ON THE BESSEL-SERIES EXPRESSION FOR

1 . x
— sin =
p2 n n

TAKESHI KANO

0. In their research [1] after Tauberian theorems for Lambert series,
Hardy and Littlewood made use of the unboundedness of the functions

P(x)=3 Lcos Q)= Lsin
n<x N n nsz n
to show the Tauberian conditions being best possible. They could show
by an ingenious method that as x — oo,

P(x) = Q(loglog x), Q(x) = Qv loglog x ).

Recently, S.L. Segal [2] studied Q(x) = f} % sin%, which differs only

n=1

O(1) from @Q(x), which led him above all to the ‘Bessel-series’ expression

‘D S A T o). ®
0)  [@war=Zy-L 4+ (Zy) Luv s CvEam.

He stated in the concluding remarks of [2] a question that if we had the
expression - '

(1) )= 5+ =% Ji@vEmam),  (>0),

which was obtained by formal term-by-term differentiation of (0). In this
paper we shall show that the series on the right-hand side of (1) diverges

for all x, though it is summable (C, 1) for all x.*> We can prove in fact
that if .

T

(2) ) =Z + = Z 7.2V Z7wm) |

then for all x>0 we have

1) f(x) = @(g(x)) means f(x)5=o0(g(x)). o

2) See [[3] about all notations and properties for Bessel functions.

3) S.L. Segal communicated to us that he also had become aware of this fact after writing
his paper [ 27, but (3) and (5) were unknown to him.
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-1 -1 -3
limsup N ¥ Qu(x) = = ¥ (2x) ‘3,
(3)

-1~ -1 -3
ling inf N7 Qux)=—=7(22) ~.
Furthermore if we denote by D(x) the (C, 1) means of the series

cos(z\/m — i)

(4) > LA
=] nT
then we obtain the formula
P~ T T % —% -1
(5) Q(x)—§+(7) £TD() + 07,

as ¥ — oo, The methods we used to obtain (3) and (5) are elementary
except (0) and Hankel’s formulae (6) and (24).

1. It is known ([3] p. 198) that

(6) 7=y 2 feos(t—Z)+ Lain(e— Z)s Roo),

t

_5 _
where R(¢) = O(t ¥) as t— oo, By substitution = v/ 5 (x>0) in
(6), we haveas n— oo, :

(1) LGvw) = 1/Z_l_{‘“‘s("l/? —%)+ L sin(mﬁ—%)}

= Vx ny

ns
_3 5
+ 0 (x g4 ) .
The following simple lemmas are useful for our purpose.
Lemma 1. For any real sequence {a,} (n= 1,2, ) we have
(i) sina, —sina,., = (a, — @._,) cos @,

+ % (@ — @us)? sin a, + O(la, — an-1]®),

and
(ii) cos @, — cos @,_, = — (@, — a,-,) sin a,

+ % (@n— @) cos @, + O(|@n — @nn ),
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where both O’s do not depend on a..

Lemma 2. VvV n—Vn —1=57— + Oo(n ‘) WVn — vVa—1)'=
Zl’; + O(n‘z), #t—(n—1)7= % wE 0(n~%) .

Now, let us define

By partial integration, we have

I = 4{7% sin (217 =2) — (n—1) sin (rvn—1 _%)}

el wos(svu-7)

n—-1 L
4

u

= 4n% {sm (xl/ ”n —--—) — sm(:n/n—l — —)}

+ 4{n i_ (n—1)* }sm(an 1 -——) 2x§u—lcos xV? ——Z—)du.
us

Since
7w

(o7~ 5) ~in (101 =)= s (sv'n = )

x* . — = 3 -% . -3 2. 2
+8—ns1n(x1/n —-—4—)+ O(x*n *) + O(xn %) + O(2’n™?)

and
sin (x vVa -—%)

4{n* —(n— 1)}sin(x1/n 1— T
n4

)=

lhl‘l

4+ O(xan'%) + O(n_%),

by Lemma 2, it follows that
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cos(xv 7 —= sin(2v7 -2
I, = 2« ( - )+(1+2) ( . 4)
(8) ni ' nt
n cos(x1/2~'z') s s s
— ZxSn_1 - du+O(x°n ¥)+0(n H)+0(xn *)+0(x*n°).
u4
Hence,
Nsin(:n/?———i— ¥ COS(xl/n '——4—)
g . du=2x Eﬁ ;
1 u-; n=2 nT
(9) . — = =
o v sin{xy/ 7 —— ~eos {2V u ——)
+(1+l)2 ( ; 4)—24 ( 4/ au
2 n=32 nT o1 uT
+10(x*) + OQ1).
By partial integration, we have
weos (21w — %)
51 T N4 sin (xV/N ) — —sm (*c ———)
u4
(10) (
. _— T
ysin{xy 4 —=
— 2x S 5 4 ) du .
1 u:
Thus we obtain from (9) and (10),
» €OS (x1/7 -z 2
4 2 7 1 —4x
El i ?N‘ sm(m/N T) T X
(11) ( ) (
—_— s —_ 7
»sinlxy 4 — — 2,5 v Sin(xy n— ) .

