K_o-COHOMOLOGIES OF THE DOLD MANIFOLDS

Dedicated to Professor MASARU OSIMA on the occasion of his sixtieth birthday

MICHIKAZU FUJII and TERUKO YASUI

Introduction

The purpose of this paper is to determine the K_o -cohomologies of the Dold manifold D(m, n). As for the K_v -cohomologies of D(m, n), one of the authors has determined in [6] and [7]. We inherit all the notations of [6] and [7]. We use K or KO instead of K_v or K_o .

Let $\pi: D(m, n) \longrightarrow D(m, n)/D(m, 0)$ be the projection and $\widetilde{K}_{A}^{-1}(m, n) = \pi^{1}\widetilde{K}_{A}^{-1}(D(m, n)/D(m, 0))$, where A = O or U. Then, we have the following

Theorem 1.

$$\widetilde{K}_{A}^{-i}(D(m, n)) = \widetilde{K}_{A}^{-i}(m, n) + p! \widetilde{K}_{A}^{-i}(RP(m)),$$

where $\Lambda = 0$ or U and $p: D(m, n) \longrightarrow RP(m)$ is the natural projection.

By this theorem, it is sufficient to calculate the summand $\widetilde{K}O^{-i}(m,n)$ for our purpose, because $\widetilde{K}O^{-i}(RP(m))$ is known in [8].

In [7, Proposition 2], we have the following two homeomorphisms:

- (i) $h_1: D(m, n)/D(m-1, n) \approx S^m \wedge CP(n)^+$,
- (ii) $h_2: D(m, n)/D(m, n-1) \approx S^n \wedge (RP(m+n)/RP(n-1)),$ which are basic in our method.

For the first time, we deal with $KO^{-1}(m, n)$ for n=2r, by induction on m with considering the exact sequence of the pair (D(m, n), D(m-1, n)). Here, the homeomorphism h_1 of (i) and the Bott sequence play important roles in our computations.

In case of n=2r+1, we can define algebraically a splitting homomorphism $\tilde{\kappa}$ by using the results on $\widetilde{K}O^{-i}(m,2r)$ and obtain a splitting exact sequence

$$0 \longrightarrow \widetilde{K}O^{-i}(D(m,2r+1)/D(m,2r)) \longrightarrow \widetilde{K}O^{-i}(m,2r+1) \underset{\kappa}{\rightleftharpoons} \widetilde{K}O^{-i}(m,2r) \longrightarrow 0.$$

Therefore we have the following

Theorem 2.

$$\widetilde{K}O^{-\iota}(m,2r+1)\cong \widetilde{K}O^{-\iota}(m,2r)+\widetilde{K}O^{-\iota}(D(m,2r+1)/D(m,2r)).$$

In this direct sum decomposition, we have an isomorphism

$$\widetilde{K}O^{-i}(D(m,2r+1)/D(m,2r))\cong \widetilde{K}O^{-i}(S^{2r+1}\wedge (RP(2r+1+m)/RP(2r)))$$

by the homeomorphism h_2 of (ii), and the right hand side is known in [9].

The results of $\widetilde{K}O^*(m, 2r)$ are stated as follows, where $\alpha_0 \in \widetilde{K}O^0(m, 2r)$ is the element defined in [6] (cf. §3) and w and z are generators of $KO^{-1}(point)$ and $KO^{-4}(point)$ respectively.

Theorem 3. $\widetilde{K}O^*(m,2r)$ is a graded abelian group generated by the following elements:

Case $m \ge 3$

```
free basis: \alpha_0, \dots, \alpha_0^r, s, s\alpha_0, \dots, s\alpha_0^{r-1},
z\alpha_0, \dots, z\alpha_0^r, zs, zs\alpha_0, \dots, zs\alpha_0^{r-1},
generators of order 2: w\alpha_0, \dots, w\alpha_0^r, ws, ws\alpha_0, \dots ws\alpha_0^{r-1},
w^2\alpha_0, \dots, w^2\alpha_0^r, w^2s, w^2s\alpha_0, \dots w^2s\alpha_0^{r-1},
```

where s is an element in $\widetilde{K}O^{6-m}(D(m,2r))$.

Case m=1

free basis:
$$\alpha_0$$
, ..., α_0^r , a , $a\alpha_0$,, $a\alpha_0^{r-1}$, γ_3 , $\gamma_3\alpha_0$, ..., $\gamma_5\alpha_0^{r-1}$, γ_7 , $\gamma_7\alpha_0$, ..., $\gamma_7\alpha_0^{r-1}$,

generators of order 2: $w\alpha_0, \dots, w\alpha_0^r, wa, wa\alpha_0, \dots, wa\alpha_0^{r-1},$

where a is an element in $\overline{KO}^{-4}(D(1,2r))$ such that $z\alpha_0 = 2a$ and γ_i is an element in $\overline{KO}^{-4}(D(1,2r))$ for i=3,7.

Case m=2

free basis:
$$\alpha_0, \dots, \alpha_0^r, b, b\alpha_0, \dots, b\alpha_0^{r-1}, \\ \gamma_0, \gamma_0\alpha_0, \dots, \gamma_0\alpha_0^{r-1}, \gamma_4, \gamma_4\alpha_0, \dots, \gamma_4\alpha_0^{r-1}, \\ generators of order 2: $w\alpha_0, \dots, w\alpha_0^r, wb, wb\alpha_0, \dots, wb\alpha_0^{r-1}, \\ w^2\alpha_0, \dots, w^2\alpha_0^r, w^2b, w^2b\alpha_0^r, \dots, w^2b\alpha_0^{r-1},$$$

where b is an element in $\widetilde{K}O^{-4}(D(2,2r))$ such that $z\alpha_0 = 2b$ and Γ_i is an element in $\widetilde{K}O^{-i}(D(2,2r))$ for i=0,4.

Since $KO^*(point)$ is a graded ring with unit 1 generated by w and z with the relations 2w = 0, $w^3 = 0$, wz = 0 and $z^2 = 4$, we can restate the above theorem for $m \ge 3$ as follows.

Theorem 4. In case of $m \ge 3$, $\widetilde{KO}^*(m, 2r)$ is a graded $KO^*(point)$ -free module with basis $\alpha_0, \dots, \alpha_0^r, s, s\alpha_0, \dots, s\alpha_0^{r-1}$, where degree $\alpha_0 = 0$ and degree s = 6 - m.

We state on the results of $\widetilde{K}O^0(D(m, n))$ in detail, namely

Theorem 5.

- 1) $p^{1}\widetilde{K}O^{0}(RP(m)) = Z_{2}f$, which is generated by λ_{0} (cf. §3) with two relations $\lambda_{0}^{2} = -2\lambda_{0}$ and $\lambda_{0}^{f+1} = 0$, where $f = \varphi(m)$ is the number of integers q such that $0 < q \le m$ and $q \equiv 0, 1, 2$ or $4 \mod 8$.
 - 2) Case m = 8t, 8t + 1, 8t + 3 or 8t + 7. $\widetilde{K}O^{0}(m, 2r) = Z^{(r)}$, which is generated by $\alpha_{0}, \dots, \alpha_{0}^{r,1}$. Case m = 8t + 2 or 8t + 6.

 $\widetilde{K}O^0(m,2r)=Z^{(2r)}$, which is generated by $\alpha_0,\cdots,\alpha_0^r,\zeta,\zeta\alpha_0,\cdots,\zeta\alpha_0^{r-1}$, where $\zeta=s$ if m=8t+6, $\zeta=zs$ if m=8t+2 (t>0) and $\zeta=\gamma_0$ if m=2. Case m=8t+4 or 8t+5.

 $\widetilde{K}O^0(m, 2r) = Z^{(r)} + Z_2^{(r)}$, whose free part is generated by $\alpha_0, \dots, \alpha_0^r$ and torsion part is generated by $\theta, \theta\alpha_0, \dots, \theta\alpha_0^{r-1}$, where $\theta = ws$ if m = 8t + 5 and $\theta = w^2s$ if m = 8t + 4.

3) The groups $\widetilde{K}O^{0}(D(m, 2r+1)/D(m, 2r))$ are isomorphic to the following groups:

r	8 <i>t</i>	8 <i>t</i> +1	8 <i>t</i> +2	8 <i>t</i> +3	8 <i>t</i> + 4	8 <i>t</i> + 5	8 <i>t</i> + 6	8 <i>t</i> + 7
even (generators)	Z_2 α_0^{r+1}	Z_2 α_0^{r+1}	$Z+Z_2$ $\zeta \alpha_0^r, \alpha_0^{r+1}$	Z_2 α_0^{r+1}	$egin{array}{c} Z_2 \ oldsymbol{lpha_0^{r+1}} \end{array}$	Z_2 α_0^{r+1}	$ \begin{vmatrix} Z+Z_2 \\ \zeta \alpha_0^r, \alpha_0^{r+1} \end{vmatrix} $	Z_2 α_0^{r+1}
odd (generators)	0	0	<i>Ζ</i> ζ'	Z ₂	$Z_2 + Z_2$ $x, \theta x_0^r$	Z_2 $ heta lpha_0^r$	Z $\zeta \alpha_0^r$	0

where $2\zeta' = \zeta \alpha_0^r$.

As for the ring structures of $\widetilde{K}O^{0}(D(m, n))$ we have the following

Theorem 6. As for multiplicative structures of $\widetilde{K}O^0(D(m, n))$ we have the following relations:

- 1) $\lambda_0^2 = -2\lambda_0$, $\lambda_0^{f+1} = 0$, $\lambda_0\alpha_0 = 0$.
- 2) $\alpha_0^{r+1} = 0$ if $n \ge 1 \mod 4$; $2\alpha_0^{r+1} = \alpha_0^{r+2} = 0$ if $n = 1 \mod 4$.

¹⁾ $G^{(r)}$ means the direct sum $G+\cdots+G(r\text{-copies})$.

- 3) $\zeta \alpha_0^r = 0$ if n is even; $\zeta \alpha_0^{r+1} = 0$ if n is odd; $\lambda_0 \zeta = \zeta^2 = 0$.
- 4) $\theta \alpha_0^r = 0$ if $m \ge 3 \mod 4$; $\theta \alpha_0^{r+1} = 0$ if $n \equiv 3 \mod 4$; $\lambda_0 \theta = \theta^2 = 0$.
- 5) $x^3 = 0$ or $\theta \alpha_0^r$; $\lambda_0 x = 0$, x, $\theta \alpha_0^r$ or $x + \theta \alpha_0^r$; $x \alpha_0 = x \theta = 0$.
- 6) $y^2 = 0$; $\lambda_0 y = 0$ or y; $y\alpha_0 = 0$.

Theorem 1 is proved in § 1. After some preparations on abelian groups in § 2 and on $\widetilde{K}^*(D(m,n))$ in § 3, we prove Theorem 3 in §§ 4—9. We determine the rank of $\widetilde{K}O^{-i}(m,2r)$ (Proposition (4.8)) in § 4, and investigate the homomorphisms in the Bott sequence (Lemma (5.2)) in § 5. Theorem 3 for m=1,2 and 3 are proved in § 6, using the fact that $\widetilde{K}O^{-3}(D(3,2r))=0$ which is proved in § 7. The general inductive proof of Theorem 3 is done in § 8 by the routine calculations. We change some generators of $\widetilde{K}O^{-i}(D(m,2r))$ in § 9. Theorem 2 is proved in § 10 and Theorems 5 and 6 in § 11.

1. Direct summand

1.1. Proof of Theorem 1. It is easy to see $D(m, 0) \approx RP(m)$. Under this identification, consider the following exact sequence

$$(1.1) \longrightarrow \widetilde{K}_{\Lambda}^{-i}(D(m,n)/D(m,0)) \xrightarrow{\pi!} \widetilde{K}_{\Lambda}^{-i}(D(m,n)) \xrightarrow{i!} \widetilde{K}_{\Lambda}^{-i}(D(m,0)) \longrightarrow,$$

where $p: D(m, n) \longrightarrow RP(m)$ is the natural projection, $i: RP(m) \longrightarrow D(m, n)$ is the inclusion defined by $i([x_0, \dots, x_m]) = [x_0, \dots, x_m, 1, 0, \dots, 0]$ and $\pi: D(m, n) \longrightarrow D(m, n)/D(m, 0)$ is the projection. Here, i!p! = identity, then we have the theorem.

1. 2. Commutativity of the following diagram

$$D(m, n)/D(m-1, n) \approx S^{m} \wedge CP(n)^{+}$$

$$\downarrow \uparrow \downarrow \uparrow i$$

$$RP(m)/RP(m-1) \approx S^{m} \wedge CP(0)^{+}$$

implies that we may identify $\widetilde{K}_{A}^{-i}(S^{m} \wedge CP(0)^{+})$ with the summand $\widetilde{K}_{A}^{-i}(S^{m})$ of $\widetilde{K}_{A}^{-i}(S^{m} \wedge CP(n)^{+}) = \widetilde{K}_{A}^{-i}(S^{m} \wedge CP(n)) + \widetilde{K}_{A}^{-i}(S^{m})$. Then we have the following long exact sequence

$$(1.2) \longrightarrow \widetilde{K}_{A}^{-i}(S^{m} \wedge CP(n)) \xrightarrow{f_{1}} \widetilde{K}_{A}^{-i}(m, n) \xrightarrow{i_{1}} \widetilde{K}_{A}^{-i}(m-1, n) \xrightarrow{\delta} \widetilde{K}_{A}^{-i+1}(S^{m} \wedge CP(n)),$$

where $f = h_1 \pi$ and h_1 is the homeomosphism of (i) in the introduction, and δ is the boundary operation in K_4 -cohomology theory. (1.2) is a direct summand of the long exact sequence of the pair (D(m, n), D(m-1, n)).

