ON THE FIXED POINT SETS OF DIFFERENTIABLE
G2 ACTIONS ON A EUCLIDEAN SPACE

KENJ1 HOKAMA

Recently, W.C. Hsiang and W.Y. Hsiang [5] investigated the fixed
point sets of differentiable actions of compact simple Lie groups on
Euclidean spaces and dealt with some cases such that the fixed point sets
are non-empty. In this paper we deal with the case of the compact ex-
ceptional simple Lie group G, of rank 2, which was left out in the above.

1. Subgroups of G,

Let G be a compact connected Lie group and H a closed connected
maximal rank subgroup of G. We denote the Weyl groups of G and H by
W(G) and W(H) respectively. Then we have W(G)=N,/T and W(H)=
NN H/T where T is a maximal torus of H and N, is the normalizer of T
in G.

Proposition 1.1. Let g be an element of G. If g Ny and (gT) W(H)
(gT)'= W(H) then gHg ‘= H.

Proof. Let ®, D and ¥ be the Lie algeblas of G, H and T respectively
and @&, $°and I° their complexifications (i.e. &=@+y—-1G etc.). We
denote the sets of non-zero roots of & and ° with respect to ° by 4 and 4’
respectively. For any &€ 4 we define H,=%° by the relation (H, H,)=a(H)
for all HE%", where the inner product is the Killing form of &. Then,
J—=1H, ac.4' generate £. Let s, be the reflexion of ¥ with respect to the
hyperplane orthogonal to v—1H,. Then we can identify the Weyl group
W(G) with the group generated by s,, ®=4 and similary the Weyl group
W(H) also has the same property. Now we consider the automorphism
Adg(g) of ®. By the assumption we have A=Adg(g)|T<= W(G) and As,A™?
€ W(H), a=4'. Since any reflexion of W(H) has a form of s,, o=4,
there exists €4’ such that As,A'=s; Let H (%) be orthogonal to
¥ —=1Hg. Then s, A7'(H)=A"'(H), thatis, A '(H) is orthogonal to y —1H..
Since A is an isometry, this implies that A(Y—1H.) is orthogonal to H and
hence A(y—1H,)=+—1 cHp for some real number ¢. Thus aA~'=¢f and
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since ®A™' and 3 are roots in 4 we have ¢= +1. Then it follows that H is
invariant under Adg(g) and hence gHg'=H. q.e.d.
For the later we note the following

Proposition 1.2. Let G, H and T be as above. If K is the normalizer
of W(H) in W(G), then Ny/ H=K| W(H) where Ny is the normalizer of H
in G.

Proof. Let K= {gEN;|gHg '=H]}. There is an exact sequence :
{1} — KN H—>N,/H—> {1}. Hence N,/H=K/K N H=(K|T)] W(H).
Therfore it is sufficient to show that K, /T=K. Clearly K /TSK. Onthe
orther hand g Ny, (gT)W(H) (gT)'= W(H) for any gT<K. Then gHg™'
= H by the proposition 1. 1. Thus gEI?, that is I?/T;K. g.e.d.

In the remander of this section we denote the exceptional compact Lie
group of rank 2 by G. The maximal subgroups of maximal rank of G are
known to be isomorphic to SO(4) or SU(3) and the subgroups, which are
isomorphic, are conjugate [2].

Proposition 1.3. (@) Let L be the normalizer of SUB) in G. Then
L/SUQB)=Z,. (b) The normalizer of SO(4) coincides with SO(4) itself.
(c) Let H be a subgroup of G isomorphic to SU(2). Then the normalizer
of H is conjugate to SO (4).

Proof. The Weyl group W(G) is a dyhedral group of order 12, and
W(SU(3)) and W(SO(4)) are isomorphic to the permutation group S; of 3
letters and Z, @ Z, respectively. Then W(SU(3)) is a normal subgrnup of
W(G) and the normalizer of W(SO(4)) in W(G) coinsides with W(SO(4))
itself. Hence (g) and () follow from the proposition 1. 2.

