ON A FAMILY OF RIEMANNIAN MANIFOLDS
DEFINED ON AN #2-DISK

Dedicated to Professor MASARU OSIMA on his 60th birthday
TOMINOSUKE OTSUKI

1. The Riemannian manifold O}
Let R™ be the m-dimensional coordinate space with the canonical
coordinates #,, #s, *-*, #., and D™ be the unit m-disk

(w, u): =20 wu; <01,

where u=(u,, --"u.). We denote the Riemannian manifold defined on D™
with the following metric :

1.1) ds'=(1—2 wu)"  {Xdudu,— % (udu;—udu;)’}

by OF, where »n is a real constant.
In order to give a meaning of (1. 1), suppose that # is an integer =2
»+m

and consider the unit (z+m—1)-sphere S™*™ 'C R"*™ given by X wu:=1.
=1

Let us consider as
Rn-l-m Rﬂ X Rm

and take a smooth curve C in D™ Then, for C we construct an n-dimen-
sional submanifold M™*(C) in S**™ ! as follows:

(1.2) M (C)={US*Np)xu, u=C},
where
(1.3) p=p(): 1/1 —Zuul

and S*'(p) is the (n—1)-sphere of radius p about the origin of R
The n-dimensional volume of M*(C) is clearly given by the formula:
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(1. 4) VM C)) = c.. g o dpdp+@n d),

where c¢,., isthe VOIUI;IE of the unit (n—1)-sphere S}, i.e.
Cnor =201 (n]2).
Lemma 1. The metric \1.1) can be written as
ds’=p* " P{dp dp+(du, du)}.

Proof. From p*=1—(u, u), we have pdp= —(u, du). Hence
2
P V{dpdp+(du, du)} =P2(""1){—(u’ p‘aiu) +(du, du)}

=" ((y, du)+(1—(u, ) (du, du)}.
=p*" P {(du, du)—(u, u) ([du, du)—(u, du)"}
=0 = )" (S dudus —Z (widu — usdu)’)

, Q.E.D.
Lemma 1 and (1. 4) imply immediately the following

Lemma 2. Aun extremal of the volume of the family of the submani-
folds {M™(C); Cis a smooth curve in D™} in the (n+m—1)-sphere corres-
ponds to a geodesic of O and vice versa.

Remark. In the definition of OF, we consider »# as a real number.
Especially, the cases of n=1, 0, have the following meanings :

OT' is the representation of the north hemisphere of S™ through the
orthogonal projection onto the equatorial hyperplane of R™'(DS™).

O¢ is the Cayley-Klein representation of the hyperbolic m-space of
curvature 1. In fact, for any two points #, v=wu-+du in D™, let p, ¢q be
the points of intersection of the straight line joining # and » and the unit
(m—1)-sphere S"~'=gD™ Denoting p and ¢ in the form (1— )z v,
we have easily

(du, du) ¥*+2(u, du)i—p’=0,
hence

1= —(u, du)=*d;, =2
(du, du) =~ °

where
0= (du, du)— ;j(uidu,-— widu).
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Thus, we have the cross ratio of the four points %, v, p, ¢ :

A 1—A_ _ p*—(u, du)+9,

R(u,‘U: P,4)=1_1+' A_ —P’—'(u, du)-—as’
from which
. — _ (uy du)—a, — ___(u, du) +53
log R(u, v: p, q)—log(l ——Pz—) log(l e )
26
=== +[2],
- 2]

where [2] denotes the part of higher order of du, when we regard du as
infinitesimal. Therefore, the Riemannian metric of the hyperbolic m-space
H™ in this representation can be written as

ds’= aTo: = a(1—(u, u))*{(du, du)—‘g(u,—du,-—u,du,-)’},
where ¢ is a constant.

2. Geodesics of OF

We shall investigate the geodesics of Of.
From (1. 1), the components of the metric tensor of O are

(2.1) gu=P""(0*0y+uim)
and
@.2) gl=p7"* (0 —u'd),

where 8, are the Kronecker’'s ¢ and #'=u, From (2.1), we have

%g‘—‘% =" p*(uf e+ ubu) — 2(n—1) P8y — 2(n— 2) st}

and

. .=l{agﬂ= %__657“}
Lij. k] 2 lout +6u’ ou*

= p*"*[ p* {nus 85— (n— 1)(2:0 s+ u;00)}
—(n—2)uize,us].