Theorem 1 and (1.2) are also true, when K_A^* is replaced by an arbit-

rary cohomology theory.

2. Preparations on abelian groups

Let $Z^{(r)}$ denote a free abelian group of rank r, let $Z_1^{(s)}$ denote an abelian group which is the direct sum of s cyclic groups of order 2, and let $\langle a_1, \dots, a_n \rangle$ denote the free abelian group generated by a_1, \dots, a_n . Then we have the following two lemmas which are useful for the computation of $\widetilde{K}O^{-1}(D(m, 2r))$.

Lemma (2.1). Let $0 \longrightarrow Z^{(r)} \xrightarrow{\kappa} A \xrightarrow{\sigma} Z_1^{(s)} \longrightarrow 0$ be an exact sequence and A be an abelian group which contains $Z_2^{(s)}$ as a subgroup. Then A is isomorphic to $Z^{(r)} + Z_2^{(s)}$.

Proof. Let B be the subgroup $Z_2^{(s)}$ of A. Since $\operatorname{Im} \kappa$ is free, we have $B \cap \operatorname{Im} \kappa = 0$, and so $\sigma|_B : B \longrightarrow Z_2^{(s)}$ is monomorphic. This shows that $\sigma|_B$ is isomorphic and the lemma follows.

In virtue of the fundamental theorem of abelian group, we can easily see the following:

Lemma (2.2). Let $0 \longrightarrow Z^{(s)} \xrightarrow{\kappa} A \longrightarrow Z^{(r)} + Z_2^{(s)} \longrightarrow 0$ be an exact sequence and A be a free abelian group of rank r+s. Then, for any basis e_1, \dots, e_s of $Z^{(s)}$ we can choose a basis u_1, \dots, u_{r+s} of A such that $\kappa(e_i) = 2u_i \ (1 \le i \le s)$.

3. Known results on $\widetilde{K}^*(D(m, 2r))$

We recall from [6] the results on $\widetilde{K}^*(D(m,2r))$ which is needed for the computation of $\widetilde{K}O^*(D(m,n))$. Denote by ξ the canonical real line bundle over the real projective m-space RP(m), and $\xi_1=p!$ ξ the induced bundle of ξ by the projection $p:D(m,n)\longrightarrow RP(m)$; by γ the canonical complex line bundle over the complex projective n-space CP(n); and denote by γ_1 the canonical real 2-plane bundle over D(m,n) (cf. [6, § 2]). Then the generators for our groups are defined as follows:

$$\lambda = \xi - 1$$
 $\in \widetilde{K}O^{0}(RP(m)),$
 $\nu = \varepsilon \lambda$ $\in \widetilde{K}^{0}(RP(m)),$
 $\mu = \gamma - 1$ $\in \widetilde{K}^{0}(CP(n)),$
 $\mu_{0} = \rho \mu$ $\in \widetilde{K}O^{0}(CP(n)),$

$$\mu_{i} = \rho g^{i} \mu \qquad \qquad \in \widetilde{K}O^{-2i}(CP(n)) \quad (i = 1, 2, 3),$$

$$\alpha_{0} = \gamma_{1} - \xi_{1} - 1 \in \widetilde{K}O^{0}(D(m, n)),$$

$$\alpha = \varepsilon \alpha_{0} \qquad \qquad \in \widetilde{K}^{0}(D(m, n)),$$

$$\gamma = f^{\dagger} g^{t} \mu \qquad \in \widetilde{K}^{0}(D(2t, n)),$$

$$\beta = (sf)^{\dagger} g^{t+1} \mu \in \widetilde{K}^{-1}(D(2t+1, n)),$$

$$g' = (sf)^{\dagger} g^{t+1} \quad \text{and} \quad \nu_{1} = p^{\dagger} \nu \in p^{\dagger} \widetilde{K}^{*}(RP(m)),$$

$$\lambda_{0} = p^{\dagger} \lambda \in p^{\dagger} \widetilde{K}O^{0}(RP(m)) \subset \widetilde{K}O^{0}(D(m, n)).$$

where g is the generator of $\widetilde{K}^0(S^2)$ given by the reduced Hopf bundle, ε is the complexification and ρ is the real restriction.

By [6, Theorem (3.14)], we have

Theorem (3.1). i) $\widetilde{K}^0(2t, 2r)$ is the free abelian group generated by $\alpha, \alpha^2, \dots, \alpha^r, \gamma, \gamma\alpha, \dots, \gamma\alpha^{r-1}$.

- ii) $\widetilde{K}^{-1}(2t, 2r) = 0$
- iii) $\tilde{K}^0(2t+1,2r)$ is the free abelian group generated by α, \dots, α^r .
- iv) $\widetilde{K}^{-1}(2t+1, 2r)$ is the free abelian group generated by $\beta, \beta\alpha, \dots, \beta\alpha^{r-1}$.

Also, by [8, Theorem 2], we have

Theorem (3.2). i) $\widetilde{K}^*(CP(n)) = Z[\mu]/\mu^{n+1}$.

- ii) $\widetilde{K}O^0(S^{2i} \wedge CP(2r))$ is the free abelian group generated by $\mu_i, \mu_i \mu_0, \cdots, \mu_i \mu_i^{r-1}$.
- iii) $\widetilde{K}O^0(S^{2t-1} \wedge CP(2r)) = 0.$

The following lemmas are useful to introduce the generaters of $\widetilde{K}O^{-i}$ (D(m, n)).

Lemma (3.3). We have the following relations:

(1)
$$\overline{\gamma} = \begin{cases} -\gamma & (t : even) \\ \gamma & (t : odd) \end{cases}$$
 in $\widetilde{K}^{0}(2t, 2r)$,
(2)
$$\overline{\beta} = \begin{cases} -\beta & (t : even) \\ \beta & (t : odd) \end{cases}$$
 in $\widetilde{K}^{-1}(2t+1, 2r)$,

where a means the conjugation of a.

Proof. By [8, Lemma (1.2)], we have

$$\overline{r} = \begin{cases}
f! g'\overline{\mu} & (t : \text{even}) \\
-f! g'\overline{\mu} & (t : \text{odd}), \\
\overline{\beta} = \begin{cases}
-(sf)! g^{t+1}\overline{\mu} & (t : \text{even}) \\
(sf)! g^{t+1}\overline{\mu} & (t : \text{odd}).
\end{cases}$$

Since $\widetilde{K}^0(2t, 2r)$ and $\widetilde{K}^{-1}(D(2t+1, 2r))$ are free, the Chern characters

$$\mathrm{ch}: \ \widetilde{K}^{\scriptscriptstyle 0}(2t,\,2r) \longrightarrow \widetilde{H}^*(D(2t,\,\,2r)/D(2t,\,0)\;;\;\,Q) \subset \widetilde{H}^*(D(2t,\,2r)\;;\;\,Q),$$

ch:
$$\widetilde{K}^{-1}(D(2t+1, 2r)) \longrightarrow \widetilde{H}^*(S^1 \wedge D(2t+1, 2r); Q)$$

are monomorphic. Moreover, by [6, Corollary (1.11)], we have

$$\begin{array}{l} \operatorname{ch} f^{\parallel} g^{t} \overline{\mu} = f^{*}(s_{2t} \wedge (-x + x^{2}/2! - \cdots + x^{2r}/(2r)!)) \\ = -b(1 + a/3! + \cdots + a^{r-1}/(2r-1)!) \\ = -\operatorname{ch} f^{\parallel} g^{t} \mu. \\ \operatorname{ch}(sf)^{\parallel} g^{t+1} \overline{\mu} = s \wedge f^{*}(s_{2t+1} \wedge (-x + x^{2}/2! - \cdots + x^{2r}/(2r)!)) \\ = s \wedge b'(a/2! + \cdots + a^{r}/(2r)!) \\ = \operatorname{ch}(sf)^{\parallel} g^{t+1} \mu. \end{array}$$

Therefore we have the results.

Lemma (3.4). For $\gamma \alpha^{k-1} \in \widetilde{K}^0(D(2t, 2r))$ and $\beta \alpha^{k-1} \in \widetilde{K}^{-1}(D(2t+1, 2r))$ we have the following formulas:

- (1) $\delta(\gamma \alpha^{k-1}) = g^{t}(\mu \overline{\mu}) (\mu + \overline{\mu})^{k-1}$
- (2) $\delta(\beta\alpha^{k-1})=g^{i+1}(\mu+\overline{\mu})^k$,

where δ is the homomorphism in (1.2).

Proof. By [6, Corollary (1. 11) and Lemma (3. 6)] we have ch
$$\delta(r\alpha^{k-1}) = \delta 2^{k-1}b(1+a/3!+\cdots+a^{r-1}/(2r-1)!)(a/2!+\cdots+a^r/(2r)!)^{k-1}$$

$$= 2^k(s_u \wedge (x+x^3/3!+\cdots+x^{2r-1}/(2r-1)!) \times (x^2/2!+\cdots+x^{2r}/(2r)!)^{k-1})$$

$$= \text{ch } g^t(\mu-\overline{\mu}) (\mu+\mu)^{k-1}.$$

Since $\widetilde{K}^*(CP(2r))$ is free, ch: $\widetilde{K}^*(CP(2r)) \longrightarrow \widetilde{H}^*(CP(2r); Q)$ is monomorphic. Therefore, we have the formula (1).

Similarly to the above, we have the formula (2).

4. The rank of $\widetilde{K}O^{-i}(m,2r)$

In this section, we determine the rank of $\widetilde{KO}^{-i}(m, 2r)$ in Proposition (4.8). First we have the following lemmas.

Lemma (4.1). Every torsion element in $\widetilde{K}O^{-1}(m, 2r)$ is of order 2.

Proof. Since $\widetilde{K}^{-\epsilon}(m, 2r)$ is free and $\rho \epsilon = 2$, we have the result.

Lemma (4.2). Let $i: D(m, n) \subset D(m', n')$ $(m \le m', n \le n')$ be the inclusion, and z be a generator of $\widetilde{KO}(S^4)$. Then we have

i)
$$i!(\alpha_0^k) = \alpha_0^k$$
 and $i!(\alpha_0^k) = \alpha_0^k$.

Especially, for m = 0, we have

ii)
$$i!(\alpha_0^k) = \mu_0^k$$
 and $i!(z\alpha_0^k) = z\mu_0^k = 2\mu_0^{k-1}$.

Proof. Since i^{\dagger} is a ring homomorphism and also a homomorphism of $\widetilde{K}O^*(point)$ -module, i) is trivial from the construction of α_0 .

If
$$m = 0$$
, by [6, Theorem (2.2)],

$$i! (\alpha_0) = i! (r_1 - \xi_1 - 1) = \rho(\gamma - 1_c) = \mu_0.$$

Therefore $i^!(\alpha_0^k) = \mu_0^k$ and $i^!(z\alpha_0^k) = z\mu_0^k$. Furthermore, we have $\varepsilon(z\mu_0^k) = 2g^2(\mu + \mu)^k$, $\varepsilon(\mu_2\mu_0^{k-1}) = g^2(\mu + \overline{\mu})^k$.

Since $\varepsilon: \widetilde{K}O^{-4}(CP(2r)) \longrightarrow \widetilde{K}^{-4}(CP(2r))$ is monomorphic, we have $z\mu_0^k = 2\mu_2\mu_0^{k-1}$.

We shall consider the spectral sequence in \widetilde{KO} -theory for D(m, 2r)/D(m, 0). Then, we have

$$E_2^{p,-p-i} = \widetilde{H}^p(D(m,2r)/D(m,0); KO^{-p-i}(point)).$$

By Theorem 1 and [6, Proposition (1.6) and Theorem (1.9)], we can enumerate $E_1^{p_i-p-i}$ for $i=0, 1, 2, \dots, 7$; and we obtain the following results as for the rank of $\sum_p E_2^{p_i-p-i}$:

(4.	3)

i $(m, 2r)$	(4t, 2r)	(4t+1, 2r)	(4t+2,2r)	(4t+3,2r)
0 (mod 4)	r	r	2r	r
1 (mod 4)	0	0	0	r
2 (mod 4)	r	0	0	0
3 (mod 4)	0	r	0	0

Then, the rank of $\widetilde{K}O^{-1}(m, 2r)$ is at most as the above.

Next, we shall show that the rank of $\widetilde{K}O^{-i}(m,2r)$ is no less than that of $\sum_{p}E_{2}^{p,-p-i}$. The element α_{0} of $\widetilde{K}O^{0}(D(m,n))$ belongs to the direct summand $\widetilde{K}O^{0}(m,n)$, because $i^{\dagger}\alpha_{0}=0$ in the exact sequence (1.1) (cf. [6, Theorem (2.2)]). Therefore, by Lemma (4.2), ii), and Theorem (3.2), ii), $\widetilde{K}O^{0}(m,2r)$ and $\widetilde{K}O^{-i}(m,2r)$ have r independent elements $\alpha_{0}, \dots, \alpha_{0}^{r}$ and

 $z\alpha_0, \dots, z\alpha_0^r$ respectively.