Now we consider the case (¢). Let @ (5<1) be the element of the center
of H Then ¢’=1. On the orther hand the elements of order 2 in G are
conjugate. In fact an element of order 2 is contained in a torus 7 (SU(3))
and the elements of order 2 in SU(3) are conjugate. Then, since subgroups
which are isomorphic to SU(3) are conjugate in G, it follows that the
elements of order 2 in G are conjugate. Let K be the normalizer of a.
Then clearly HS K and K54G, since G has no center. The center of SO(4)
is Z,P Z, and hence K contains a subgroup isomorphic to SO(4). Then
it is clear that H is a normal subgroup of K, since H is isomorphic to
SU(2). Hence the normalizer of H in G is conjugate to SO(4). g.e.d.
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Remark. It is easy to see that the subgroups of G isomorphic to SU(2)
are conjugate.

2. A property of a differentiable action

For the later we prove a theorem with respect to a differentiable ac-
tion of a compact Lie group G of which a principal isotropy subgroup is a
maximal torus of G.

Proposition 2.1. Let Gbe a compact Lie group, and ¢ a real representa-
tion of G. If a principal isotropy subgroup of ¢ is a maximal torus of
G and there is no exceptional orbit, then G is connected.

Proof. LetG® be the connected component of the identity of G. Then
¢| G’=Ady @ trivial part [4]. Let V be a representation space of ¢ and
T a maximal torus of G. We denote the set V —(the singular set) by V..
Since V, is the principal orbit bundle of ¢ | G® it is easily seen that V, is G*
equivariantly homeomorphic to G*/T XV,/G’. G/G° acts naturally on
V./ G*. Let gG"= G/ G’ be a prime order element. By the theorem of P. A.
Smith in [1], gG" has a fixed point in V,/G®, since V,/G°is homemorphic
to a Weyl chamber and hence V,/G® is contractible. Hence there is a point
xEV, such that g G’x= G'». Now by taking an element g,= G° satisfing gx
=g,x we have g,”'gE G,. Since G; is a maximal torus of G by the assump-
tion we get g G°. This is a contradiction. q.e.d.

Theorem 2.2. Let ¢ be a differentivble action of a compact connected
Lie group G on a simply connected differentiable manifold M. If the
connected component of the identity of a principal isotropy subgrop is
a maximal torus of G, then the isotropy subgroups of ¢ are connected.

Proof. Let T be a maximal torus of G, A= F(T, M)* and M,=M—
(the singular set). Then the Weyl group W(G) acts on A. We easily see
My=G/TX wey (ANM,) and =,(M,) =0, since the singular set has at least
codimension 3. By the homotopy exact sequence of a fiblation: A NM,—>
M, —> G/ Nr we know that the number of the components of 4 N M, is equal
to order of W(G). Then, since M, is connected, W{G) acts simply transi-
tively on the components of AN M;. Hence ¢ has no exceptional orbit and
a pricipal isotropy subgroup is a maximal torus of G. Let xt&M. Then the
slice representation at # of G, satisfies the assumption of the proposition

1) F(T, M) is the set of fixed points of T in M,
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2.1 and hence G, is connected. q.e.d.

3. Weight systems

Let ¢ be a differentiable G action on a Euclidean space and T be a
maximal torus of G. Then by the theorem of P. A. Smith in [1] the local
representation of T at a fixed point of T is well defined. The weight system
of the local representation of 7 is defined to be the weight system of ¢ and
denoted by X¢. We see in [5] that for each simple Lie group, weight
systems of actions with a principal isotropy subgroup of a positive dimen-
sion are classified and also the fixed point sets are determined with few
exceptions.

Now on we consider the case where G is the exceptional compact
simple Lie group of rank 2. Then the non-zero root system of G is given by

‘JI(G):{iob i(al_oj), i<.7'y i’j=1)2and 3}-

Let ¢ be a differentiable G action on a Euclidean space E™ with a principal
isotropy subgroup H, of positive dimension. Then it is known by [5] that

(1) X'(¢)=4'(G) and H;=a maximal torus of G,
@ S(p)={=*0, i=1,2 and 3} and H;=SU(3) or
(3) X(p)={*0, i=1,2 and 3: each weight has the multzplz-

city 2} and HY = SU(2).

In the following sections we "investigate the fixed point set for each
of those cases.

4. Fixed point sets

First we consider the case where Hj is a maximal torus of G.
Propositon 4.1. F(G, E™) is Z,—acyclic for p=2 and 3.

