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Introduction

The purpose of this paper is to determine the K,-cohomologies of the
Dold manifold D(m, n). As for the K ,cohomologies of D(m, n), one of
the authors has determined in [6] and [7]. We inherit all the notations of
[6] and [7]. We use K or KO instead of K, or Ko

Let = : D(m, n) —> D(m, n)/D(m, 0) be the projection and K;*(m, n)

== K7{D(m, n)] D(m, 0)), where 4=0 or U. Then, we have the follow-
ing

Theorem 1.
K7'(D(m, n))=Kz'(m, n)+p' K7 (R P(m)),
where A=0 or U and p: D(m,n) —> RP(m) is the natural projection.

By this theorem, it is sufficient to calculate the summand K O~ (m, n)
for our purpose, because KO~(RP(m)) is known in [8]."

In [7, Proposition 2], we have the following two homeomorphisms :

(i) #: D(m, n)/D(m—1, n)=S™ A\ CP(n)*,

(ii) As: D(m,n)/D(m, n—1)=S" A\ (RP(m+n)/RP(n—1)),
which are basic in our method.

For the first time, we deal with I?O"(m, n) for n=27, by induction on
m with considering the exact sequence of the pair (D(m, n), D(m—1, n)).
Here, the homeomorphism #, of (i) and the Bott sequence play important
roles in our computations.

In case of #=2r+41, we can define algebraically a splitting homomor-
phism : by using the results on KO~'(m, 27) and obtain a splitting exact
sequence

0—> KO~(D(m, 2r+1)] D(m, 2r)) —>KO~(m, 2r+ 1)§i<’o-f(m, 27)—>0.
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Therefore we have the following

Theorem 2.

KO (m, 2r+1)=KO~*(m, 2¢)+ KO™(D(m, 2r+1)] D(m, 27)).

In this direct sum decomposition, we have an isomorphism

KO~ (D(m, 2r+1)/ D(m, 2r))=KO~(S"** A\ (RP(2r+1+m)/RP(2r)))
by the homeomorphism %, of (ii), and the right hand side is known in [9].

The results of KO*(m, 2¢) are stated as follows, where &, & KO(m,

27) is the element defined in [6] (cf. §3) and w and z are generators of
KO '(point) and KO *(point) respectively.

Theorem 3. KO*(m, 2r) is a graded abelian group generated by the
following elements :
Case m=3
Sfree basis ; @, +++, A5, 5, 8%, -+, SAG,
20y, ==, 20U, 2§, 280y, ~+ovee , 2'8055_1,
generators of order 2 i woly, -+, WO, WS, WSy, ** WS,
Wy, -=-, WO ws, wstty, --w'say”},
where s is an element in KO*™(D(m, 27)).
Casem=1
free basis : o, -+, Q% @, @, =+ , axy”,
Vo T, s 73007, T, Till, ooe, 72057,
generators of order 2 1 wa,, -+, WA, wa, wak, -+, waxy™,
where a is an element in KO (D(,2r)) such that zot,=2a and 7. is
an element in KO (D1, 27)) for i=3,7.
Casem=2
Jfree basis i o, -+, g, b, by, ++o bay,
7o Toe%oy ** Tos ™, T4y Ty *°, )’4“5—],
generators of order 2 1 woty, -, woy wh, whcy, ++», whog ™,

Wy, o+, W, wh, whaty, «+-, whay,

where b is an element in KO (D2, 27) such that z0,=2b and 7, is
an element in KO (D(2,27)) for i=0, 4.

Since KO*(point) is a graded ring with unit 1 generated by w and
z with the relations 2w =0, w'=0, wz=0 and 2’ =4, we can restate the
above theorem for m =3 as follows.
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Theorem 4. In case of m=3, KO*(m,2r) is a graded KO*(point)-
free module with basis &, -+, @5, s, s, -+, s&;”", where degree o) =0
and degree s=6—m.

We state on the results of KO%D(m, »)) in detail, namely

Theorem 5.

1) p'KORP(m)) = Zy, which is generated by X, (cf. §3) with two
relations ii=—22, and M*'=0, where f=q¢(m) is the number of integers
q such that 0<<q<m and ¢=0,1,2 or 4 mod 8.

2) Case m=28t, 8+1, 8t+3 or 8+7.

KOm, 2r) = Z, which is generated by &, -, o>

Case m=8t+2 or 8t+6.