In case of m=4t+2, consider the following commutative diagram

$$\begin{array}{ccc} \widetilde{K}O^{-4j}(4t+2, \ 2r) & \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{-4j+1}(S^{4t+3} \wedge CP(2r)) \\ & & \rho \uparrow \downarrow \varepsilon & \rho \uparrow \downarrow \varepsilon \\ \widetilde{K}^{-4j}(4t+2, 2r) & \stackrel{\delta}{\longrightarrow} \widetilde{K}^{-4j+1}(S^{4t+3} \wedge CP(2r)), \end{array}$$

where δ is the homomorphism in (1.2) and j=0 or 1. Let l=2j+2t+1, then by Lemma (3.4)

$$\delta \rho g^{2j} \gamma \alpha^{k-1} = \rho \delta g^{2j} \gamma \alpha^{k-1} = \rho g^{i} (\mu - \overline{\mu}) (\mu + \overline{\mu})^{k-1} = 2\mu_{i} \mu_{0}^{k-1}.$$

Therefore, there are r independent elements $\rho g^{2j} \gamma$, $\rho g^{2j} \gamma \alpha$, ..., $\rho g^{2j} \gamma \alpha^{r-1}$ in $\widetilde{K}O^{-4j}(4t+2, 2r)$. That is, $\widetilde{K}O^{-4j}(4t+2, 2r)$ has 2r independent elements. We put

$$\gamma_{4j,4k+2}^k = \rho g^{2j} \gamma \alpha^{k-1} \qquad (k = 1, \dots, r).$$

Consider the following commutative diagram

$$\widetilde{K}O^{-ij}(S^{4i+2} \wedge CP(2r)) \xrightarrow{f^{!}} \widetilde{K}O^{-ij}(4t+2, 2r)
\xrightarrow{\rho \uparrow \downarrow \varepsilon} \xrightarrow{f^{!}} \widetilde{K}^{-ij}(4t+2, 2r),
\widetilde{K}^{-ij}(S^{4i+2} \wedge CP(2r)) \xrightarrow{f^{!}} \widetilde{K}^{-ij}(4t+2, 2r),$$

where f! is the homomorphism in (1.2). Since

$$f(g^{i}\mu(\mu+\overline{\mu})^{k-1}) = g^{2j}\gamma_{k} = g^{2j}\gamma\alpha^{k-1}$$
 (cf. [6, (3.9)]),

we have

$$\gamma_{4j,4l+2}^{k} = f! \rho(g^{l} \mu(\mu + \overline{\mu})^{k-1}) = f! (\mu_{l} \mu_{0}^{k-1}).$$

In summary

$$\begin{cases} \delta \gamma_{4j,4l+2}^{k} = 2\mu_{l}\mu_{0}^{k-1} \\ \gamma_{4j,4l+2}^{k} = f!(\mu_{l}\mu_{0}^{k-1}). \end{cases}$$

In the same manner as the above we can define the independent elements as follows:

In case of m=4t+3, define the elements in $\widetilde{K}O^{-4j-1}(4t+3,2r)$ by $\widetilde{\tau}_{4j+1,4t+3}^{k} = \rho g^{2j}\beta \alpha^{k-1} \qquad (k=1, \dots, r),$

Then, we have

(4.5)
$$\begin{cases} \gamma_{4j+1,u+3}^k = f^{\dagger}(\mu_t \mu_0^{k-1}) \\ \delta \gamma_{4j+1,u+3}^k = 2\mu_t \mu_0^{k-1}, \end{cases}$$

where l = 2j + 2t + 2.

In case of m=4t, define the elements in $\widetilde{K}O^{-4j-2}(4t,2r)$ by $\widetilde{r}_{4j+2,4t}^{k} = \rho g^{2j+1} \gamma \alpha^{k-1} \qquad (k=1,\cdots,r),$

then, we have

(4.6)
$$\begin{cases} \gamma_{4j+2,4i}^{k} = f!(\mu_{l}\mu_{0}^{k-1}) \\ \delta \gamma_{4j+2,4i}^{k} = 2\mu_{l}\mu_{0}^{k-1}, \end{cases}$$

where l = 2j + 2t + 1.

In case of m=4t+1, define the elements in $\widetilde{K}O^{-4j-3}(4t+1,2r)$ by $\widetilde{r}_{4j+3,4t+1}^{k}=\rho g^{2j+1}\beta \gamma^{k-1} \qquad (k=1,\cdots,r),$

then, we have

(4.7)
$$\begin{cases} \gamma_{4j+8,4t+1}^k = f! (\mu_l \mu_0^{k-1}) \\ \delta \gamma_{4j+8,4t+1}^k = 2\mu_l \mu_0^{k-1}, \end{cases}$$

where l=2j+2t+2.

From the above mentioned facts, we have the following results:

Proposition (4.8). The rank of $\widetilde{K}O^{-1}(m, 2r)$ is given by the table (4.3).

5. The Bott sequence

There is an exact sequence due to Bott, which may be written as follows:

$$(5.1) \cdots \longrightarrow K^n O(X) \xrightarrow{\varepsilon} K^n(X) \xrightarrow{\rho I^{-1}} KO^{n+2}(X) \xrightarrow{d} KO^{n+1}(X) \longrightarrow \cdots,$$

where $I: K^{n+2}(X) \longrightarrow K^n(X)$ is the Bott periodicity isomorphism and d is the multiplication by the generator w of $\widetilde{K}O(S^1)$ (cf. [2], [3]). The sequence commutes with homomorphisms induced by a mapping $f: X \longrightarrow Y$, and also the homomorphisms in (1.2). In our case, ε is immediately known by § 4. As for additive homomorphism ρI^{-1} , from the observation of § 4, we have the following

Lemma (5.2). i) In
$$\rho I^{-1}$$
: $\widetilde{K}^{-4j-2}(m, 2r) \longrightarrow \widetilde{K}O^{-4j}(m, 2r)$, $\rho I^{-1}(g\alpha^k) = 2\alpha_0^k$ (if $j = 0$), $\rho I^{-1}(g^3\alpha^k) \equiv z\alpha_0^k$ mod 2 (if $j = 1$).

ii) In
$$\rho I^{-1}$$
: $\widetilde{K}^{-4j-2}(4t+2,2r) \longrightarrow \widetilde{K}O^{-4j}(4t+2,2r)$, $\rho I^{-1}(g^{2j+1}\gamma\alpha^{k-1}) = \gamma^{k}_{4j,4t+2}$.

iii) In
$$\rho I^{-1}$$
: $\widetilde{K}^{-4j-3}(4t+3,2r) \longrightarrow \widetilde{K}O^{-4j-1}(4t+3,2r)$, $\rho I^{-1}(g^{2j+1}\beta\alpha^{k-1}) = r_{4j+1,4t+3}^k$.

iv)
$$In \ \rho I^{-1}: \widetilde{K}^{-4j-4}(4t, 2r) \longrightarrow \widetilde{K}O^{-4j-2}(4t, 2),$$

 $\rho I^{-1}(g^{2j+2}; \alpha^{k-1}) = \gamma_{4j+2,4t}^{k}.$

v) In
$$\rho I^{-1}$$
: $\widetilde{K}^{-4j-2}(4t, 2r) \longrightarrow \widetilde{K}O^{-4j}(4t, 2r)$, $\rho I^{-1}(g^{2j+1}) = 0 \mod 2$.

vi)
$$In \ \rho I^{-1}: \widetilde{K}^{-4j-5}(4t+1,2r) \longrightarrow \widetilde{K}O^{-4j-3}(4t+1,2r),$$

 $\rho I^{-1}(g^{2j+2}\beta\alpha^{k-1}) = \gamma_{4j+3,4t+1}^{k}.$

Proof. Since $2z\alpha_0^k = \rho\varepsilon(z\alpha_0^k) = \rho(2g^2\alpha^k) = 2\rho(g^2\alpha^k)$, we have $\rho(g^2\alpha^k) \equiv z\alpha_0^k \mod 2$. i. e. $\rho I^{-1}(g^3\alpha^k) \equiv z\alpha_0^k \mod 2$.

Since $\varepsilon \rho I^{-1}(g^{2j+1}\gamma\alpha^{k-1}) = g^{2j}(\gamma + \overline{\gamma})\alpha^{k-1} = 0$ in $\widetilde{K}^{-4j}(4t, 2r)$ by Lemma (3. 3), $2\rho I^{-1}(g^{2j+1}\gamma\alpha^{k-1}) = \rho\varepsilon\rho\beta^{-1}(g^{2j+1}\gamma\alpha^{k-1}) = 0$. i. e. $\rho I^{-1}(g^{2j+1}\gamma\alpha^{k-1}) \equiv 0$ mod 2.

The rest is trivial.

6. Computation of $\widetilde{KO}^{-i}(m, 2r)$ for m = 0, 1, 2 and 3

Since $D(0, 2r) \approx CP(2r)$ and $\widetilde{K}O^{-1}(0, 2r) = \widetilde{K}O^{-1}(CP(2r))$, we determine $\widetilde{K}O^{-1}(m, 2r)$ for m = 1, 2 and 3 by the induction on m.

6.1. Considering the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-2}(1, 2r) \longrightarrow \widetilde{K}O^{-2}(0, 2r),$$

 $rank \ \widetilde{K}O^{-2}(1,2r) = 0 \ implies \ \widetilde{K}O^{-2}(1,2r) = 0.$

In the same way as the above, we have $\widetilde{K}O^{-6}(1,2r)=0$. Consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{0}(1,2r) \stackrel{i!}{\longrightarrow} \widetilde{K}O^{0}(0,2r) \longrightarrow \widetilde{K}O^{-7}(S^{1} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-7}(1,2r) \longrightarrow 0.$$

By (4.2), $i!(\alpha_0^k) = \mu_0^k$, therefore i! is epimorphic. Hence we have

$$\widetilde{K}O^{0}(1,2r)=$$

and
$$\widetilde{K}O^{-7}(1, 2r) = \langle \gamma_{7,1}^1, \cdots, \gamma_{7,1}^r \rangle$$
.

Consider the following exact sepuence

$$0 \longrightarrow \widetilde{K}O^{-4}(1,2r) \xrightarrow{i!} \widetilde{K}O^{-4}(0,2r) \longrightarrow \widetilde{K}O^{-3}(S^1 \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-3}(1,2r) \longrightarrow 0.$$

Since $rank \ \widetilde{K}O^{-4}(1,2r)=r$ and $\widetilde{K}O^{-3}(S^1 \wedge CP(2r))$ is free, i! is isomorphic. Therefore we have $\widetilde{K}O^{-4}(1,2r)=Z^{(r)}$ and there is a basis a_1, \dots, a_r such that $i! \ (a_k)=\mu_2\mu_k^{n-1}$ and $2a_k=z\alpha_k^n$ by Lemma (4. 2). Furthermore,

we have $\widetilde{K}O^{-3}(1, 2r) = \langle \gamma_{3,1}^1, \dots, \gamma_{3,1}^r \rangle$

Consider the Bott sequence

$$\widetilde{K}^{-1}(1,2r) \stackrel{\rho I^{-1}}{\longrightarrow} \widetilde{K}O^{0}(1,2r) \stackrel{d}{\longrightarrow} \widetilde{K}O^{-1}(1,2r) \stackrel{\varepsilon}{\longrightarrow} \widetilde{K}^{-1}(1,2r).$$

Since $rank \ \widetilde{K}O^{-1}(1,2r)=0$ and $\widetilde{K}^{-1}(1,2r)$ is free, we have $\varepsilon=0$. Furthermore $\rho I^{-1}(g\alpha^k)=2\alpha_0^k$ by Lemma (5. 2). Therefore we have $\widetilde{K}O^{-1}(1,2r)=Z_2^{(r)}$, which is generated by $w\alpha_0, \dots, w\alpha_0^r$.

In the same way as the above, we have $\widetilde{K}O^{-b}(1, 2r) = \mathbb{Z}_2^{(r)}$, which is generated by wa_1, \dots, wa_r .

6. 2. Consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(2,2r) \longrightarrow \widetilde{K}O^{-1}(1,2r) \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{0}(S^{2} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{0}(2,2r) \longrightarrow \widetilde{K}O^{0}(1,2r) \longrightarrow 0.$$

Since $\delta = 0$, we have

$$\widetilde{K}O^{-1}(2,2r)=Z_2^{(r)}$$

and

$$\widetilde{K}O^{0}(2,2r)=<\gamma_{0,2}^{1},\,...,\,\gamma_{0,2}^{r},\,\alpha_{0},\,...,\,\alpha_{0}^{r}>.$$

In the same way as the above, we have

$$\widetilde{K}O^{-5}(2,2r)=Z_{2}^{(r)},$$

and

$$\widetilde{K}O^{-4}(2,2r)=<\gamma_{4,2}^{1},\,\cdots,\,\gamma_{4,2}^{r},\,b_{1},\,\cdots,\,b_{r}>,$$

where $i!(b_k) = a_k$ and $2b_k = z\alpha_0^k$.

Next consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-3}(2,2r) \longrightarrow \widetilde{K}O^{-3}(1,2r) \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{-2}(S^2 \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-2}(2,2r) \longrightarrow \widetilde{K}O^{-2}(1,2r) = 0.$$

Since $\delta(\gamma_{3,1}^k) = 2\mu_2\mu_0^{k-1}$ by (4, 7), we have $\widetilde{K}O^{-2}(2,2r) = Z_2^{(r)}$ and $\widetilde{K}O^{-3}(2,2r) = 0$.

In the same way as the above, we have $\widetilde{K}O^{-6}(2,2r)=Z_2^{(r)}$ and $\widetilde{K}O^{-7}(2,2r)=0$.