But it can easily be seen that

R ik ) PR

1

U

uniformly in N. Therefore from (7) (for 7 = n,, sufficiently large),



ON THE BESSEL-SERIES EXPRESSION FOR E—,l; sin%

N . S B L -
T2 Jo(xvV n) =2y 2x TN sm(x]/N ——Z)
n=n°

(12) — g% (2 +3)"_1 = + O(x%) + O(x %)

— .31
+O0((Vx+2x ¥)nt).
Next, we shall show that the series
_ sin (m/? — %)
(13) > . ;

n=| nT

converges for all x> 0. In fact this is implicitly shown it [2].
seems interesting here to give its elementary proof. Let us put

=g )

n=1 nv

and

Ta(x) = 7:‘ sin (x1/7 ——%) .

n=1

Then partial summation shows
N-1 8 _3 _3
Su(x) = X {n*—(n+1) ‘) Tx) + N TT,\'(x) .
n=1

On the other hand, Euler-Maclaurin summation formula shows

(14) Tx) = O(xy/N) + O (VTN) +0 (xi) .

Hence
i‘l ]n_% —(n+ 1)‘37 || Ta(x)]

n=]

(15)

133

But it

- 0 (ot (v + 7 + 1) =0+ o( L) wo(L),

and

(16) N7 To2)| = OGN + 0" N %) + 0" N9 .
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In view of (15) and (16), we know that (13) converges uniformly in any
finite positive interval. We are now in a position to obtain (3) on substi-
tuting 21/2zx for x in (12).

Next, we shall consider the (C, 1) means of (12). Since (13) con-
verges for all >0 and the error term in (12) is in fact the sum of certain
absolutely and uniformly (in any finite positive interval) convergent series,
it is sufficient to prove that

17) lim N "Z:l A% sin (xv'ﬁ — %) =0,

for all ¥ > 0. But on applying partial summation and by (14), we have

i nl* sin (x1/ n — ———) O(xN‘ ) + O( x"N ) + 0(x‘2N4)

n=)

and this proves (17).

2. The idea of proving (5) is roughly as follows : First, in Segal’s
formula (0), we replace the series on the right-hand side by its (C, 1)
means and define

Lx) = 3 k7 ] (2v/3mak) ,

o) = L 3 Lu(x) .
R k=1
Then we show that
(18) lim L /o)

converges uniformly in any finite positive interval so that we can differ-

entiate
St (E ) T L =)y
19) 2 3 sin (Zn) 5 x 5 + ( ) lim o,(x),

nel n-—sco

trm-by-term to yie ld the formula (5)‘,
Now, let us define

K() = 33 J(2V/2rah),

then we obtain

@) L vz el = (3~ 5) T + va§ £ K.
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On the other hand we have from (6)

Vor Ku(x) = ( 2) x g Z} B+ cos(21/2rxk -——)

(21)
312(2) x : E}k 1 sm(zvzrx — —) + Eu(x),

where E.(x) = é R(2v/2nxk). Since R(t) = O(t-%) as t— oo, we find

that

3 IRV TR | = 0 ™F Z ) = 0679, (2~ o0)

and that lim E.(x) converges uniformly in any finite positive interval

fi~s00

a < x < b with sufficiently large 2. From (20) and (21) we obtain
_ T\ -1
g—x (Vzodn) = (% - V%)x T o(x)
2\ 11 X[ L =
H(2) g R (R e (evem - D))

(22) e x .
+1 ( 2) x4 _]17 P {i‘. k—Tsin(ZVM— %)}

But we have already proved in the preceding section that the series (4) is
summable (C, 1) to D(x) uniformly in any finite positive interval as well
as the series (13). On the other hand (15) and (16) show

(23) S 4s1n(21/2~rxn——) 0(V%), (x—oo).

ne=l

Finally, Hankel’s asymptotic formula

_J2 1 Ll 1
(24) J@) = \/—ﬂ—t{sm(t—4)+0(1)}, (t — o)
clearly shows that

lim o,() = 35 #7 J.(2V/ 2xzn)

R-»00
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3 1= Sin(zl/erxn'—Z)
=7 ¢ (22) 1 2 T
1

n=1
n

+ 09, (- o00).

Hence the desired formula (5) follows from (22) and (23).

Remarks. 1) One would expect an improved Q-result for Q(x) from
(5): e. g. one may imagine that Q(x) = Q(loglog x) or even Q(x)=
O((log x)l?). However, we do not yet succeed in supporting the question.

2) We can obtain (5) from a certain formula, essentially the same as
(0), of which the proof is elementary but complicated.

3) More precise estimates than (14) and (23) do in fact hold and
similar trigonometrical sums appear in the investigation of some probelms
related to ‘divisor problem’ or ‘circle problem’.
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