ON A PROBLEM IN ADDITIVE NUMBER THEORY
IEKATA SHIOKAWA

Let g>1 be afixed integer. Any positive integer # can be uni-
quely wriiten in the form

where ¢, = ¢(n), 1 <7<k, are integers such that 0 =g=<=g—1.
We put

a(n) =
R. Bellman and H. Shapiro [1] pr,oired the relation

()_xlogx

"s: 2 Tog + O(x log log %)

in the case of g = 2. L. Mirsky [2] and S. C. Tang [4] independently
extended this result to the general case of g =2, by establishing

5 (g—1) x log x
nar () = 2logg + 0().

In this paper we shall make a refinement on this result for the particular
case of g = 2. Indeed, we prove the following

Theorem. We have

1 /xlog x _
(A) lim inf -~ (2 log 2 m“("))
and
1 (xlogx -1 log3 -
(B) h‘}‘i“p 2 log 2 ,.s,“(”)) 1= T2

1. Preliminaries

For any positive integer x we define
— _ [log x]
k= k) [log 2]+ 1,
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where [2] is the integral part of 2. Then it is easy to see that

_logx 1 2F
log2+ logzlog x

Put
ox) = 3 (1 - 2ew),
then
Do) =T k) — 23 aln).

But cle;clrly
SDkn)=xk—2+k+ 1

nET

=xlogx+ X

2
log 2 log 2 2+ k+1,

log o

where %k = k(x). Hence we have

xlogx
© log 2 27§'~"a(n)

2k
k2

= 9k __ x
2 Tog 2 log

x h(x) + Slx) — k—1,

+2Xan—k—1
. nsx

where
—2_ 1 ;.2
h(x) = % log2 log x’
and

S(x) = 2 a(n) .

nsx

It is readily seen that #(x) decreases for 2¥'<{x <C2'log 2 and
increases for 2°log 2 << x << 2% and that

1 min h(x) > h(2log 2)=1 T 108 log 2
( ) oh—lg o log 2
& : integer
and
(2) max A(x) < A2 =1.

Pl l<1‘<2k
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In order to estimate S(x) we need some notations and lemmas.

Let #=1. Denote by {c.;: 17 =<2} the set consisting of the 2*
possible arrangements ¢ ; of k digits formed with 0’s and I’s and ranked
in ascending order of magnitude; e. g. ¢,, =00, ¢,, =01, ¢,,, =10
and ¢,,=11. For any 0-1 sequence A = §,4, -+ 3, 'of length / we
write

a(8) = 33 (1 — 23).
Now we put
Tu(j) = 2 o(end)
and define
Te = mjax Td7) .
Further we set
Le=min (j; T¥ = Tw(4))
and
L, =max (j; T¥ = T(7).
Lemma l. For k=1 and j, 1< j<2% we have
T{j) = T2* - j)=0.
It will be convenient to understand that 7.(0) = 0 for any %k =>1.

Lemma 2. For k=1, we have

b = Ly = 3 @1 — (—1)™).

Lemma 3. For k=1, we have

Ti = 3@ — o)),
where
o(k) = { 1 z-f k z.s odd,
2 if k is even.

Suppose £ =5. We set
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k—3
2

k—4 '
5 for &£ even,

for £ odd,
j E =

and define for 0 ;i </, —1

Ak,j _g-;_ (2}5 — 211:-2]) — Zj: 2!:—21"

=1

Biy = Auy + 2F74 8 = = (2F — 5.2

W[ |+

C:; = By, + ok=3j-4 (2¢ — 7'2;;_,]-_4)

and further

Iy — 3 if k is odd,

I, —5 if k& is even.

Lemma 4. If A, <! < Bi,
then

Tul) 4 (@ — 3.2 — o(R)
if Bu; <I<C.; then
T < 4 @ — 7275 — ok + 1);
and if Cu,;<I<Acsr, then
T < % (2:13:27¢ — 0(k)).

For proofs of the above four lemmas see [3].

Let x be any integer such that 2*'<< x << 2% Put j=x — 2! + 1,
1 <7< 2¥' Thenitiseasy to see that the dyadic expansion ez, "¢,
of x can be written as lc;—,,;. ~Hence we have

a(x) = —1+ ‘T(Ck—l.j)
and so
S(x) = 82 — 1) — j + Twu(7) .

Especially we have from Lemma 1
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(3) S@2F—1)=—2"+1.
Hence we have
(4) S(x) = —2 '+ 1— 7+ Tej).

Note that T._:(j) = j + Tw-s(j), provided 1< j=<2"" Thus we have
also :

(5) S(x) = =27+ 1 + Teo(7);
we notice that —x << S(x) <0 forall x =1.
Throughout in the rest of this section we suppose that 2>5. Put
2=2"—1442° 028,

Let x be a positive integer such that x,_, <<x < x, for somez, 1<7=<2%
and write j=x— %, + L, 1<j<2°° Then the dyadic expansion
e,8,°+6, of x is lc, cs-s;. Hence we have

(6) S(x) = —x+ T,(¢ '—‘,1) 285 jO'(C,:,t) + Thopije

The following table givee the values of the o(c,,) and the T,(f) for
0sig 2,

H 01234 5 6 7 8 9 10 11 12 13 14 15 16
alc,y) 042 2 0 2 0 0—-2 2 0 0-2 0-2-2-—4
T,&) 0 4 6 8 8 10 10 10 8 10 10 10 8 8 6 4 O

2. Proof of (A)
By (3) we have

eyl S@—-1_ 1
(7) 0> A" — 1) + =g > 7
and by (2) and (4)