6. 3. Consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{0}(3, 2r) \xrightarrow{i!} \widetilde{K}O^{0}(2. 2r) \xrightarrow{\delta} \widetilde{K}O^{-7}(S^{3} \wedge CP(2r))$$

$$\longrightarrow \widetilde{K}O^{-7}(3,2r) \longrightarrow \widetilde{K}O^{-7}(2,2r) = 0.$$

Since $rank \ \widetilde{K}O^0(3, 2r) = r$ and $i^! \ \alpha_0^k = \alpha_0^k$, we have $\widetilde{K}O^0(3, 2r) = <\alpha_0, \cdots, \alpha_0^r>$. Furthermore we have $\widetilde{K}O^{-7}(3, 2r) = Z_2^{(r)}$, because $\delta(\gamma_{0,2}^k) = 2\mu_b\mu_0^{k-1}$. Consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-2}(3, 2r) \longrightarrow \widetilde{K}O^{-2}(2, 2r) \longrightarrow \widetilde{K}O^{-1}(S^3 \wedge CP(2r))$$
$$\xrightarrow{f!} \widetilde{K}O^{-1}(3, 2r) \longrightarrow \widetilde{K}O^{-1}(2, 2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-2}(3,2r)=Z_2^{(r)}$ is trivial. Consider the Bott sequence

$$\widetilde{K}^{-2}(3,2r) \xrightarrow{\rho I^{-1}} \widetilde{K}O^{0}(3,2r) \longrightarrow \widetilde{K}O^{-1}(3,2r).$$

Then, since $\rho I^{-1}(g\alpha^k) = 2\alpha_0^k$, it is known that $\widetilde{K}O^{-1}(3,2r)$ contains $Z_2^{(r)}$ as a subgroup. Therefore, by Lemma (2.1), we have $\widetilde{K}O^{-1}(3,2r) = Z^{(r)} + Z_2^{(r)}$, whose free part is generated by $\gamma_{1,3}^1, \dots, \gamma_{1,3}^r$.

Now, to continue the computation, we use the following proposition which is proved in the next section.

Proposition (6.1). $\widetilde{K}O^{-3}(3, 2r) = 0.$

Consider the Bott sequence

$$0 = \widetilde{K}O^{-3}(3, 2r) \longrightarrow \widetilde{K}O^{-4}(3, 2r) \xrightarrow{\varepsilon} \widetilde{K}^{-4}(3, 2r) \longrightarrow \widetilde{K}O^{-2}(3, 2r) \longrightarrow 0,$$

then we have $\widetilde{K}O^{-1}(3, 2r) = \langle z\alpha_0, \cdots, z\alpha_0^r \rangle$, because $\varepsilon(z\alpha_0^k) = 2g^2\alpha^k$. Consider the Bott sequence

$$\widetilde{K}^{-6}(3, 2r) \xrightarrow{\rho I^{-1}} \widetilde{K}O^{-4}(3, 2r) \longrightarrow \widetilde{K}O^{-6}(3, 2r) \longrightarrow \widetilde{K}^{-5}(3, 2r)$$

$$\longrightarrow \widetilde{K}O^{-3}(3, 2r) = 0.$$

Since $\widetilde{K}O^{-4}(3,2r)$ is free, by Lemma (5.2), i), $\rho I^{-1}: \widetilde{K}^{-6}(3,2r) \longrightarrow \widetilde{K}O^{-4}(3,2r)$ is isomorphic. Therefore, $\widetilde{K}O^{-5}(3,2r)$ is a free abelian group of rank r. Now, considering the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-5}(S^{8} \wedge CP(2r)) \xrightarrow{f!} \widetilde{K}O^{-5}(3, 2r) \longrightarrow \widetilde{K}O^{-5}(2, 2r) \longrightarrow 0,$$

by Lemma (2.2) we obtain $\widetilde{K}O^{-5}(3, 2r) = \langle s_{5,3}^1, \dots, s_{5,3}^r \rangle$, where $2s_{5,3}^k = \gamma_{5,3}^k (k=1, \dots, r)$.

Considering the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-6}(3, 2r) \longrightarrow KO^{-6}(2, 2r) \longrightarrow \widetilde{K}O^{-5}(S^3 \wedge CP(2r)),$$

 $\widetilde{K}O^{-6}(3,2r)=Z_2^{(r)}$ is trivial.

Our induction has completed.

7. Proof of Proposition (6.1)

To prove Proposition (6.1), we study the spectral sequence of $\widetilde{K}O^{-*}$ theory in detail. In general, the filtration of $\widetilde{K}O^{-3}(X)$ is given as follows:

$$\widetilde{K}O^{-3}(X) = D^{0,-3} \supset D^{1,-4} \supset \cdots \supset D^{p,-p-3} \supset \cdots \supset 0.$$

where $D^{p,-p-3} = \text{kernel } (i! : \widetilde{K}O^{-3}(X) \rightarrow \widetilde{K}O^{-3}(X^{p-1}))$ $(X^p \text{ denotes the } p\text{-skeleton of } X)$. And, E_2 and E_{∞} -terms are given by

(7.1)
$$\begin{cases} E_1^{p,-p-3} = \widetilde{H}^p(X; KO^{-p-3}(point)) = \begin{cases} \widetilde{H}^p(X; Z) & \text{for } p \equiv 1, 5 \pmod{8} \\ \widetilde{H}^p(X; Z_2) & \text{for } p \equiv 6, 7 \pmod{8} \end{cases}$$

The dfferentials of this spectral sequence are given by

(7.2)
$$\begin{cases} d_2^{p,-8t} = Sq^2 : \widetilde{H}^p(X;Z) \longrightarrow \widetilde{H}^{p+2}(X;Z_2) \\ d_2^{p,-8t-1} = Sq^2 : \widetilde{H}^p(X;Z_2) \longrightarrow \widetilde{H}^{p+2}(X;Z_2) \\ d_3^{p,-8t-2} = \partial_2 \circ Sq^2 : \widetilde{H}^p(X;Z_2) \longrightarrow \widetilde{H}^{p+3}(X;Z) \end{cases}$$

where, δ_2 is the Bockstein operator associated with the exact coefficient sequence $0 \longrightarrow Z \xrightarrow{\times 2} Z \longrightarrow Z_2 \longrightarrow 0$ (cf. [8]).

In virtue of [6, Proposition (1.6) and Theorem (1.9)], we have the following results as for E_2 -terms of total degree -3 of the spectral sequence for D(3, 2r):

If r is even,

$$\begin{split} E_2^{8i+5,-8i-8} &= Z_2 & ; \text{ generator : } (c^3,d^{4i+1}) \\ E_2^{8i+6,-8i-9} &= Z_2 + Z_2 & ; \text{ generators : } d^{4i+3}, \ c^2d^{4i+2} \\ E_2^{8i+7,-8i-10} &= Z_2 + Z_2 & ; \text{ generators : } cd^{4i+3}, \ c^3d^{4i+2} \\ E_2^{8i+9,-8i-12} &= Z_2 & ; \text{ generator : } (c^3,d^{4i+3}) \\ \text{other term = 0,} \end{split}$$

where $i = 0, 1, \dots, [r/2] - 1$.

If r=2s+1, we can find extra terms $E_2^{8s+6,-8s-9}=Z_2$ and $E_2^{8s+7,-8s-10}=Z_2$ in addition to the above, whose generators are c^3d^{4s+2} and c^3d^{4s+2} respectively.

Also, we have the following formulas as for Sq^1 and Sq^2 .

(7.3)
$$\begin{cases} Sq^{k}(c^{i}) = \binom{i}{k}c^{k+i}, \\ Sq^{1}(d) = cd, \quad Sq^{1}(d^{2}) = 0, \quad Sq^{1}(d^{3}) = cd^{3}, \quad Sq^{1}(d^{4i}) = 0, \\ Sq^{2}(d) = d^{2}, \quad Sq^{2}(d^{2}) = c^{2}d^{2}, \quad Sq^{2}(d^{3}) = d^{4} + c^{2}d^{3}, \quad Sq^{2}(d^{4i}) = 0. \end{cases}$$

Since $d_2(c^3, d^{4i+1}) = c^3 d^{4i+2}$ by (7.2) and (7.3), the differential

$$d_2: E_2^{8i+5,-8i-8} \longrightarrow E_2^{8i+7,-8i-9}$$

is a monomorphism. Therefore $E_3^{8i+5,-8i-8} = 0$.

In the chain complex

$$E_2^{8i+4,-8i-8} \xrightarrow{d_2} E_2^{8i+6,-8i-9} \xrightarrow{d_2} E_2^{8i+8,-8i-10},$$

we have $d_2(c^0, d^{4i+2}) = c^2 d^{4i+2}$ and $d_2(d^{4i+3}) = d^{4i+4} + c^2 d^{4i+3}$ by (7.2) and (7.3). Therefore $E_3^{8i+6.-8i-9} = 0$.

In the chain complex

$$E_2^{8i+5,-8i-9} \xrightarrow{d_2} E_2^{8i+7,-8i-10} \xrightarrow{d_2} E_2^{8i+9,-8i-11} = 0,$$

we have $d_2(cd^{4i+2}) = c^3d^{4i+2}$ and $d_2(c^3d^{4i+1}) = c^3d^{4i+2}$ by (7.2) and (7.3). Therfore $E_3^{8i+7,-8i-10} = Z_2$, whose generator is cd^{4i+3} , where $i = 0, 1, \dots$, $\lfloor r/2 \rfloor - 1$. It is trivial that $E_3^{8i+10,-8i-12} = E_2^{8i+10,-8i-12} = Z_2$ and its generator is (c^2, d^{4i+4}) for $i = 0, 1, \dots, \lfloor r/2 \rfloor - 1$. Since $d_3(cd^{4i+3}) = (c^2, d^{4i+4})$, the differential

$$d_3: E_3^{8i+7.-8i-10} \longrightarrow E_3^{8i+10.-8i-12}$$

is an isomorphism. Therefore $E_4^{8i+7,-8i-10} = 0$.

It is easy to see $E_3^{8i+9,-8i-12} = E_2^{8i+9,-8i-12}$. In the chain comlex

$$E_2^{8i+4,-8i-9} \xrightarrow{d_2} E_2^{8i+6,-8i-10} \xrightarrow{d_2} E_2^{8i+8,-8i-11} = 0,$$

we have $d_2(d^{4i+2}) = c^2 d^{4i+2}$ and $d_2(c^2 d^{4i+1}) = c^2 d^{4i+2}$. Therefore $E_3^{8i+6,-8i-10} = Z_2$, whose generator is d^{4i+3} , where $i = 0, 1, \dots, \lfloor r/2 \rfloor - 1$. Then the differential

$$d_3: E_3^{8i+6,-8i-10} \longrightarrow E_3^{8i+9,-8i-12}$$

is an isomorphism, because $d_3(d^{4t+3}) = (c^3, d^{4t+3})$. Therefore $E_4^{8t+9, -8t-12} = 0$. Hence we have $\widetilde{K}O^{-3}(D(3, 2r)) = 0$.

8. Computation of $\widetilde{K}O^{-1}(m, 2r)$ for m > 3

Now, we prove Theorem 3 by induction on m.

8.1. Assume Theorem 3 for m = 8t $(t \ge 1)$, i. e. the followings:

$$\widetilde{K}O^{0}(8t, 2r) = \langle \alpha_{0}, \dots, \alpha_{0}^{r} \rangle, \ \widetilde{K}O^{-1}(8t, 2r) = Z_{2}^{(r)}, \ \widetilde{K}O^{-2}(8t, 2r) = Z_{2}^{(r)} + \langle f_{1}, \dots, f_{r} \rangle, \ \text{where} \ \epsilon(f_{k}) = g_{1}^{r}\alpha^{k-1} \ \text{and} \ 2f_{k} = \gamma_{2,8t}^{r}, \ \widetilde{K}O^{-3}(8t, 2r) = Z_{2}^{(r)}, \ \widetilde{K}O^{-4}(8t, 2r) = \langle z\alpha_{0}, \dots, z\alpha_{0}^{r} \rangle + Z_{2}^{(r)}, \ \widetilde{K}O^{-5}(8t, 2r) = 0, \ \widetilde{K}O^{-6}(8t, 2r) = \langle \gamma_{0,8t}^{r}, \dots, \gamma_{0,8t}^{r} \rangle, \ \widetilde{K}O^{-7}(8t, 2r) = 0.$$

Consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{0}(8t+1,2r) \xrightarrow{i!} \widetilde{K}O^{0}(8t,2r) \longrightarrow \widetilde{K}O^{-7}(S^{\aleph+1} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-7}(8t+1,2r) \longrightarrow \widetilde{K}O^{-7}(8t,2r) = 0.$$

Then, $i!(\alpha_0^k) = \alpha_0^k$ implies $\widetilde{K}O^0(8t+1, 2r) = \langle \alpha_0, \dots, \alpha_0^r \rangle$ and $\widetilde{K}O^{-7}(8t+1, 2r) = \langle \gamma_{7,8t+1}^1, \dots, \gamma_{7,8t+1}^r \rangle$.