@.3)

Thus, using the Einstein convention, the Christoffel’s symbols of O7 in
the coordinates #' are given by
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{{}=e"0is, 11
ij
=p~(0%* —u'v") [0 {nudy— (n— 1)+ u,00)}
"‘(”"2) ulujuk]
=p'[p*{nu' 0y—(n—1) (wd}+u;0)} — (n—2)uumu'
— Pt {n(u, ©)0,;—2(n—Du;} + (n—2)(u, w)e'uw,],
i.e.
(2.4) {Z]} = % [n(p*0y+ ues)u' —(n—1) (ud}+u;8i)].
Theorem 1. For any p-dimensional linear space E*(p<<m) through

the origin of R™, D"NE” is a totally geodesic submanifold of O, which
is an O].

Proof. As easily seen by Lemma 1, the metric (1.1) is invariant
under the rotations of R™ about the origin. Hence, we may suppose that
E? is given by

Upe1=Upr2="""=1n=0.

For any tangent vector fields X= :‘fX"a/au“, Y= i Y*8/ou* of E*ND™,

a=1 a=1

we put
VY = t_ﬁl Z%3[ou',
where V denotes the covariant differentiation of Oy and Z' is given by
s oY o {i } e
zZ ;au“X . g af Y X

By means of (2.4), on E’N D™ we have

{ap) = — 5 @t + wi) = 0

for i>p and g, b < p.
Hence we have
Zt=0 for i > p,

that is AxY is also a tangent vector ficld of E*N D", This shows that
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E"( D" is a totally geodesic submanifold of O7, which can be considered
as an O? by the induced metric from O7. Q.E.D.

Corollary. Any geodesic of Oy lies on a plane through the origin of
R™ and can be considered as a geodesic of O,

n+m-1

3. Certain properties of M"(C) in S

In this section, we suppose that » is an integer = 2. By means of
Lemma 2, an extremal of the volume of the family of the submanifolds
{M"(C)} corresponds to a geodesic of Oy and then C is also a geodesic of
an 0} C O™ by Corollary of Theorem 1. Accordingly, M™(C) can be
considered as

Mn(c) C Sn+l C Snfm-l

and it belongs to a family of hypersurfaces of S**!, which has two princi-
pal curvatures with multiplicity 1 and »#—1.

Now, let C be a smooth curve in D™ not passing through the origin
of D" and 5 be its arclength. We take an orthonomal frame field (q, £,

--E,) along Cin R™ such that
(3.1) g=f&E—hE (h=0),
where ¢ also denotes the position vector of the moving point of C and

£ - 94
(3. 2) El _ dE .
If ¢ is not parallel to &, &. is determined uniquely at g. We have easily
3.3 1—p'=1"+ I,

where p*=1 — (g,q) by (1. 3). From (3. 2) and (3. 3) we obtain
dP 8N () E)= —
hence
(3. 4) Z-%’: — %.
We put
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(3.5) Eo: =(%, z?a), a=1, 3, -, m.

Especially we have

~=ggj=_4§-

(3 6) kl (dg, El (dgy E’J):

which shows that —k, &, is the orthogonal projection of the principal cur-
vature vectorg—é;1 of C onto the plane through the origin of D™ and the

tangent line of C at gq.
On the other hand, let (g, ---2,) be the moving orthonormal frame of
R™ at the origin and put

(3. 7) de, = ; luljéj, (7)” + ‘TJj( = 0.
The generating moving point p of M"(C) is given by