Proof. We suppose F(G, E™) is empty and then show that we arrive
at a contradiction. Since the isotropy subgroups of ¢ are connected by the
theorem 2.1, the possible isotropy subgroups are maximal tori and sub-
groups which are isomorphic to U(2), SO(4) or SU(3). Let T be a maximal
torus of G and A=F(T, E™). Then the Wecyl group W(G) acts on A and
W(G) is a group of order 12 defined by the relations: #*=1, s’=1 and sts
=¢"%. Since W(G).= W(G,) for any a= A, the possible isotropy subgroups
of W{(G)-action on A are isomorphic to 1, Z,, Z,@ Z, or S,. Because A is
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Z-acyclic, we see by the theorem of P. A.Smith that they are exactly
isotropy subgroups. Let C={eSA|W(G). = Z, P Z,}. Then if c=C, G.=
SO(4) and the slice representation at ¢ is Ad,, @ (m—14) 0, where fis a
trivial 1-dimensional representation of G, [4]. Hence C is a submanifold of
A of codimension 2. On the orth:r hand there are three subgroups isomor-
phic to Z,PZ, and generated by {s, s}, {st, s#'} and {s#* st’} respectively.
Morever they are conjugate. Therefore we see that C is the disjoint union
of three Z,-acyclic submanifolds of the same dimension. Also C is the fixed
point set of #* and hence Z,-acyclic. This contradicts the above. Thus we
see F(G, E™) is non-empty.

Now let us take the subgroup Z, of W(G) and consider a Zj acyclic
submanifold F(Z, A). Then the possible isotropy subgroups on F(Z, A)
are SU(3) and G. Considering the slice representation of G we see that the
fixed point set of G is open and closed in F(Z, A). Thus, because of the
connectedness of F(Z; A), we see that SU(3) is not an isotropy subgroup.
Hence F(G, E™)=F(Z, A). Similarly SO(4) is not an isotropy subgroup
and hence we have F(G, E™=F(Z,9Z, A) which is Z,acyclic. q.e.d.

Next we consider the case where Hj is isomorphic to SU(3). Then ¢
has a fixed point of G, since, if not, ¢ has the uniform dimensional orbits,
but this is impossible [3]. Let E,=E™—(the fixed set of G) and F=
F(SU(3), E™)NE, Then we see E,=G/SU(3)X 1jsunF, where L is the
normalizer of SU(3) and L/SU(3)=2Z, by the proposition 1.3. E, admits
a fibering F —E,— G/L. It is well known that G/SU(3)=S° and hence
G/ L= P® (real projective space). Then from the homotopy exact sequence
of the fibering we know that F has 2 connected cnmponents, since E, is
simply connected. Thus Z, acts simply transitively on the components of
F and hence there is no exceptional orbit. Then as in the proof of the
proposition 4. 1 we have the following

Proposition 4.2. F(G, E™)is Z,acyclic.

5. The case H)=SU(2)

Let G.,, xEE™ be an isotropy subgroup of the rank 2. Then the set of
the complementary weights of G, i.e. 4(G)—4'(G,) is contained in I'(¢).
Thus 4(G)—4(G,)S {*+0,: i=1,2 and 3} and hence 4(G,)2 {+(0,—0,):
i<<j}. Hence G; has at least dimension 8. Therefore the possible isotropy
subgroups of rank 2 of ¢ are G, L(=the normalizer of SU(3) and SU(3)).
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Let T be a maximal torus of SU(3)C G. Then we have

Proposition 5.1. F(SU(3), E™)is identical with F(T, E™).

Proof. It is sufficient to show that G,2SU(3) for any e= F(T. E™).
It is clear if G,= G. Hence we may suppose that Gi=gSU(3)g™* for some
g=G. Since G, 2T and W(SU(3)) is normal in W((&) we can assume that
g< Ny and W(G)) then equals (g7) W(SU(3)) (gT)™". Hence by the proposi-
tion 1. 2 we have G)=SU(3).

From now on we assume F(G, E™) is empty and show that we then
arrive at a contradiction. Let us denote the singular set by E, and put
E,=E"—E; Then we have E;= G/SU(3)XzF(T, E™) by the propo-
sition 5. 1. Now we prove the following

Proposition 5.2. H*™'NE,; Z,)=Z,if 0<p<6, and O ortherwise®.

Proof. Since E, admits a fibering F(T, E*)—> E;,—> G/L= P°, there
is a spectral sequence which converges to H¥(E,; Z,) and whose E, terms
are EXY(=HYP'; H(F(T, E™); Z,))). F(T, E™) is an (m—12) dimensional
acyclic manifold and hence HYF(T, E™); Z,)=0 if ¢*m—12, and Z, if
g=m—12. Thus EP™"®=Z, for 0=<p<6 and otherwise E??=0. This
proves the proposition. g.e.d.

