NOTE ON GALOIS SUBRINGS OF PRIME GOLDIE RINGS

HISAO TOMINAGA

Recently, in his paper [2], C. Faith proved the following: Let D be a division ring, and R a left order of D. If G is a finite group of (ring) automorphisms in D such that $RG \subseteq R$, then $\{r \in R \mid r\sigma = r \text{ for all } \sigma \in G\}$ is a left order of $J(G) = \{d \in D \mid d\sigma = d \text{ for all } \sigma \in G\}$. In this note, we shall extend partially the above result to (Artinian) simple rings.

Throughout the present note, A will represent a simple ring, and G a DF-group in A, i. e., a finite group of automorphisms in A such that the subring of A generated by all the units $v \in A$ with $\tilde{v} = v_L v_R^{-1} \in G$ is a division ring. Then, the subring coincides with the centralizer $V_A(B)$ of B = J(G) in A, every intermediate ring of A/B is simple, and $[A:B] \leq |G|$. In particular, if [A:B] = |G| then $t_G(A) = \{t_G(a) = \sum_{\sigma \in G} a\sigma \mid a \in A\}$ coincides with B. (See $[3:\S 7]$.) Needless to say, if |G| is not divisible by the characteristic of A then $t_G(A) = B$.

Applying the argument used in the proof of [2; Lemma 5], we can easily see that if A is of characteristic $p\neq 0$ and G consists of only inner automorphisms then the commutator subgroup G' of G contains no elements of order p. Moreover, as is seen in the proof of [3; Th. 13.2], if A is of characteristic $p\neq 0$ and |G|=p then [A:B]=p.

Henceforth, R will represent a (left and right) order of A such that $RG \subseteq R$. As is well-known, R is a prime Goldie ring. In what follows, we shall prove the following:

Theorem. $R \cap B$ is an order of B.

Now, let $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_r = 1$ be a composition series of G, and $A_i = J(G_i)$. Then, $\overline{G_i} = A_{i+1} \mid G_i$ (the contraction of G_i to A_{i+1}) is a DF-group of A_{i+1}/A_i and homomorphic to G_i/G_{i+1} . Since G_i/G_{i+1} is a simple group, the remaks mentioned above enable us to see that either $|\overline{G_i}| = [A_{i+1} : A_i]$ or $|\overline{G_i}|$ is not divisible by the characteristic of A, so that $t_{\overline{G_i}}(A_{i+1}) = A_i$. Therefore, the proof of our theorem will be completed by proving the following:

Lemma. If $t_a(A) = B$ then $R \cap B$ is an order of B.

Proof. Let $B = \sum_{1}^{l} B' f_{kk}$, where $F = \{f_{kk}'s\}$ is a system of matrix units, and $B' = V_b(F)$ a division ring. We shall distinguish here between two cases.

Case 1. l=1: Given an arbitrary element b of B, there exist a regular element r_1 of R and an element r_2 of R such that $b=r_1^{-1}r_2$. Now, let $A=\sum_1^n u_iB$. Then, as is well-known, there exists a regular element r_0 of R such that $w_i=r_0u_i\in Rr_1$ $(i=1,\cdots,n)$. If $t_0(Rr_1)=0$ then $B=t_0(A)=t_0(r_0A)=t_0(\sum w_iB)=0$. This contradiction implies that we can find an element r of R such that $t_0(rr_1)\neq 0$. Since $(rr_1)b=rr_2$ and B is a division ring, we obtain $b=t_0(rr_1)^{-1}t_0(rr_2)$. Hence, $R\cap B$ is a left, and similarly right, order of B.

Case 2. l > 1: We have $A = \sum A' f_{hk}$ with the simple ring $A' = V_A(F)$. Let $A' = \sum De'_{ij}$, where $E' = \{e'_{ij}'s\}$ is a system of matrix units, and $D = V_{A'}(E')$ a division ring. Then, $E = E' \cdot F = \{e'_{ij} \cdot f_{hk}'s\}$ is a system of matrix units and $D = V_A(E)$. Now, by Faith-Utumi theorem [1; Th. 2.3], $R \cap D$ contains an order K of D such that $R \supseteq \sum (\sum Ke'_{ij})f_{hk}$. Obviously, $R \cap A' \supseteq \sum Ke'_{ij}$. Since $f_{hk}\sigma = f_{hk}$ and $(R \cap A')\sigma \subseteq R \cap A'$ for every $\sigma \in G$, $R \cap A'$ contains a subring R' such that $R'G \subseteq R'$ and $R \supseteq \sum R'f_{hk} \supseteq \sum (\sum Ke'_{ij})f_{hk}$. Noting that R' is an order of A' and $A' \mid G$ is a DF-group of A' such that $J(A' \mid G) = B'$ and f'(A') = B', we see that $f'(A' \mid G) = B'$ and f'(A') = B' and f'(A') = B' is an order of f'(A') = B'. It follows therefore $f'(A') = B' \cap R' \cap R' \cap R'$ is an order of $f'(A') = B' \cap R' \cap R' \cap R'$ is an order of $f'(A') = B' \cap R' \cap R' \cap R'$ is an order of $f'(A') = B' \cap R' \cap R' \cap R'$.

REFERENCES

- [1] C. FAITH and Y. UTUMI: On Noetherian prime rings, Trans. Amer. Math. Soc. 114 (1965), 53-60.
- [2] C. FATH: Galois subrings of Ore domains are Ore domains, Bull. Amer. Math. Soc. 78 (1972), 1077—1080.
- [3] H. TOMINAGA and T. NAGAHARA: Galois Theory of Simple Rings, Okayama Math. Lectures, 1970.

OKAYAMA UNIVERSITY

(Received November 20, 1972)