(3.8) p=q+ pe.=pe.+ fE — hE,

from which we obtain by differentiation

ot _ - (dp- -
dp - Pagl(unaea + ds(ds‘en + El)'
Using (3. 3) and (3. 4), if we put
- —fé.+p&
=l =TT
3.9)
0 = Py =L g5

then we have the equality
dp = ‘Zl w,e

and (p, e, ‘-, e,) is an orthonormal frame of M"(C) at p.
Next, if we put

h

(3.10) b = — (P e+ FE) — /1 - KE,
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then

llewnll® = 7 H+1—k=1

€.+, 18 clearly orthogonal to e, e, -+, e,. Using (3. 3) and (3. 8), we obtain
(17, 3n+l) = (Pén + f-é] - hgﬂ; en+1)

he? hf* —T =

which shows that e,., is alsotangent to S**™'.
Furthermore, putting

(3- 11) e = EA—fH-ly A > n+ 1)

we obtain a moving orthonormal frame (p, e, -+, €nsm-1) Of Swem-1 defined
along M’(C). From this frame, we obtain by the covariant differentiation
D on S**™ ' the following:

Wo ny1 = (Deay elH-l) = (déa, en+!)

- P
= (de., =7 (oen + fE) — J1—H'Ey)
e N
“—r Ji—r" fora=12- n-1
and
Wynyl = (Den, en+1) = (de,,, en+l)
(g Tfetps N1 o o %
_(d - r euﬂ)—]/ﬁ,(d( fe.+pE), e
Since

—Vl —h "’nn-i»l_( _en “;—gél_i_ P%)dg‘—fdzm

‘/1 hx (P e, + fE;) +y/1— hz Eﬁ)

2{1/1%;?( p£;§+fdp)—-,0$/l 7 Rds,

using (3. 4) and (3.9) we have
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ons = {7 (7 + #2L) + 72 b,

On the other hand, from (3. 1), (3.2) and (3. 6) we obtain

af5,. pdb _dhg, B

which implies

i.e.
(3.12) f 14+ hk
ds

Taking the inner product of the above equality with £, we obtain easily

0= (& 4By —di_ g db

** ds ds
i.e.
dh _ _
(3.13) i kf.
We obtain analogously the following :
(3.14) f (df‘ E)=hk, a=3 4, n—1

Using (3. 12) and (3. 3), we have

/(iﬁ_hff (r+egh)

Hence, we obtain the following :

kP __h ko
M—r Ji-r_" Y1 —r)"

-

h
Wg ns1 1/1 2 ma—l 2 n—1;

(3.15)

(" kyp?
“rns _(1/1 —7 " a-ny ) -
Then, for 2>z + 1, by (3.14) and (3.9) we have
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g = (Dea, €)) = (A, Frns) =0 for 1< a<n— 1,
Wy = (Den, e».) = (den, EA—H+])

_ ,/1+ ~— (d(— 12 + pE), Ernn)

__P_,(d‘ gh-ml)dg‘: £ 'Ll_kx—nﬂ'—‘o——wn

Y1—rni\ds’ Y1—8 f J1—#
e
f(l'—h‘) A-n+1 Wy,
i.e.
wan=0 =12 ,n—1;
(3.16) { ke -

Wy = f(l hz) Br-n+1 g

Now we state the definition of principal normal vectors for a submani-
fold introduced by the author in [5]. In general, let M be a submanifold
of a Riemannian manifold M. A normal vector » at a point xE M is
called a principal normal vector of M at x, if it satisfies the following
condition :

There exists a tangent vector « & M,, #s~0, such that

T.z=(u, 2)v forall z € M,,

where M. denotes the tangent space of M at x and 7 is the shape
operator of M in M. u is called a principal tangent vector for v.

It is evident that all the principal tangent vectors for v and the zero
vector span a linear tangent subspace, which we denote by E(x, v).

A C~ normal vector field V' of M is called a regular principal nor-
mal vector field, if V is a principal normal vector at each point ¥ of M
and dim E(x, V(x)) is constant. When M is of constant curvature, E (M,
V) = U.E(x, V(x)) is a complete distribution of M (Theorem 1, [5]).

Now, going back to the previous situation, by means of (3. 15) and
(3.16), the shape operator of M"(C) as a submanifold of S"*™ ' can be
written as follows: For any tangent vectors X = ‘Z X, Z = .Z Z e,

h g

T2 = Vi=F " a=#y

= Kz +( )XaZo} en

{7

ho*X,Z,
f(l h ) o k)\—'n+le)‘ .