Consider the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-2}(8t+1,2r) \longrightarrow \widetilde{K}O^{-2}(8t,2r) \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{-1}(S^{8t+1} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-1}(8t+1,2r) \longrightarrow \widetilde{K}O^{-1}(8t,2r) \longrightarrow 0.$$

Since $\widetilde{K}O^{-1}(S^{8t+1} \wedge CP(2r))$ is free and $rank \ \widetilde{K}O^{-2}(8t+1, 2r)=0$, we have $\widetilde{K}O^{-2}(8t+1, 2r)=Z_2^{(r)}$. From $2f_k=\gamma_{2,8t}^k$, we have $\delta(f_k)=\mu_{4t+1}\mu_0^{k-1}$ by (4.6), because $\widetilde{K}O^{-1}(S^{8t+1} \wedge CP(2r))$ is free. Therefore $\widetilde{K}O^{-1}(8t+1, 2r)=Z_2^{(r)}$. Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-4}(8t+1, 2r) \xrightarrow{i^{\dagger}} \widetilde{K}O^{-4}(8t, 2r) \longrightarrow \widetilde{K}O^{-3}(S^{8t+1} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-3}(8t+1, 2r) \longrightarrow \widetilde{K}O^{-3}(8t, 2r) \longrightarrow 0.$$

Since $\widetilde{K}O^{-3}(S^{8t+1} \wedge CP(2r))$ is free and $i!(z\alpha_0^k) = z\alpha_0^k$, i! is an isomorphism. Therefore $\widetilde{K}O^{-4}(8t+1,2r) = Z^{(r)} + Z_1^{(r)}$, whose free part is generated by $z\alpha_0, \dots, z\alpha_0^r$. In the Bott sequence

$$\widetilde{K}O^{-4}(8t+1,2r) \xrightarrow{\varepsilon_4} \widetilde{K}^{-4}(8t+1,2r) \longrightarrow \widetilde{K}O^{-2}(8t+1,2r) \xrightarrow{d_2} \widetilde{K}O^{-3}(8t+1,2r) \xrightarrow{\varepsilon_3} \widetilde{K}^{-3}(8t+1,2r) \longrightarrow \widetilde{K}O^{-1}(8t+1,2r) \xrightarrow{d_1} \widetilde{K}O^{-2}(8t+1,2r) \xrightarrow{\varepsilon_2} \widetilde{K}^{-2}(8t+1,2r),$$

 $\epsilon_2 = 0$ implies that d_1 is isomorphic, and $\epsilon_4(z\alpha_0^k) = 2g^2\alpha^k$ implies $d_2 = 0$. Therefore it is known that ϵ_3 is an isomorphism and $\widetilde{K}O^{-3}(8t+1, 2r)$ is a free abelian group of rank r. Now, by Lemma (2.2), we have $\widetilde{K}O^{-3}(8t+1, 2r) = \langle s_{3,8t+1}^1, \dots, s_{3,8t+1}^r \rangle$, where $2s_{3,8t+1}^k = \widetilde{r}_{3,8t+1}^k$.

Considering the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-6}(8t+1, 2r) \longrightarrow \widetilde{K}O^{-6}(8t, 2r) \xrightarrow{\delta} \widetilde{K}O^{-5}(S^{8t+1} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-5}(8t+1, 2r) \longrightarrow \widetilde{K}O^{-5}(8t, 2r),$$

rank $\widetilde{K}O^{-6}(8t+1, 2r) = 0$ implies $\widetilde{K}O^{-6}(8t+1, 2r) = 0$, and $\delta(\gamma_{6,8t}^k) = 2\mu_{4t+3}\mu_0^{k-1}$ implies $\widetilde{K}O^{-5}(8t+1, 2r) = \mathbb{Z}_2^{(r)}$.

8.2. Considering the following exact sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(8t+2,2r) \longrightarrow \widetilde{K}O^{-1}(8t+1,2r) \longrightarrow \widetilde{K}O^{0}(S^{8t+2} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{0}(8t+2,2r) \longrightarrow \widetilde{K}O^{0}(8t+1,2r) \longrightarrow 0,$$

 $\widetilde{K}O^{-1}(8t+2, 2r) = Z_2^{(r)}$ and $\widetilde{K}O^0(8t+2, 2r) = <\gamma_{0,8t+2}^1, \cdots, \gamma_{0,8t+2}^r, \alpha_0, \cdots, \alpha_0^r>$ are trivial.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-3}(8t+2,2r) \longrightarrow \widetilde{K}O^{-3}(8t+1,2r) \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{-2}(S^{2t+2} \land CP(2r))$$
$$---\widetilde{K}O^{-2}(8t+2,2r) \longrightarrow \widetilde{K}O^{-2}(8t+1,2r) \longrightarrow 0,$$

rank $\widetilde{K}O^{-3}(8t+2,2r)=0$ implies $\widetilde{K}O^{-3}(8t+2,2r)=0$, and $\delta(s_{3,8t+1}^{k})=\mu_{t+2}\mu_{0}^{k-1}$ implies $\widetilde{K}O^{-2}(8t+2,2r)=Z_{2}^{(r)}$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-6}(8t+2,2r) \longrightarrow \widetilde{K}O^{-6}(8t+1,2r) \longrightarrow \widetilde{K}O^{-4}(S^{\otimes +2} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-4}(8t+2,2r) \longrightarrow \widetilde{K}O^{-4}(8t+1,2r).$$

 $\widetilde{K}O^{-6}(8t+2,2r)=Z_2^{(r)}$ is trivial. By the Bott sequence

$$0 = \widetilde{K}O^{-3}(8t+2,2r) \longrightarrow \widetilde{K}O^{-4}(8t+2,2r) \longrightarrow \widetilde{K}^{-4}(8t+2,2r),$$

we have $\widetilde{K}O^{-4}(8t+2,2r)=Z^{(2r)}$, because $\widetilde{K}^{-4}(8t+2,2r)$ is free by Theorem (3.1) and $rank\ \widetilde{K}O^{-4}(8t+2,2r)=2r$. Hence, by Lemma (2.2) we have $\widetilde{K}O^{-4}(8t+2,2r)=< s_{4,8t+2}^1, \cdots, s_{4,8t+2}^r, z\alpha_0, \cdots, z\alpha_0^r>$, where $2s_{4,8t+2}^k=r_{4,8t+2}^k$. Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-7}(8t+2,2r) \longrightarrow \widetilde{K}O^{-7}(8t+1,2r) \xrightarrow{\delta} \widetilde{K}O^{-6}(S^{8t+2} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-6}(8t+2,2r) \longrightarrow \widetilde{K}O^{-6}(8t+1,2r) = 0,$$

rank $\widetilde{K}O^{-7}(8t+2, 2r) = 0$ implies $\widetilde{K}O^{-7}(8t+2, 2r) = 0$, and $\delta(\gamma_{7,8t+1}^k) = 2\mu_{4t+4}\mu_0^{k-1}$ implies $\widetilde{K}O^{-6}(8t+2, 2r) = Z_2^{r}$.

8.3. Considering the exact sequence

$$0 \longrightarrow \widetilde{KO}^{0}(8t+3,2r) \xrightarrow{i^{1}} \widetilde{KO}^{0}(8t+2,2r) \xrightarrow{\delta} \widetilde{KO}^{-7}(S^{8t+3} \wedge CP(2r))$$
$$\longrightarrow \widetilde{KO}^{-7}(8t+3,2r) \longrightarrow \widetilde{KO}^{-7}(8t+2,2r) = 0,$$

 $i^{!}(\alpha_0^k) = \alpha_0^k$ and $rank \widetilde{K}O^0(8t+3, 2r) = r$ imply $\widetilde{K}O^0(8t+3, 2r) = <\alpha_0, \cdots, \alpha_0^r>$, and $\delta(\gamma_{0,8t+2}^k) = 2\mu_{4t+5}\mu_0^{k-1}$ implies $\widetilde{K}O^{-7}(8t+3, 2r) = Z_2^{(r)}$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-2}(8t+3, 2r) \longrightarrow \widetilde{K}O^{-2}(8t+2, 2r) \longrightarrow \widetilde{K}O^{-1}(S^{8t+3} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-1}(8t+3, 2r) \longrightarrow \widetilde{K}O^{-1}(8t+2, 2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-2}(8t+3,2r)=Z_2^{(r)}$ is trivial. In the Bott sequence

$$\widetilde{K}^{-2}(8t+3, 2r) \xrightarrow{\rho I^{-1}} \widetilde{K}O^{0}(8t+3, 2r) \xrightarrow{d} \widetilde{K}O^{-1}(8t+3, 2r),$$

 $\rho I^{-1}(g\alpha^k) = 2\alpha_0^k$ implies that $\widetilde{K}O^{-1}(8t+3,2r)$ contains $Z_2^{(r)}$ as a subgroup. Hence, by Lemma (2. 1) we have $\widetilde{K}O^{-1}(8t+3,2r) = Z^{(r)} + Z_2^{(r)}$, whose free part is generated by $\gamma_{1,8t+8}^1, \dots, \gamma_{1,8t+8}^r$.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-4}(8t+3,2r) \xrightarrow{i!} \widetilde{K}O^{-4}(8t+2,2r) \xrightarrow{\delta} \widetilde{K}O^{-3}(S^{8t+3} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-3}(8t+3,2r) \longrightarrow \widetilde{K}O^{-3}(8t+2,2r) = 0,$$

 $i^{!}(z\alpha_{0}^{k}) = z\alpha_{0}^{k}$ and $rank \widetilde{K}O^{-4}(8t+3,2r) = r$ imply $\widetilde{K}O^{-4}(8t+3,2r) = \langle z\alpha_{0}, \dots, z\alpha_{0}^{r} \rangle$, and $\delta(s_{4,8t+2}^{k}) = \mu_{4t+3}\mu_{0}^{k-1}$ implies $\widetilde{K}O^{-3}(8t+3,2r) = 0$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-6}(8t+3,2r) \longrightarrow \widetilde{K}O^{-6}(8t+2,2r) \longrightarrow \widetilde{K}O^{-5}(S^{8t+3} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-5}(8t+3,2r) \longrightarrow \widetilde{K}O^{-5}(8t+2,2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-6}(8t+3,2r)=Z_2^{(r)}$ is trivial. In the Bott sequence

$$\widehat{K}^{-6}(8t+3,2r) \xrightarrow{\rho I^{-1}} \widetilde{K}O^{-4}(8t+3,2r) \longrightarrow \widetilde{K}O^{-5}(8t+3,2r) \longrightarrow \widetilde{K}O^{-6}(8t+3,2r) \longrightarrow \widetilde{K}O^{-6}(8t+3,2r) = 0,$$

 $\rho I^{-1}(g^3\alpha^k) = z\alpha_0^k$ implies that $\widetilde{K}O^{-5}(8t+3, 2r)$ is a free abelian group of rank r. Hence, by Lemma (2.2), we have $\widetilde{K}O^{-5}(8t+3, 2r) = \langle s_{5,8t+3}^1, \cdots, s_{5,8t+3}^r \rangle$, where $2s_{5,8t+3}^k = \gamma_{5,8t+3}^k$.

8.4. Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(8t+4,2r) \longrightarrow \widetilde{K}O^{-1}(8t+3,2r) \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{0}(S^{\otimes +4} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{0}(8t+4,2r) \stackrel{i!}{\longrightarrow} \widetilde{K}O^{0}(8t+3,2r) \longrightarrow 0.$$

Since $\widetilde{K}O^0(S^{8t+4} \wedge CP(2r))$ is free and rank $\widetilde{K}O^{-1}(8t+4, 2r)=0$, we have $\widetilde{K}O^{-1}(8t+4, 2r)=Z_2^{(r)}$. Furthermore, $\delta(\tilde{\gamma}_{1.8t+3}^k)=2\mu_{4t+2}\mu_0^{k-1}$ and $i^{\dagger}(\alpha_0^k)=\alpha_0^k$ imply $\widetilde{K}O^0(8t+4, 2r)=Z_2^{(r)}+Z^{(r)}$, whose free part is generated by $\alpha_0, \dots, \alpha_0^r$. Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-3}(8t+4,2r) \longrightarrow \widetilde{K}O^{-3}(8t+3,2r) \longrightarrow \widetilde{K}O^{-2}(S^{8t+4} \wedge CP(2r))$$
$$- \longrightarrow \widetilde{K}O^{-2}(8t+4,2r) \longrightarrow \widetilde{K}O^{-2}(8t+3,2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-3}(8t+4,2r)=0$ is trivial. By the Bott sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(8t+4, 2r) \longrightarrow \widetilde{K}O^{-2}(8t+4, 2r),$$

it is known that $\widetilde{K}O^{-2}(8t+4,2r)$ contains $Z_2^{(r)}$ as a subgroup. Hence, by Lemma (2.1) we have $\widetilde{K}O^{-2}(8t+4,2r)=Z^{(r)}+Z_2^{(r)}$, whose free part is generated by $\gamma_{2,8t+4}^1, \dots, \gamma_{2,8t+4}^r$.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-5}(8t+4, 2r) \longrightarrow \widetilde{K}O^{-5}(8t+3, 2r) \xrightarrow{\delta} \widetilde{K}O^{-4}(S^{8t+4} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-4}(8t+4, 2r) \longrightarrow \widetilde{K}O^{-4}(8t+3, 2r) \longrightarrow 0,$$

rank $\widetilde{K}O^{-5}(8t+4, 2r) = 0$ implies $\widetilde{K}O^{-5}(8t+4, 2r) = 0$, and $\delta(s_{5,8t+8}^k) = \mu_{4t+4}\mu_0^{k-1}$ implies $\widetilde{K}O^{-4}(8t+4, 2r) = \langle z\alpha_0, \dots, z\alpha_0^r \rangle$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-7}(8t+4, 2r) \longrightarrow \widetilde{K}O^{-7}(8t+3, 2r) \longrightarrow \widetilde{K}O^{-6}(S^{8t+4} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-6}(8t+4, 2r) \longrightarrow \widetilde{K}O^{-6}(8t+3, 2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-7}(8t+4,2r)=Z_2^{(r)}$ is trivial. By the Bott sequence

$$0 = \widetilde{K}O^{-6}(8t+4,2r) \longrightarrow \widetilde{K}O^{-6}(8t+4,2r) \longrightarrow \widetilde{K}^{-6}(8t+4,2r),$$

it is known that $\widetilde{K}O^{-6}(8t+4,2r)$ is a free abelian group of rank r. Hence, by Lemma (2. 2), we have $\widetilde{K}O^{-6}(8t+4,2r)=\langle s_{6,8t+4}^1,\cdots,s_{6,8t+4}^r\rangle$, where $2s_{6,8t+4}^k=\gamma_{6,8t+4}^k$.