Then, by the exact sequence of the pair (E™, E,)

. __>H:(Em; Zz)__’H:(Es; Zz)__"HEH(Eo; Zy)—> oo

we have

Proposition 5.3. H{E,; Z)=2Z,if i=morm—11<i<m—>5, and
0 ortherwise.

Let us put A= F(SU(2), E™) where SU(2) is considered as a subgroup
of SU(3). Then we have the following

Proposition 5.4. ANE,=S'X, F(T, E™), where Z, acts on S'
antipodally.

Proof. Since E,= G/SU(3)X . F(T, E™) it is clear that ANE, =
F(SU(2), G/SU(3))Xz F(T,E™. G/SU@)=S’and G acts orthogonally
on S’. Then, since the isotropy representation of SU(3) is the standard
representation p; of SU(3), it follows that F(SU(2), G/SU(3))=S"

2) We use the Alexander-Spanier cohomology with compact supports,
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Let S be a torus of SU(2). Then AS F(S, E®). Since the local repre-
sentation of SU(3) at a fixed point of SU(3) is 2(p)z B (m—12) we have
dim A=dim F(S, E™)=m—8. Thus A=F(S, E™) since F(S, E™) is
connected. Hence A is acyclic.

Let A,=A—E,. Then we have the following

Proposition 5.5. HYA,; Z)=Z,if i=m—8, m~—10 or m—11 and 0
ortherwise.

Proof. Asin the proposition 5.2 we have H?*" " Y(ANE,; Z,)=2Z,
for p=0 or 1. and 0 otherwise. Hence by the exact sequence of the pair
(A, ANE,;) we get the propositicn. q.e. d.

Now we show that our assumption i.e. F(G, E,.) 5= ¢ leads to a contra-
diction. Let N be the normalizer of SU (2). Then we have E,= G/SU(2)
X wjseey Ao and hence E, admits a fibering Ay —> E, —> G/N. Now
consider the spectral sequence of the fibering whose E, terms are E%9=H?
(G/N; HYA,; Z.,)) and that converges to H"*E,; Z,). Since N is iso-
morphic to SO(4) by the propcsition 1. 3 it is known that the Poincaré poly-
nomial of mod 2 of G/N is 1+£+£+¢#'+£*+2°+¢°. Let us denote s=max
{g|HXA,; Z,)50}. Then E3*=H{G/N; H{A;; Z.)==H§As; Z,)#0.
We have Hi(A,; Z,)=H:*(E,; Z,), since Ey‘(=E%¥'= ... =E%*) is the only
non-zero term in degree 8-+s. Since 8+s is the highest dimension with non
zero cohomology, it must be 8+s=m by the proposition 5.3 and H"(4,;
Z,)=Z,. Now we consider the differential d,: E}*— E3*'. If E¥*'=0
then E}=FE%*==...=E%'=H}A,; Z.)5<0 and this implies that H" % E,; Z,)
%= 0. By the proposition 5. 4 this is impossible and hence E3*'s40. Hence
we have H*(A,; Z.,)5 0, which contradicts the proposition 5. 5. We see
from this that F(G, E™) is not empty.

Nexst we prove the following

Proposition 5.6. F(G, E™) is Zracyclic.

Proof. Let T be a maximal torus of G and F=F(T, E™). Then the
Weyl group W(G) acts on F. Take a subgroup Z.(DZ. of W(G) and consider
F(Z{PZ, F). Then the pcssible isotropy subgroups of ¢ on F(Z,PZ, F)
are G and the normalizer L of SU(3). Considering the slice representation
of G, it is easily known that L is not an isotropy subgroup. Hence F(G, E™)
=F(Z.,5Z. F)and Z,acyclic. qg.e.d.

We thus get our main theorem by summarizing the above as follows
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Theorem 5.7. Let G be the exceptional compact Lie group of rank 2
and ¢ adifferentiable G action on a Euclidean space with a pricipal iso-
tropy subgroup H, of a positive dimension. Then, if HY is a maximal
torus of G, the fixed point set of G is Zyacyclic for p=2 and 3 and,

if Hy is SU(3) or SU(2), the fixed point set of G is Zracyclic.

Acknowledgment. The author is indebted to Professor T. WATABE
for indicating that Theorem 5. 7 was already obtained in a report of W. C.
Hsiang at the congress, 1970.
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