(3.17)
+
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The formula (3. 17) implies immediately the following

Theorem 2. M = M™(C) has two regular principal normal vector
fields 'V and W given by

h
V=:/IT——h-zen+x,

h ko' hp? _
Ji—m +Vi(1'—'h3)3) €1 + f_(—l —h’) A>¥+l Ra-n+i€n

-

if the tangent lines of C do not pass through the origin of D™. Then
E(M, V) and E(M, W) are distributions of dimension n—1 and 1, res-
pectively and

EMM, V) ®EM, W)= TM).

On the distributions in a sphere as V and W, we have the following
theorem (Theorem 6, [6]):

Theorem 3. Let M"(n=3) be a minimal submanifold of S"**C
R"™ "' with two regular principal normal vector fields V and W such
that

EM" V) @ E(M", W)= T(M".

Then, there exists an (n + 2)-dimensional subspace E™* of R™?**
through the ovigin such that

Mn C En+2 n Sn+p .

Theorem 4. M™(C) is minimal in S™™ ' if and only if C isa
geodesic of O7.

Proof. By Theorem 2, M"(C) has two regular principal normal
vector fields V and W satisfying the condition as in Theorem 3.

If M"(C) is minimal in S*™™', by Theorem 3 there exists an (n-2)-
dimensional linear subspace E"*? of R"*™ through the origin such that

Mn(c) C En+2 n sn+m-—l .

Hence, by the way of construction of M"(C), C must lie in a plane
through the origin. Accordingly, by (3.1), (3.2) and (3.5) we have

(3. 18) by =1l = - = ky = 0.
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Thus, the condition that M"(C) is minimal becomes

nh ok,

(3. 19) Jl"‘hz + J'(l__ h’l)a

=0

by means of (3.17). Hence, by a result in [4], C is a geodesic of OZ.
By means of Corollary of Theorem 1, C is also a geodesic of OZ.

Conversely, if C is a geodesic of Oy, then it lies in a plane through
the origin. Thus, (3.18) is true for C. By means of (3.17), M™(C) is
minimal if (3. 19) is true. Using the direction angle # of C in the plane,
we have

El=—1/(h+i‘g-’2) and f=%.

Therefore, (3. 19) can be written as

@k (ARY 0 ey — 1) =

(3. 20) (L) 2+ (S5) + (L= Wi — 1) = 0.

This is also a condition that C is a geodesic of O; (Proposition 1, [8]).
Hence M"(C) must be minimal in S™™~%. Q.E.D.

Remark. In order to prove Theorem 4, we can use Lemma 2. But,
we heve to take care of the following fact. If M™(C,) is minimal, we may
consider C, is a smooth arc in D" and it is extremal with respect to the
n-dimensional volume of the family of M™(C) such that C are smooth
curves in D™ with the same nd points of C,.

Finally, we shall give a remark on the representation of O} like the
Poincaré one of H*® = Oj.

Let us suppose that » is any real number and denote the line element
(1.2) of OF by

(3.21) dst = (1— (u, w))" [0 —(u, u))(du, du) + (u, du)*].

In D™ we take the change of coordinate system: u = (u;, ***, #m) —> % =
(%1, +**, x,,) given by

(3.22) u=%, r =4z, x).
Then, we have
_ _(1=7Y
=G 0 = (155)
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(du, du) = (ﬁ; (1 + 7 (dx, dx) — 4, dx)),
(u, du) = %f%) (x, dx).

Substituting these into (3. 21), we obtain

4(1__7,‘2):(11—1)

S = ‘-"'(iTTZ)._,n (dx, dx) N
i.e.
3 4(1 - 2:‘ xixi)'z(n_l) )
(3.23) ds, = WL ,2 dx;dx;.

Especially, we have

4

(3. 24) dst = e S dndz;,

(1— ; x%,)°

which is the Poincaré representation of the hyperbolic plane of curvature

—1.

Hence, we have from (3. 23) and (3. 24)

3 _ 1—-3 xixr')zn 2
ds. (1 + 3 xu dsi-

Therefore, we may call the expression (3.24) the Poincaré representation
of Oy.

f1]

£5]
[e]
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