8.5. Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-2}(8t+5,2r) \longrightarrow \widetilde{K}O^{-2}(8t+4,2r) \xrightarrow{\delta} \widetilde{K}O^{-1}(S^{8t+5} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-1}(8t+5,2r) \longrightarrow \widetilde{K}O^{-1}(8t+4,2r) \longrightarrow 0.$$

Since $\widetilde{K}O^{-1}(S^{8t+5} \wedge CP(2r))$ is free and $rank \ \widetilde{K}O^{-2}(8t+5, 2r) = 0$, we have $\widetilde{K}O^{-2}(8t+5, 2r) = Z_2^{(r)}$. Furthermore, $\hat{v}(\gamma_{2,8t+4}^k) = 2\mu_{4t+3}\mu_0^{k-1}$ implies $\widetilde{K}O^{-1}(8t+5, 2r) = Z_2^{(2r)}$ by Lemma (4. 1).

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-4}(8t+5,2r) \longrightarrow \widetilde{K}O^{-4}(8t+4,2r) \longrightarrow \widetilde{K}O^{-3}(S^{8t+5} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-8}(8t+5,2r) \longrightarrow \widetilde{K}O^{-3}(8t+4,2r) = 0,$$

 $\widetilde{K}O^{-4}(8t+5, 2r) = \langle z\alpha_0, \dots, z\alpha_0^r \rangle$ and $\widetilde{K}O^{-3}(8t+5, 2r) = \langle \gamma_{3,8t+5}^1, \dots, \gamma_{3,8t+5}^r \rangle$ are trivial.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}^{-6}(8t+5,2r) \longrightarrow \widetilde{K}O^{-6}(8t+4,2r) \stackrel{\delta}{\longrightarrow} \widetilde{K}O^{-5}(S^{8t+5} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-5}(8t+5,2r) \longrightarrow \widetilde{K}O^{-6}(8t+4,2r) = 0.$$

rank $\widetilde{K}O^{-6}(8t+5, 2r) = 0$ implies $\widetilde{K}O^{-6}(8t+5, 2r) = 0$, and $\delta(s_{6,8t+5}^k) = \mu_{4t+5}\mu_0^{k-1}$ implies $\widetilde{K}O^{-5}(8t+5, 2r) = 0$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{0}(8t+5,2r) \xrightarrow{i!} \widetilde{K}O^{0}(8t+4,2r) \longrightarrow \widetilde{K}O^{-7}(S^{8t+5} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-7}(8t+5,2r) \longrightarrow \widetilde{K}O^{-7}(8t+4,2r) \longrightarrow 0.$$

Since $\widetilde{K}O^{-7}(S^{8i+5} \wedge CP(2r))$ is free and $i!(\alpha_0^k) = \alpha_0^k$, i! is an isomorphism. Hence, $\widetilde{K}O^0(8t+5,2r) = Z^{(r)} + Z_2^{(r)}$, whose free part is generated by $\alpha_0, \dots, \alpha_0^r$. By the Bott sequence

$$0 \longrightarrow \widetilde{K}O^{-7}(8t+5, 2r) \longrightarrow \widetilde{K}^{-7}(8t+5, 2r) \longrightarrow \widetilde{K}O^{-5}(8t+5, 2r) = 0,$$

 $\widetilde{K}O^{-7}(8t+5,2r)$ is a free abelian group of rank r. Therefore, by Lemma (2. 2) we have $\widetilde{K}O^{-7}(8t+5,2r) = \langle s_{7,8t+5}^1, \cdots, s_{7,8t+5}^r \rangle$, where $2s_{7,8t+5}^k = \gamma_{7,8t+5}^k$

8. 6. Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-3}(8t+6,2r) \longrightarrow \widetilde{K}O^{-8}(8t+5,2r) \xrightarrow{\delta} \widetilde{K}O^{-2}(S^{8t+6} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-2}(8t+6,2r) \longrightarrow \widetilde{K}O^{-2}(8t+5,2r) \longrightarrow 0,$$

rank $\widetilde{K}O^{-3}(8t+6, 2r) = 0$ implies $\widetilde{K}O^{-3}(8t+6, 2r) = 0$, and $\delta(r_{3,8t+5}^k) = 2\mu_{u+4}\mu_0^{k-1}$ implies $\widehat{K}O^{-2}(8t+6, 2r) = Z_3^{(2r)}$ by Lemma (4.1).

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-5}(8t+6,2r) \longrightarrow \widetilde{K}O^{-5}(8t+5,2r) \longrightarrow \widetilde{K}O^{-4}(S^{8t+6} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-4}(8t+6,2r) \longrightarrow \widetilde{K}O^{-4}(8t+5,2r) \longrightarrow 0,$$

 $\widetilde{K}O^{-6}(8t+6, 2r) = 0$ and $\widetilde{K}O^{-4}(8t+6, 2r) = \langle \gamma_{4,8t+6}^1, \cdots, \gamma_{4,8t+6}^r, z\alpha_0 \cdots, z\alpha_0^r \rangle$ are trivial.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-7}(8t+6,2r) \longrightarrow \widetilde{K}O^{-7}(8t+5,2r) \xrightarrow{\delta} \widetilde{K}O^{-6}(S^{6t+6} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-6}(8t+6,2r) \longrightarrow \widetilde{K}O^{-6}(8t+5,2r) = 0,$$

rank $\widetilde{K}O^{-7}(8t+6, 2r) = 0$ implies $\widetilde{K}O^{-7}(8t+6, 2r) = 0$, and $\delta(s_{7,8t+5}^k) = \mu_{4t+6}\mu_0^{k-1}$ implies $\widetilde{K}O^{-6}(8t+6, 2r) = 0$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(8t+6,2r) \longrightarrow \widetilde{K}O^{-1}(8t+5,2r) \longrightarrow \widetilde{K}O^{0}(S^{8t+6} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{0}(8t+6,2r) \longrightarrow \widetilde{K}O^{0}(8t+5,2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-1}(8t+6,2r)=Z_2^{(2r)}$ is trivial. By the Bott sequence

$$0 \longrightarrow \widetilde{K}O^{0}(8t+6,2r) \longrightarrow \widetilde{K}^{0}(8t+6,2r) \longrightarrow \widetilde{K}O^{-6}(8t+6,2r) = 0,$$

 $\widetilde{K}O^{0}(8t+6,2r)$ is an abelian group of rank 2r. Therefore, by Lemma (2.2) we have $\widetilde{K}O^{0}(8t+6,2r)=<\alpha_{0},\cdots,\alpha_{0}^{r},s_{0,8t+6}^{1},\cdots,s_{0,8t+6}^{r}>$, where $2s_{0,8t+6}^{k}=r_{0,8t+6}^{k}$.

8.7. Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{0}(8t+7, 2r) \xrightarrow{i!} \widetilde{K}O^{0}(8t+6, 2r) \xrightarrow{\delta} \widetilde{K}O^{-7}(S^{\omega+7} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-7}(8t+7, 2r) \longrightarrow \widetilde{K}O^{-7}(8t+6, 2r) = 0.$$

 $i!(\alpha_0^k) = \alpha_0^k$ and $rank \widetilde{K}O^0(8t+7, 2r) = r$ imply $\widetilde{K}O^0(8t+7, 2r) = < \alpha_0, \cdots$

 $\alpha_0^r >$, and $\delta(s_{0,8t+6}^k) = \mu_{4t+7} \mu_0^{k-1}$ implies $\widetilde{K}O^{-7}(8t+7,2r) = 0$. Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-2}(8t+7,2r) \longrightarrow \widetilde{K}O^{-2}(8t+6,2r) \longrightarrow \widetilde{K}O^{-1}(S^{8t+7} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-1}(8t+7,2r) \longrightarrow \widetilde{K}O^{-1}(8t+6,2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-2}(8t+7,2r)=Z_2^{(2r)}$ is trivial. In the Bott sequence

$$\widetilde{K}^{-2}(8t+7,2r) \xrightarrow{\rho I^{-1}} \widetilde{K}O^{0}(8t+7,2r) \longrightarrow \widetilde{K}O^{-1}(8t+7,2r)$$

$$\xrightarrow{\varepsilon} \widetilde{K}^{-1}(8t+7,2r) \longrightarrow \widetilde{K}O^{-7}(8t+7,2r) = 0,$$

 $\rho I^{-1}(g\alpha^k) = 2\alpha_0^k \text{ implies } \widetilde{K}O^{-1}(8t+7,2r) = Z_2^{(r)} + \langle e_1, \dots, e_r \rangle, \text{ where } \epsilon(e_k) = \beta \alpha^{k-1} \text{ and } 2e_k \equiv \gamma_{1,8t+7}^k \pmod{2}.$

$$\varepsilon(\gamma_{1,8\ell+7}^{k}) = \varepsilon \rho(\beta \alpha^{k-1}) = (\beta + \bar{\beta})\alpha^{k-1} = 2\beta \alpha^{k-1} \text{ by Lemma (3. 3)}$$
$$= 2\varepsilon(e_{k}).$$

Hence $\gamma_{1,8t+7}^{k} \equiv 2e_k \pmod{2}$.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-4}(8t+7,2r) \xrightarrow{i!} \widetilde{K}O^{-4}(8t+6,2r) \xrightarrow{\delta} \widetilde{K}O^{-3}(S^{8t+7} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-3}(8t+7,2r) \longrightarrow \widetilde{K}O^{-3}(8t+6,2r) = 0,$$

 $i^{1}(z\alpha_{0}^{k}) = z\alpha_{0}^{k}$ and $rank \widetilde{K}O^{-4}(8t+7, 2r) = r$ imply $\widetilde{K}O^{-4}(8t+7, 2r) = < z\alpha_{0}, \dots, z\alpha_{0}^{r}>$, and $\delta(r_{4,8t+6}^{k}) = 2\mu_{4t+5}\mu_{0}^{k-1}$ implies $\widetilde{K}O^{-3}(8t+7, 2r) = Z_{2}^{(r)}$. Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-6}(8t+7,2r) \longrightarrow \widetilde{K}O^{-6}(8t+6,2r) \longrightarrow \widetilde{K}O^{-5}(S^{8t+7} \land CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-5}(8t+7,2r) \longrightarrow \widetilde{K}O^{-5}(8t+6,2r) = 0,$$

 $\widetilde{K}O^{-6}(8t+7,2r)=0$ and $\widetilde{K}O^{-5}(8t+7,2r)=<\gamma_{5,8t+7}^{1},\cdots,\gamma_{5,8t+7}^{r}>$ are trivial.

8. 8. Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(8t+8,2r) \longrightarrow \widetilde{K}O^{-1}(8t+7,2r) \longrightarrow \widetilde{K}O^{0}(S^{8t+8} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{0}(8t+8,2r) \longrightarrow \widetilde{K}O^{0}(8t+7,2r) \longrightarrow 0,$$

rank $\widetilde{K}O^{-1}(8t+8,2r)=0$ implies $\widetilde{K}O^{-1}(8t+8,2r)=Z_2^{(r)}$, and $2e_k \equiv \gamma_{1,8k+7}^k$ (mod 2) implies $\widetilde{K}O^0(8t+8,2r)=<\alpha_0, \dots, \alpha_0^r>$.

Consider the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-3}(8t+8,2r) \longrightarrow \widetilde{K}O^{-3}(8t+7,2r) \longrightarrow \widetilde{K}O^{-2}(S^{8t+8} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-2}(8t+8,2r) \longrightarrow \widetilde{K}O^{-2}(8t+7,2r) \longrightarrow 0.$$

 $\widetilde{K}O^{-3}(8t+8,2r)=Z_2^{(r)}$ is trivial. In the Bott sequence

$$0 \longrightarrow \widetilde{K}O^{-1}(8t+8,2r) \longrightarrow \widetilde{K}O^{-2}(8t+8,2r) \xrightarrow{\varepsilon} \widetilde{K}^{-2}(8t+8,2r) \xrightarrow{\rho I^{-1}} \widetilde{K}O^{0}(8t+8,2r).$$

 $\rho I^{-1}(g\alpha^{k}) = 2\alpha_{0}^{k}$ and $\rho I^{-1}(g\gamma\alpha^{k-1}) = 0$ imply $\widetilde{K}O^{-2}(8t+8, 2r) = Z_{2}^{(r)} + \langle f_{1}, \dots, f_{r} \rangle$, where $\epsilon(f_{k}) = g\gamma\alpha^{k-1}$ and $2f_{k} = \gamma_{2,8t+8}^{k}$ (mod 2). For

$$\varepsilon(\gamma_{2,8k+8}^k) = \varepsilon \rho(g\gamma\alpha^{k-1}) = g(\gamma - \overline{\gamma})\alpha^{k-1} = 2g\gamma\alpha^{k-1} \text{ by Lemma (3. 3)}$$
$$= 2\varepsilon(f_k)$$

Hence $\gamma_{1,8k+8}^k \equiv 2f_k \pmod{2}$.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-5}(8t+8,2r) \longrightarrow \widetilde{K}O^{-5}(8t+7,2r) \longrightarrow \widetilde{K}O^{-4}(S^{8t+8} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-4}(8t+8,2r) \longrightarrow \widetilde{K}O^{-4}(8t+7,2r) \longrightarrow 0.$$

rank $\widetilde{K}O^{-5}(8t+8, 2r) = 0$ implies $\widetilde{K}O^{-5}(8t+8, 2r) = 0$, and $\delta(\gamma_{5,8t+7}^k) = 2\mu_{4t+6}\mu_0^{k-1}$ implies $\widetilde{K}O^{-4}(8t+8, 2r) = Z_2^{(r)} + \langle z\alpha_0, \dots, z\alpha_0^r \rangle$.

