u:)=0(51) and %(») = r-1 (1 is the identity of JR). Con-
sider the diagram

o 1®ERDAR.)
76(A) — AQ (G/J)R 3 AR JRQ(G/J)R
I a,;@l
ha
(G/])R

in %, where A u) =1 Q& u; for u, = (G/J)R and j is the inclusion
map. Since k. is an R-algebra homomorphism and («.®Q 1), = (1 Q7 ®1)
(1 ® )k, there exists a homomorphism +r: (G/J)R —>7¢(A) in &
such that j -+ = k.. Then we have (j & Lagws'y = (R 1)y R1)d:
(G/J)IR—> AR (G/J)R®(G/J)R. Since (j ®1) is a monomorphism,
4 is a homomorphism in .97“* and thus by [1, Th.1.12] + isan iso-
morphism. This shows Ker(¥) 2 Im(g).

Conversely, let (B) be an element in Ker(f), that is, F(B)=(G/J)R
in FENR - Tet x = 3% b @ u, be an arbitrary element in B (R
(G/J)R. Then by (3), (s @1 (*)=(1QfR1)(AR A (x) if and

only if x € F(B). Hence we have
(4) FBY={ZLp®)Qui; be B}

where B’ is the subring of B consisting of all elements of B left fixed
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by every element of J. Since (G/J)R==7(B) =B’ C B, there exist
orthogonal idempotents &; in B such that X% b, =1, <«(b) =0, if
p;=pt,(r€ G) and Rb;=R. Let C= Bb,. Then C isa JR-object
and one can easily check that C is a Galois JR-object over Rb, == R.
We now can define a map #; from B to CQ GR by A,(0) = 3.c;=(0)8,Q
v, (b in B). Consider the diagram

(1Q¥gR®1(1KR4)
2(C) — CQ GR 3 CQ JR® GR
"’ 5 ar @1

B

in &. Then (ac®@h, = (1Rg®1) (1R ks, so by making use of
the same method as in the proof of Ker(7) 2 Im(g), we have B =g(C)
in &%, This completes the proof.

Remark 1.2. Let 7(G, R) be the group defined on [3, p.3]. Then
by [8, Th.1.2], the map f: E(GR) — T(G, R) defined by (A)—>{ A}
is an isomorphism. Thus Th.1.1 is equivalent to [3, Th. 3].

- 2. A group of cyclic extensions. Let R be a connected ring, that
is, R has no proper idempotents. Let 2 be a separable closure of R
[4, Def. 5] and 17 the group of R-algebra automorphisms of €. Then
Il is a topological group with finite topology. Let %%, and %% be
the category of finite abelian groups and the category of abelian groups,
respectively. Then we have two functors Hom.(77, *): %, —
and E(+): %, —— %%, where Hom,(JI, *) is the group of continuous
homomorphisms from 77 to the discrete group *[8, § 2]. We define a map
ha: Hom(lI, G)—> E(GR) (G & %) as follows; If ¢ is in Hom, (77,
G), 2% will denote the fixed subring of £ corresponding to Ker(e).
Q5= 0,) is a Galois extension of R with Galois group naturally
isomorphic to J = Im(¢), and is thus a Galois JR-object in view of [8,
Th.1.2 and Remark 1.3]. The element of E(GR) corresponding to @
is then (j7%(%,)), where j*: GR—— JR is the homomorphism of Hopf
R-algebras induced by the inclusion j: J—— G, and j* is as in (2).
Under these notations we have

Lemma 2.1. Let R be a connected ring. Then h:Hom,(/, *)—>
E(*R) is a natural transformation.
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Proof. Let f: G——> H be a homomorphism in %%, Then we
have homomorphisms f,: Hom(7I, G) —> Hom.(Z7, H) with f.(¢) = fo
and f*: E(GR)—> E(HR) with f* ((4)) = (f*(4)), where f*: HR
—> GR is induced by f. Consider the following diagram

he
Hom(ZI, G) —— E(GR)

f*l 17*

Hom.(/I, H) —— E(HR)
hy

Then f*ha(‘P) = f*(_;:;(gqﬁ)) = (fj)*(9¢) (1, p. 20] and huf*((P) = hﬂ(f?)
= hu(fi @)= (W(.Q,,), where j: Im(p) —> G is the canonical inclusion.
Therefore 7*/:(; = huf., that is, # is a natural transformation, com-
pleting the proof.

Let S be a commutative Galois extension of R with finite abelian
group G. Then by [3, Th.7] there exist a subgroup H of G and a
T< E(HR) such that T has no proper idempotents and S=(T & GR)@" ™
(¢ € H) as Galois G-extensions. Since T is connected, we may consider
T as a subring of @ [4, p.464]. Define ¢: I —> H S G with ¢(o) =
o|T. Then ¢ isin Hom(Z7, G), Im(¢) = H and £,= 7. Let i: H
—> G be the canonical inclusion. Then

(6) ¥(2,)={T.cct.Rv.€E TQ® GR; o(x.)=1x,, forall r€ G, ¢ H}.