2’5 276—! .
Now we wish to show thatif 2>5 and 2+ 1 < x < 2 — 2, then

(9) k(x)+¥>o.
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Casel. 2"'+1<x=<x,. Let !/, 1</=<Fk—05 bean integer
such that 27! — 14+ 27" <2 <2 -1+ 2. Put j=4%—2""4+1 then
2t i< 28,

Then we have

Too(f) = Tera @D + (k=1 = 4) (j— 27) + T1i(j — 27)

(10)
= Tea(@7) = (k—1—2)2"".
From this and (4) we get

S(z) o =2 + 2~
x = 27t o

Since k(x) is decreasing we have

2¢ 2

M) > M@+ 2) > g

Accordingly

S(x) 21 2L _ 2L+1
h(8) + S50 gt g T gET e > 0

Case2. 2, =x<x, Let x,.,,<x<=x, 2<i=<15. Then by (6)
and the table given in the preceding section we have

S — . 2 min(T.( — 1), T.G) — _ 27
x — L1t T 4§ 5 =

From this and (1) we have

S(x) 1+ loglog2 27
h(x) + p > Tog 2 31>0.

Case3. x,<<x=2t—2 Letl, 1<!<k—5 be an integer
such that 2F — 1 — 2! <<y <<2*—1—2"' Put j=2x—2""+1, then
21 L 2% — j <2,  From (4) and (10) we have

S(#) < —2"+ (B —1—1)2""
x = 2k — 2, )

Since #(x) is increasing we have

2k — 21+1

h(x) = b2 =2 > o .

Hence
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h(x) + S(") > 2;2 5

(k—5—0=0.
From (7), (8) and (9) we obtain

lim inf (k(x) + S(x))

z—s00

This proves (A)

3. Proof of (B)

We estimate the magnitude of the quantity max (h(x) +S—(£)) .
2k—l§ x <9 X
In what follows we suppose that 2k >7. Ifx=4x_,+j—1, 15257
then from (6) and Lemma 3 we have

S(x) 3max(T(z-—-1) T(z))+2
(1) =" 3(15 + 9)

Casel. x.,<xZzx, t<2 or £=11. By (2), (11) and the table
in § 2 we readily find

i = 1 2 11 12 13 14 15 16
h(x)+%x)<1_42_03_2@32 26 20 14

48 51 78 8 8 8 9 93°

Hence we have

S(x) _- 32
h(x) + p <78<0 .411.

Case2. x,.,<<x=<=ux;, T<{=<10. Since h(x) is increasing in the
interval x;, <% < x,, we have

12) ) <<h(x;+1), s, <x<Zx, BZ{<10.
But if x, <<2*log 2 <<=x, then

(13) Mx) <max (h(x, + 1), Az, + 1), 2z, <x<1%,.
Here

_ 32 log16 +d) _ e
(14) h(z, + 1) Tk Tog 2 5 0<i< 2.

From (11), (12), (13) and (14) we get
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h(x) + Sgcx) <32 + 2, log 23

32 , 32 | log24 _ .
< +24+10g2 6 (0, <2< 20);

32 . 32  log25 X
<72 25+10g2 6 (x8<x.§x9),

3_2 32 , log26
< 26+ Tog 2 6 (2, <2< %40) .
Hence we have
h(x) + S(x) <3282, 10g23 g - 400,

66 23 Tog2

Case3. x,<<x<<2*'+4[..,. From (5) and Lemma 3 we have (notic-
ing that £ > 7)

S(x) =2+ 1+ TE,
r = 2"+ f.—1

4 1
ST Vg
127
<"

Since h(x) is decreasing in this interval we have (using (14))

S(x) 7 , 2log3 127
h(x) + <9+ Tog 2 —3 - 224<04
Cased. 2" '+ L < x<<2'+ Li,. We have from (5)
S(x) R —2"‘1—1-1-!- Tk Y
h(x) + = % log21 g x
= w(x), say.

Since x =2"'++ /.. we have

ey — 1 (1 '+ 1+ T,
w'(x) (Iogz x )> 0

and so
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h(x) + S—S‘—) S w@ ' — 1+ L)

S(zk_l - 1 + Lk_g)
2,‘_1 - 1 + Lk._‘z

(15) = p@*'—14+ L) +

=2- }§§§+ 0(2k)

Caseb 2"+ L., <x<zx, Put /I=2—1+2"?—4 sothat
¢4 <[ < [,_,, By (5)and Lemma 1 we have

S(x) = "'2“:—! +— 14+ Tx_z(x - 2"_1 - 1)
= —2"+ 14 T..-()).
Now we appeal to Lemma 4. For A, ;<! =< B,_,; We have

S(x) —28 1+ 1 + Teo(d)
x 214 2T — A,

—2 14 (@7 — 3.2

= 1
k-1 k-2 L (ok-2 _ ok-2J-2
2871 4 287 4 3 2 2 )
N 1
=—3*0 ( 2")'
Similarlly we can easily verify that the inequality
S(x) 1
(16) x =- 2 + 0(2‘)

holds for Bj_s; <<! < Ci_s,y and for Ci_y; <<I =< Aisyn. It is also clear
that (16) holds true for D.-, <<I<{li_, since D,_,=1/,_, -+ O(1). On the
other hand, X(x) is decreasing in this interval, and so

Bx) < h(2*'— 1+ L)

From this and (16) we obtain

h(x)+s(")_2 iﬁggquo(l)

As the result we have

S(x) _log3 1
W)+ SH <2 - 0824 o(?)
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for all % 2¢'< x< 2% since 2 —ig§g>o.415. But by (15) the

equality holds here at least for x =2 '— 1+ L,_,. Therefore

. S(x)\ _, __log3
hf}.iup (‘h(x) + p ) 2 Tog 2’
which proves (B).
This completes the proof of our theorem.
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