Considering the exact sequence

$$0 \longrightarrow \widetilde{K}O^{-7}(8t+8,2r) \longrightarrow \widetilde{K}O^{-7}(8t+7,2r) \longrightarrow \widetilde{K}O^{-6}(S^{8t+8} \wedge CP(2r))$$
$$\longrightarrow \widetilde{K}O^{-6}(8t+8,2r) \longrightarrow \widetilde{K}O^{-6}(8t+7,2r) = 0,$$

 $\widetilde{K}O^{-7}(8t+8,2r)=0$ and $\widetilde{K}O^{-6}(8t+8,2r)=<\gamma_{6,8t+8}^1,\cdots,\gamma_{6,8t+8}^r>$ are trivial. Our induction has completed.

9. Change of some generators

Now, we should like to change some generators.

In case of m=1, $\epsilon: \widehat{KO}^{-j}(1, 2r) \longrightarrow \widehat{K}^{-j}(1, 2r)$ is monomorphic for j=3, 4 or 7, because $\widehat{KO}^{-j}(1, 2r)$ is free. Furthermore, we have

$$\varepsilon(\gamma_{j,1}^k) = \varepsilon(\gamma_{j,1}^1 \alpha_0^{k-1})$$
 $(j=3 \text{ or } 7) \text{ and } \varepsilon(a_k) = \varepsilon(a_1 \alpha_0^{k-1}).$

Hence

$$\gamma_{j,1}^k = \gamma_{j,1}^1 \alpha_0^{k-1}$$
 and $a_k = a_1 \alpha_0^{k-1}$ for $k = 1, \dots, r$.

Define $\gamma_j = \gamma_{j,1}^1$ and $a = a_1$, then the Bott sequence implies the results in Theorem 3.

In case of m=2, $\varepsilon: \widetilde{K}O^{-ij}(2,2r) \longrightarrow \widetilde{K}^{-ij}(2,2r)$ is monomorphic for j=0 or 1, because $\widetilde{K}O^{-ij}(2,2r)$ is free. Furthermore, we have

$$\varepsilon(\gamma_{4j,2}^k) = \varepsilon(\gamma_{4j,2}^1\alpha_0^{k-1})$$
 $(j=0 \text{ or } 1) \text{ and } \varepsilon(b_k) = \varepsilon(b_1\alpha_0^{k-1}).$

Hence

$$\gamma_{4j,2}^1 = \gamma_{4j,2}^1 \alpha_0^{k-1}$$
 and $b_k = b_1 \alpha_0^{k-1}$ for $k = 1, \dots, r$.

Define $\gamma_{ij} = \gamma_{ij,2}^1$ and $b = b_1$. Considering the Bott sequences

$$\widetilde{K}^{-4j-2}(2,2r) \longrightarrow \widetilde{K}O^{-4j}(2,2r) \longrightarrow \widetilde{K}O^{-4j-1}(2,2r) \longrightarrow 0$$

and
$$0 \longrightarrow \widetilde{K}O^{-4j-1}(2,2r) \longrightarrow \widetilde{K}O^{-4j-2}(2,2r)$$
,

we have the results in Theorem 3.

In case of m=8t+1, 8t+2, 8t+5 or 8t+6, $\varepsilon: \widetilde{K}O^{-j}(m,2r) \longrightarrow \widetilde{K}^{-j}(m,2r)$ is monomorphic for $j\equiv m-2$ or m-6 (mod 8). Furthermore, we have

$$\varepsilon(s_{j,m}^{k}) = \varepsilon(s_{j,m}^{l}\alpha_{0}^{k-1}) \quad \text{for} \quad j \equiv m-6 \pmod{8}$$

$$\varepsilon(\gamma_{j,m}^{k}) = \varepsilon(\gamma_{j,m}^{l}\alpha_{0}^{k-1})$$

$$\varepsilon(\gamma_{j,m}^{l}) = \varepsilon(zs_{j+4,m}^{l})$$
for $j \equiv m-2 \pmod{8}$.

and

Hence, we have

$$s_{j,m}^{k} = s_{j,m}^{1} \alpha_{0}^{k-1}$$
 for $j \equiv m-6 \pmod{8}$
 $\gamma_{j,m}^{k} = z s_{j-4,m}^{1} \alpha_{0}^{k-1}$ for $j \equiv m-2 \pmod{8}$.

and Define

 $s = s_{j,m}^1$ for j = m - 6. Considering the Bott sequences, we

In case of m=8t+3 or 8t+4, $\varepsilon: \widetilde{K}O^{-j}(m, 2r) \longrightarrow \widetilde{K}^{-j}(m, 2r)$ is monomorphic for $j\equiv m-6 \pmod 8$ and $\varepsilon(s_{j,m}^k)=\varepsilon(s_{j,m}^l\alpha_0^{k-1})$. Hence, we have

$$s_{j,m}^k = s_{j,m}^1 \alpha_0^{k-1}$$
 for $j \equiv m - 6 \pmod{8}$.

Furthermore, in the Bott sequence

have the results in Theorem 3.

$$\widetilde{K}O^{-j+1}(m,2r) \xrightarrow{d} \widetilde{K}O^{-j}(m,2r) \xrightarrow{\varepsilon} \widetilde{K}^{-j}(m,2r),$$

we have $\widetilde{K}O^{-j}(m, 2r) = \text{Im } d \oplus \text{Im } \varepsilon$ and $\varepsilon(\gamma_{j,m}^k) = \varepsilon(zs_{j+4,m}^l\alpha_0^{k-1})$ for $j \equiv m-2 \pmod{8}$. Therefore, we may choose $zs_{j+4,m}^l\alpha_0, \ldots, zs_{j+4,m}^l\alpha_0, \ldots, zs_{j+4,m}^l\alpha_0, \ldots, zs_{j,m}^l\alpha_0^{k-1}$ as a free basis of $\widetilde{K}O^{-j}(m, 2r)$ for $j \equiv m-2 \pmod{8}$. Define $s=s_{j,m}^l$ for j=m-6. Considering the Bott sequences, we have the results in Theorem 3.

In case of m=8t+7 (or 8t+8), $\varepsilon: \widetilde{K}O^{-j}(m,2r) \longrightarrow \widetilde{K}^{-j}(m,2r)$ is monomorphic for $j \equiv m-2 \pmod 8$ and $\varepsilon(\gamma_{j,m}^k) = \varepsilon(ze_1\alpha_0^{k-1})$ (or $\varepsilon(\gamma_{j,m}^k) = \varepsilon(zf_1\alpha_0^{k-1})$). Hence we have

$$\gamma_{j,m}^{k} = ze_{1}\alpha_{0}^{k-1}$$
 (or $\gamma_{j,m}^{k} = zf_{1}\alpha_{0}^{k-1}$) for $j \equiv m-2 \pmod{8}$.

Furthermore, in the Bott sequence

$$\longrightarrow \widetilde{K}O^{-j+1}(m,2r) \xrightarrow{d} \widetilde{K}O^{-j}(m,2r) \xrightarrow{\varepsilon} \widetilde{K}^{-j}(m,2r),$$

we have $\widetilde{K}O^{-j}(m,2r)=\mathrm{Im}\ d\oplus \mathrm{Im}\ \varepsilon$ and $\varepsilon(e_k)=\varepsilon(e_1\alpha_0^{k-1})$ (or $\varepsilon(f_k)=\varepsilon(f_1\alpha_0^{k-1})$) for $j\equiv m-6\pmod 8$. Therefore, we may choose $e_1,e_1\alpha_0,\cdots,e_1\alpha_1^{r-1}$ (or $f_1,f_1\alpha_0,\cdots,f_1\alpha_0^{r-1}$) as a free basis of $\widetilde{K}O^{-j}(m,2r)$ for $j\equiv m-6\pmod 8$. Define $s=e_1$ (or f_1). Considering the Bott sequences, we have the results. This completes the proof of Theorem 3 and Theorem 4.

10. Proof of Theorem 2

In order to prove the theorem, we show the following

Lemma (10. 1). We can define $p: \widetilde{K}O^{-j}(m, 2r) \longrightarrow \widetilde{K}O^{-j}(m, 2r+2)$ such that $i! \circ p = identity$, where $i: D(m, 2r) \subset D(m, 2r+2)$.

Proof. If
$$m \ge 3$$
, define p by
$$p(\alpha_0^k) = \alpha_0^k, \quad p(s_{j,m}\alpha_0^{k-1}) = s_{j,m}\alpha_0^{k-1}, \quad p(zs_{j,m}\alpha_0^{k-1}) = zs_{j,m}\alpha_0^{k-1}$$

$$p(z\alpha_0^{k-1}) = z\alpha_0^{k-1} \text{ for } 1 \le k \le r,$$

$$p(w\alpha_0^k) = w\alpha_0^k, \quad p(w^2\alpha_0^k) = w^2\alpha_0^k, \quad p(ws_{j,m}\alpha_0^{k-1}) = ws_{j,m}\alpha_0^{k-1}$$

$$p(w^2s_{j,m}\alpha_0^{k-1}) = w^2s_{j,m}\alpha_0^{k-1} \text{ for } 1 \le k \le r.$$

Then, $i! \circ p = identity$.

and

Similarly for the cases m=1 and 2.

The inclusion $i: D(m, 2r) \subset D(m, 2r+2)$ is decomposed as $i = i_2 \circ i_1$, where $i_1: D(m, 2r) \subset D(m, 2r+1)$ and $i_2: D(m, 2r+1) \subset D(m, 2r+2)$.

Then we have identity $= i! \circ p = (i_1! \circ i_2!) \circ p = (i_1!) \circ (i_2! \circ p)$. Hence, $\kappa = i_2! \circ p$ is the splitting homomorphism of the following exact sequence

 $\longrightarrow \widetilde{K}O^{-i}(D(m,2r+1)/D(m,2r)) \longrightarrow \widetilde{K}O^{-i}(m,2r+1) \stackrel{i!}{\longleftarrow} \widetilde{K}O^{-i}(m,2r) \longrightarrow .$ This completes the proof of Theorem 2.

11. Ring structures of $\widetilde{KO}^{0}(D(m, n))$

In this section we shall prove Theorem 6.

- 11. 1. Since $p^!: \widetilde{K}O^0(RP(m)) \longrightarrow \widetilde{K}O^0(D(m,n))$ is monomorphic (cf. § 1), the relations $\lambda_0^2 = -2\lambda_0$ and $\lambda_0^{f+1} = 0$ follow from those in $\widetilde{K}O^0(RP(m))$. Since $\lambda_0\alpha_0 = (\xi_1-1) \otimes (\tau_1-\xi_1-1) = -(\xi_1 \otimes \xi_1-1)$ lies in $p^!\widetilde{K}O^0(RP(m))$ and $i^!\alpha_0 = 0$ (cf. [6, Theorem (2. 2)]), $\lambda_0\alpha_0 = p^!i^!(\lambda_0\alpha_0) = 0$, where i is the inclusion defined in (1. 1).
- 11. 2. In this section we discuss on the case of n=2r. Since $\varepsilon(\alpha_0^{r+1}) = \alpha^{r+1} = 0$ and $\varepsilon(\zeta\alpha_0^r) = (1/2) (\gamma + \overline{\gamma})\alpha^r = \gamma\alpha^r = 0$ (for m=8t+6) ($\varepsilon(\zeta\alpha_0^r) = (\gamma + \overline{\gamma})\alpha^r = 2\gamma\alpha^r = 0$ (for m=8t+2)) (cf. [7, Theorem 3]), $2\alpha_0^{r+1} = \rho\varepsilon(\alpha_0^{r+1}) = 0$ and $2\zeta\alpha_0^r = \rho\varepsilon(\zeta\alpha_0^r) = 0$. Hence, α_0^{r+1} and $\zeta\alpha_0^r$ lie in the torsion part of $\widetilde{K}O^0(D(m, 2r))$. Therefore, in case of m=8t, 8t+1, 8t+3 or 8t+7 (m=8t+2 or 8t+6), α_0^{r+1} lies (α_0^{r+1} and $\zeta\alpha_0^r$ lie) in $p!\widetilde{K}O^0(RP(m))$ and the relation $i!\alpha_0 = 0$ implies $\alpha_0^{r+1} = p!i!(\alpha_0^{r+1}) = 0$ ($\alpha_0^{r+1} = 0$ and $\zeta\alpha_0^r = p!i!(\zeta\alpha_0^r) = 0$).