On the other hand, (T ® GR)“< " is a Galois (HX G)/{(s, ¢™*); o< H}
(= G)-extension of R and (T® GR)“* "’ = {D.eoa. Rv.€E T ® GR;
o Ya.) = a,. forall =€ G, ¢ =H.} Since the map f: TR —T®
GR)“~™" defined by f(Z.cot. ®2) = Dreat-1 Q@ 0.(Z et @ 0. €
t*(2,)) is an R-algebra homomorphism and (1, p) (¢ € G) is a represen-
tative set of (HX G)/{(s, ¢7*); e €H}, we have §f=(fQ 1)a, where
« and f are the structure maps of ¢*(2,) and (T ® GRY"* ™" in 7c*,
respectively [8, §1]. Thus7*(2,) = (T ® GR)** > =S in .%°* [1, Th.
1.12]. Hence we have

Lemma 2.2. Let R be a connected ring and G a finite abelian group.
Then hg: Hom(II, G)—> E(GR) is an epimorphism of sets.

Now, let G=(o) be a finite cyclic group, ¢ in Hom,(/I, G), and m =
| G/Im(¢) | (the order of G/Im(g)). Then 2% = @, is a cyclic extension
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of R with Galois group (¢™) = Im(¢). If we define an R-algebra
automorphism o, of Q27(m-times direct sum of 2,) by

(7) (%, %y vy %) = (6™(%n), %y, xm-l)(xiegw): then £y isa
cyclic extension of R with Galois group G, = (g,).

We shall now prove the following

Theorem 2.3. Let R be a connected ring and G = (o) a finite cyclic
group. Then the map he: Hom.(II, G) —> E(GR) is an isomorphism
of sets, and ho(p) = QF"™! (o € Hom.(II, G)) as Galois GR-objects.

Proof. Let ¢ be Hom.(ZI, G), m = | G/Im(g)|, and ¢: Im(p) —> G
the canonical inclusion. Then by [1, p.59], hs(¢) = £*(£,) is a Galois
extension of R with group G. Explicitly, G operates #* (2,) by

( 8 ) G(Z:EG X ® vr) = ErEchr: ® v (0' S5 G) ZrEer ® v € F(‘pr))-

By (6), mot Sk ™ (X)) @ Viem is in 7%(2,), where k is the order
of Im(¢) and {w,} is the dual bases of {s‘}. Therefore we may define
an R-algebra homomorphism f: 20 —>7*(2,) by the formula

f(xly Xy o0y Em) = Hare Zjil a™ (xm—x') % Vivym (xi S .Q.p) .

By (7) and (8), one can easily check that fs, = ¢f and thus f is an
isomorphism of Galois GR-objects [8, Remark 1.3 (1)]. Now let ¢,
be in Hom.(7Z, G) such that h.(p) = he(yr). Then by the above fact,
Q7 is isomorphic to &} as G-Galois extensions, where m and » are the
orders of G/Im(¢) and G/Im(y:) respectively, and by [8, Lemma 2.5
(2)] we have 2, = @, Hence ¢ = s, thatis, ks is a monomorphism.
Combining this with the result of Lemma 2.2, we obtain the theorem.

Corollary 2.4. Let R be a connected ring and G a finite abelian
group. Then HomJ(II, G) is isomorphic to E(GR) as sets.

Proof. Let G= G, X - X G,, where G; isa cyclic group. Then
by [1, Prop. 3.8] ((Su), -, (Su)) —>(S:®---®S.) is an isomorphism
from 11}, E(G.R) to E(GR). Thus we have isomorphisms Hom.(ZZ, G)
1%, Hom.(/7, G,) = I1}., E(G;R) = E(GR) .

For cyclic p™extensions, we have the following

Theorem 2.5. Let R be a commutative algebra over the prime field
GF(p#0), G= (o) acyclic group of order p™, and ] the subgroup
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of G of order p(k < m). Then the sequence

_— —~—

g f
(9) 0 —> E(JR) — E(GR) —> E((G/J)R) —> 0
is exact, where g and f are defined in (1).

Proof. By Th.1.1, it is enough to show that ’fv is an epimorphism.
Let (A) be an element in E((G/J)R). Then A isa cyclic p™ *extension
of R with group G/J = (p,), where p,, -+, p. is the complete represen-
tative system of G/J, so by using [6, Th. 1.3] repeatedly, there exists
a cyclic p™extension B of R with group (v) such that (z|A) = (p,),
and through the homomorphism (z) —> (¢) = G defined by ri—>a, G
operateson B by o{(b) = ©(b) (b € B). Thus B isa cyclic p™extension
of R with group G. Consider the following equalizer diagram in %;

1®fR1N(1Q4)
f(By—> B®(G/])R — B® GR ®(G/])R.
az @1

Then by (4), we have f(B) = [ pob) Qui; bE B’} and B’ = A.
One can easily check that the mapping 6: A —> f(B) with 0(a) = 32,
o{@) ® u; is an isomorphism in "% and f is an epimorphism,
completing the proof.

The following theorem is a partial extension of [8, Th.2.4].