Moreover, in case of m=8t+6 (m=8t+2), since $2\zeta^2=\rho\varepsilon(\zeta^2)=\rho_{\gamma}^2=0$ $(2\zeta^2=\rho(4\gamma^2)=0)$ (cf. [7, Theorem 3]), ζ^2 lies in $p!\widetilde{K}O^0(RP(m))$. Also $\lambda_0\zeta$ lies in $p!\widetilde{K}O^0(RP(m))$. Considering the following commutative diagram

$$\begin{split} \widetilde{K}O^{\scriptscriptstyle !}(S^{\scriptscriptstyle m} \wedge CP(2r)^{\scriptscriptstyle +}) &\stackrel{f^{\scriptscriptstyle !}}{\longrightarrow} \widetilde{K}O^{\scriptscriptstyle 0}(D(m,2r)) \\ \widehat{\imath} \downarrow \uparrow \widehat{\jmath}^{\scriptscriptstyle !} & \widehat{\imath}^{\scriptscriptstyle !} \downarrow \uparrow \jmath^{\scriptscriptstyle !} \\ \widetilde{K}O^{\scriptscriptstyle 0}(S^{\scriptscriptstyle m}) & \stackrel{f!}{\longrightarrow} \widetilde{K}O^{\scriptscriptstyle 0}(RP(m)), \end{split}$$

we have $i!\zeta = i! f! \mu_{4t+3} = f! \hat{i}! \mu_{4t+3} = 0$ $(i!\zeta = i! f! \mu_{4t+1} = f! \hat{i}! \mu_{4t+1} = 0)$. Therefore we have $\zeta^2 = p! i! \zeta^2 = 0$ and $\lambda_0 \zeta = p! i! (\lambda_0 \zeta) = 0$.

In case of m=8t+5, $i^!: \widetilde{K}O^0(D(8t+6,2r)) \longrightarrow \widetilde{K}O^0(D(8t+5,2r))$ is epimorphic and $i^!\alpha_0^k=\alpha_0^k$, $i^!(\zeta\alpha_0^k)=\theta\alpha_0^k$. Therefore, the relations $\alpha_0^{r+1}=0$ and $\zeta\alpha_0^r=0$ in $\widetilde{K}O^0(D(8t+6,2r))$ imply the relations $\alpha_0^{r+1}=0$ and $\theta\alpha_0^r=0$ in $\widetilde{K}O^0(D(8t+5,2r))$. Moreover we have $\lambda_0\theta=i^!(\lambda_0\zeta)=0$ and $\theta^2=i^!(\zeta^2)=0$.

In case of m=8t+4, $i^!: \widetilde{K}O^0(D(8t+5,2r)) \longrightarrow \widetilde{K}O^0(D(8t+4,2r))$ is isomorphic. Therefore, all the relations in $\widetilde{K}O^0(D(8t+4,2r))$ follow from those in $\widetilde{K}O^0(D(8t+5,2r))$.

11.3. In this section we discuss on the case of n=4r+1. By Theorem 1 and Theorem 2, we have

 $\widetilde{K}O^0(D(m, 4r+1)) = \widetilde{K}O^0(D(m, 4r)) + \widetilde{K}O^0(D(m, 4r+1)/D(m, 4r)),$ and by [9], the groups $\widetilde{K}O^0(D(m, 4r+1)/D(m, 4r))$ are as 3) of Theorem 5. As for the generators of the groups we have the following

Lemma (11.3). α_0^{2r+1} is a generator of the torsion part of the summand $\widetilde{K}O^0(D(m, 4r+1)/D(m, 4r))$.

Proof. By Lemma (4.2), we have $i^!(\alpha_0^k) = \mu_0^k$ by the homomorphism $i^!: \widetilde{K}O^0(D(m, 4r+1)) \longrightarrow \widetilde{K}O^0(CP(4r+1))$. Since $\mu_0^{2r+1} = 0$ in $\widetilde{K}O^0(CP(4r+1))$ (cf. [8]), the element α_0^{2r+1} is not zero in $\widetilde{K}O^0(D(m, 4r+1))$. Moreover, the element α_0^{2r+1} is a generator of the torsion part of order 2 of the summand $\widetilde{K}O^0(D(m, 4r+1)/D(m, 4r))$, because it does not belong to $\widetilde{K}O^0(D(m, 4r))$ and $2\alpha_0^{2r+1} = \rho \varepsilon(\alpha_0^{2r+1}) = \rho \alpha^{2r+1} = 0$ (cf. [6, Theorem 3]).

In case of m=8t, 8t+1, 8t+3 or 8t+7, since $i^{\dagger}: \widetilde{K}O^{0}(m,4r+1) \longrightarrow \widetilde{K}O^{0}(CP(4r+1))$ is isomorphic, the relation $\alpha_{0}^{2r+2}=0$ is trivial.

In case of m=8t+2 or 8t+6, considering the exact sequence

$$\widetilde{K}O^{0}(D(m,4r+2)) \longrightarrow \widetilde{K}O^{0}(D(m,4r+1))$$

$$\longrightarrow KO^1(D(m, 4r+2)/D(m, 4r+1))$$

it is easy to see that the element $\zeta \alpha_0^{2r}$ is a generator of the free part of the summand $\widetilde{K}O^0(D(m,4r+1)/D(m,4r)) = Z + Z_2$ and the all relations in $\widetilde{K}O^0(D(m,4r+1))$ excepting $2\alpha_0^{2r+1} = 0$ follow from those in $\widetilde{K}O^0(D(m,4r+2))$, because $\widetilde{K}O^1(D(m,4r+2)/D(m,4r+1)) = 0$ by [9, Table (3)].

In case of m=8t+5, considering the exact sequence

$$\widetilde{K}O^{0}(S^{8t+6} \wedge CP(4r+1)^{+}) \xrightarrow{f!} \widetilde{K}O^{0}(D(8t+6, 4r+1)) \xrightarrow{i!} \widetilde{K}O^{0}(D(8t+5, 4r+1)) \longrightarrow 0,$$

it is easy to see that all the relations in $\widetilde{K}O^0(D(8t+5, 4r+1))$ excepting $\theta\alpha_0^{2r}=0$ follow from those in $\widetilde{K}O^0(D(8t+6, 4r+1))$. Also we have $\theta\alpha_0^{2r}=i!$ $(\zeta\alpha_0^{2r})=i!f!(\tau)=0$, because $\zeta\alpha_0^{2r}=(1/2)f!\mu_3\mu_0^{2r}=f!\tau$ (cf. [8, Theorem 2]).

In case of m=8t+4, $i^!: \widetilde{K}O^0(D(8t+5,4r+1)) \longrightarrow \widetilde{K}O^0(D(8t+4,4r+1))$ is isomorphic. Therefore, all the relations in $\widetilde{K}O^0(D(8t+4,4r+1))$ follow from those in $\widetilde{K}O^0(D(8t+5,4r+1))$.

11.4. In this section we discuss on the case of n=4r+3. By Theorem 1 and Theorem 2, we have

$$\widetilde{K}O^{0}(D(m, 4r+3)) = \widetilde{K}O^{0}(D(m, 4r+2)) + \widetilde{K}O^{0}(D(m, 4r+3)/D(m, 4r+2)),$$

and by [9], the groups $\widetilde{K}O^0(D(m, 4r+3)/D(m, 4r+2))$ are as 3) of Theorem 5.

In case of m=8t, 8t+1 or 8t+7, since $\widetilde{K}O^0(D(m,4r+3))$ is isomorphic to $\widetilde{K}O^0(D(m,4r+2))$, the relations in $\widetilde{K}O^0(D(m,4r+3))$ follow from those in $\widetilde{K}O^0(D(m,4r+2))$.

In case of m=8t+6, since $\varepsilon(\zeta \alpha_0^{2r+1})=\gamma \alpha^{2r+1} \neq 0$ in $\widetilde{K}^0(D(8t+6,4r+3))$ (cf. [6, Theorem 3]), the element $\zeta \alpha_0^{2r+1}$ is a generator of the summand $\widetilde{K}O^0(D(8t+6,4r+3)/D(8t+6,4r+2))$.

In case of m=8t+2, considering the exact sequence

$$\longrightarrow \widetilde{K}O^{0}(S^{m} \wedge CP(4r+3)^{+}) \xrightarrow{f!} \widetilde{K}O^{0}(D(m, 4r+3))$$
$$\longrightarrow \widetilde{K}O^{0}(D(m-1, 4r+3)) \longrightarrow,$$

there exist $f!(\sigma)$ in $\widetilde{K}O^o(D(m,4r+3))$ and $\varepsilon(f!(\sigma)) = \gamma \alpha^{2r+1} \neq 0$ (cf. [6, Theorem 3]), where $2\sigma = \mu_{4t+1}\mu_0^{2r+1}$. Therefore $\zeta' = f!(\sigma)$ is a generator of the summand $\widetilde{K}O^0(D(8t+2,4r+3)/D(8t+2,4r+2))$.

Moreover, since $\widetilde{K}O^{0}(m, 4r+3)$ is free for m=8t+2 or 8t+6, we can obtain the relations in the same way as the case of n=2r.

In case of m = 8t + 5, considering the exact sequence

$$\widetilde{K}O^{0}(S^{m+1} \wedge CP(4r+3)^{+}) \longrightarrow \widetilde{K}O^{0}(D(m+1, 4r+3)) \longrightarrow \widetilde{K}O^{0}(D(m, 4r+3)) \longrightarrow 0,$$

it is easy to see that $\theta \alpha_0^{2r+1}$ is a generator of the summand $\widetilde{K}O^0(D(m, 4r+3)/D(m, 4r+2))$ and all the relations in $\widetilde{K}O^0(D(m, 4r+3))$ follow from those in $\widetilde{K}O^0(D(m+1, 4r+3))$.

In case of m=8t+4, considering the following commutative diagram

$$0 \rightarrow \widetilde{K}O^{0}(D(m+1, 4r+3)/D(m+1, 4r+2)) \xrightarrow{i!} \widetilde{K}O^{0}(D(m, 4r+3)/D(m, 4r+2))$$

$$\downarrow_{\pi^{!}} \qquad \downarrow_{\pi^{!}} \qquad \downarrow_{\pi^{!}}$$

$$0 \rightarrow \widetilde{K}O^{0}(D(m+1, 4r+3)) \qquad \xrightarrow{i!} \qquad \widetilde{K}O^{0}(D(m, 4r+3)),$$

it is easy to see that $i^{\dagger}\theta\alpha_0^{2r+1}$ and one more element x of order 2 are generators of the summand $\widetilde{K}O^0(D(m, 4r+3)/D(m, 4r+2))$ and the relations in $\widetilde{K}O^0(D(m, 4r+3))$, excepting x^2 , $\lambda_0 x$, ℓx and $\alpha_0 x$, follow from those in $\widetilde{K}O^0(D(m+1, 4r+3))$. Consider the diagram of Lemma 2 of [7], in which the functor K is replaced by the functor KO, $x\alpha_0=0$ and $x\theta=0$ are trivial. Also we have $x\lambda_0=0$, $\theta\alpha_0^{2r+1}$, x or $x+\theta\alpha_0^{2r+1}$ and $x^2=0$, $\theta\alpha_0^{2r+1}$, x or $x+\theta\alpha_0^{2r+1}$.

In case of m=8t+3, considering the following commutative diagram

$$Z_{2} \longrightarrow \widetilde{K}O^{0}(D(m+1, 4r+3)/D(m+1, 4r+2)) \xrightarrow{\widehat{i}}$$

$$\downarrow \qquad \qquad \downarrow^{\pi!} \qquad \widetilde{K}O^{0}(D(m, 4r+3)/D(m, 4r+2))$$

$$\downarrow^{\pi!} \qquad \downarrow^{\pi!}$$

$$\widetilde{K}O^{0}(S^{m+1} \wedge CP(4r+3)^{+}) \rightarrow \widetilde{K}O^{0}(D(m+1, 4r+3)) \rightarrow \widetilde{K}O^{0}(D(m, 4r+3)),$$

it is easy to see that $y=\hat{i}^{1}(x)$ is a generator of the summand $\widetilde{K}O^{0}(D(m, 4r+3)/D(m, 4r+2))$ and the relations in $\widetilde{K}O^{0}(D(m, 4r+3))$, excepting y^{2} , follow from those in $\widetilde{K}O^{0}(D(m+1, 4r+3))$. Since the element y is the image of a generator of $\widetilde{K}O^{0}(S^{8\iota+8r+9})=Z_{2}$ by $\hat{f}^{1}:\widetilde{K}O^{0}(S^{8\iota+8r+9})\longrightarrow \widetilde{K}O^{0}$ (D(m, 4r+3)/D(m, 4r+2)), we have $y^{2}=0$. Therefore, we have $x^{2}=0$ or $\theta\alpha_{0}^{2r+1}$.

This completes the proof of Theorem 6.

REFERENCES

- [1] J.F. Adams: Vector field on spheres, Ann. of Math. 75 (1962), 603-622.
- [2] D. W. ANDERSON: Thesis.
- [3] M.F. ATIYAH: K-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367 —386.
- [4] R. Bott: Quelque remarques sur les théorèmes de périodicité, Bull. Soc. Math. France 87 (1959), 293-310.
- [5] A. DOLD: Erzeugende der Thomschen Algebra R, Math. Z. 65 (1956), 25-35.
- [6] M. Fujii: Ku-groups of Dold manifolds, Osaka J. Math. 3 (1966), 49-64.
- [7] M. Fujii: Ring structures of K_U -cohomologies of Dold manifolds, Osaka J. Math. 6 (1969), 107—115.
- [8] M. FUJII: Ko-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.

[9] M. Fujii and T. Yasui: K₀-groups of the stunted real projective spaces, Math. J. Oka-yama Univ. 16 (1973), 47-54.

OKAYAMA UNIVERSITY YAMAGUCHI UNIVERSITY

(Received August 21, 1972)