Theorem 2.6. Let R be a commutative algebra over the prime field
GF (p) (p 5 0) and G a cyclic group of order p™. Then E(GR) is of
exponent p* (1 < k< m).

Proof. By [8, Th.2.3], if H isacyclic group of order p, then
E(HR) is an abelian group of exponent p. Now by making use of the
exact sequence (9), the theorem will be proved by the induction on m.

3. A group of strongly eyclic n-extensions and an example. Let

R be a commutative ring which contains a primitive #z-th root { of 1
such that # and {1 —&'; {=1,2,--,, # — 1} are invertible in R. Let
G be an abelian group of order » such that G= II1.., G; the direct
product of cyclic groups G, A Galois GR-object A will be called a
strongly abelian Galois GR-object if A is a strongly abelian extension
of R with group G [7, Def.2.1]. We denote SE(GR) the set of GR-
isomorphism classes of strongly abelian Galois GR-objects, which is a

subset of E(GR).
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Lemma 3.1. Let R and G be as above. Then SE(GR) is a sub-
group of E(GR) and SE(GR)==1I.L, SE(G.R).

Proof. By [1, Prop. 3.8 and Th. 3.9], the mapping f: I1.5, E(G:R)
— E(GR) defined by f((S)), -, (S))=(5:® - ®S,) is a group
isomorphism and by [7, Th.2.1 and Th. 2.2], f(II., SE(GR))=SE(GR).
Thus by [8, Th.3.4], SE(GR) is a subgroup of E(GR).

Next, we give a relation tetween SE(GR) and the Picard group of
R. The following theorem is given by L. N. Childs [2, Th. 9].

Theorem 3.2. Let R and G be as above. Assume that R is a
connected ring. Then we have group isomorphisms

E(GR)/SE(GR) = 11, E(G:R)/SE(G:R) = 11:%, Pic(R)(e.),

where e, is the order of G; and Pic(R)(e)) is the elements of Pic(R)
annihilated by e; .

Proof. By [8, Lemma 3.1], SE(G:;R) is the set of isomorphism
classes of Galois extensions which have normal basis and by [2, Th.1 and
Prop. 10], E(GR)/SE(GR) == Pic(R)(e;). Thus the assertion is an im-
mediate consequence of Lemma 3.1.

Now, we shall construct a quadratic Galois extension which has no
normal basis. For further details, we refer the reader to [2, Prop. 10].

Proposition 3.3. Let R be ¢ commutative ring such that 2 is inver-
tible in R, T a ring extension of R, and P a finitely generated projec-
tive rank 1 R-submodule of T suchthat PP > a@Rb—>ab=E R is
an R-module tsomorphism. If P is not free, then S=R@PP is a Galois
extension of R with group G of order 2 which is not a strongly cyclic
extension of R in the sense of [7, Def.1.1], that is, S has no normal
basis [8, Lemma 3.1].

Proof. By [5, Lemma 1 and Footnote 2(iii)], it is easy to see that S
is a strongly cyclic 2-extension of R if and only if S is a free quadratic
Galois extension of R. If S=R @ P is a free R-module, then by [9,
Lemma 2] P is a free R-module, which is a contradiction. Thus it
suffices to that S is a Galois extension of R with group G of order 2. By
[5, Prop. 2.3], a commutative R-algebra A is separable if and only if
Anm = Ry @ A is a separable Ry-algebra for every maximal ideal ut in
R. Thus we may assume that R is a local ring. Since P is a finitely
generated projective rank 1, P 1is a free R-module and P = Rx where
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2 = u is invertible in R, Therefore by [4, Cor.2.4] S=R@P Ry =
R[X]/(X?® — u) is a separable R-algebra. Thus S = R @ P is separable.
Define o(r +p)=r—p(r= R, p= P). Then ¢ is an R-algebra automor-
phism of S of order 2 and S™ = R. Since 2 is invertible in R and the
elements of P generate S, the elements of G are pairwise strongly
distinct on S. Therefore S is a Galois extension of R with Galois group
G.

Finally, we give an example of a connected ring R and a group G
such that E(GR) 2 SE(GR) and thus Pic(R) (2) = 0 (see, Th. 3.2). The
following example was given by R. G. Swan [10, Th. 4].

Example 8.4. Let R be the real number field and R' the subring
of R[x, x.] consisting of all polynomials all of whose terms have even
degree. Let R be the canonical homomorphic image of R’ in R[x,,
%,1/(x,2 + x> — 1) and P the R-submodule of R[x,, x,]/(x," + %> — 1)
generated by the canonical homomorphic images of «, x,, Then R is
connected, 2 is invertible in R, and P is a finitely generated projective
rank 1 R-module which is not free [10, p. 271]. Since P is a projective
rank 1 R-module, the epimorphism PR P S a®Rb——>ab=R is an
isomorphism. Hence by Prop. 3.3, R[x, x 1/(x,* + x,* — 1) is a quad-
ratic Galois extension of R which has no normal basis, thatis, E(GR)
2 SE(GR) and Pic(R) (2) == 0.
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