KO (m, 2r) = Z, which is generated by o, +-, a5, €, £y, +or, Ea57,
where =5 if m=8t+6, {=2s5s if m=8t+2 (#t>0) and { =1y, if m=2.

Case m=8t+4 or 8¢+5.

KO%m, 2r)=Z +Z, whose free part is generated by o, -, o}
and torsion part is generated by 0, 6, -+, 0057 where O0=ws if m=
8t+5 and 6= w’s if m=8t+4.

3) The groups KOYD(m, 2r+1)/D(m, 2r)) are isomorphic to the
following groups :

" | st | et+1| sr+2 | sr+3 | 844 | 845 | se+e | mr47
even Z; Z, Z+2, Z, Z, Zy Z+2Zy Z;
(generators) al*l | aft! | faf, et ) &t | ot | &t | Caf,eftt| oft!
odd 0 0 zZ Z: | Zat+2Za Zy ¥4 0
(generators) ¢ y z, fay | B (e

where 28 = o,
As for the ring structures of KO(D(m, n)) we have the following

Theorem 6. As for multiplicative structures of KOYD(m, n)) we
have the following relations :

1) A= —21, {¥"'=0, 2a,=0.

2) a;'=0 if n=1 mod 4; 2a;"'=ai**=0 if »=1 mod 4.

1) G¢ means the direct sum G+-:-+G(r-copies).
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3) Ca;=0 if n iseven; £ai*'=0 if n isodd; A= =0.

4) 0a;=0if m2=3 mod4; fa;*'=( if n=3mod4; A9 =0=0.

5) 2*=0 or faj; Ax=0, x, 0 or x-+0a}; xa,=x0=0.

6) »'=0; Ly=0 or y; ya,=0.

Theorem 1 is proved in § 1. After some preparations on abelian groups
in §2 and on K*(D(m, n)) in § 3, we prove Theorem 3 in §§4—9. We
determine the rank of KO~ Y(m, 2») (Proposition (4. 8)) in §4, and investigate
the homomorphisms in the Bott sequence (Lemma (5. 2)) in § 5. Theorem 3
for m=1,2 and 3 are proved in § 6, using the fact that KO~(D(3, 27))=0
which is proved in § 7. The general inductive proof of Theorem 3 is done

in §8 by the routine calculations. We change some generators of K. O YD
(m, 2r)) in §9. Theorem 2 is proved in § 10 and Theorems 5 and 6 in §11.

1. Direct summand

1.1. Proof of Theorem 1. It is easy to see D(m, 0)=RP(m). Under
this identification, consider the following exact sequence

—~ nl - it
(1.1) — K (D(m, n)/D(m, 0)) —> K:*(D(m, n)) ‘—ﬁ!i 1'(D(m, 0)) —>,

where p: D(m,n) —> RP(m) is the natural projection, i: RP(m) —>
D(m, ») is the inclusion defined by #([%s, ***, £]) = [%0, ***, %m, 1, 0, +++, 0] and
7: D(m, n) —> D(m, n)/D(m, 0) is the projection. Here, i!p! = identity,
then we have the theorem.

1. 2. Commutativity of the following diagram
D(m, n)/ D(m—1, n) ~ S"‘/\%‘P(n)*

P i {
RP(m)/|RP(m—1) = S™ACP(0)*

implies that we may identify K7 (S™ ACP(0)*) with the summand K;'(S™)
of Ki'(S™"ACP(n)*)=K: (S™ NCP(n))+K;(S™). Then we have the follow-
ing long exact sequence

1.2) —E(S"ACPm)D & m, m) b Bim—1, n)SE7+(S™ \CP(n),

where f= /4,7 and Ak, is the homeomosphism of (i) in the introduction,

and 4 is the boundary operation in K,-cohomology theory. (1.2) is a direct

summand of the long exact sequence of the pair (D(m, n), D(m—1, n)).
Theorem 1 and (1. 2) are also true, when K} is replaced by an arbit-
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rary cohomology theory.
2. Preparations on abelian groups

Let Z™ denote a free abelian group of rank 7, let Z{® denote an
abelian group which is the direct sum of s cyclic groups of order 2, and
let <a, -+, a,=> denote the free abelian group generated by a, -**, @n.
Then we have the following two lemmas which are useful for the computa-
tion of KO~(D(m, 27)).

K [
Lemma (2.1). Let 0 — 2 — A —> Z® —> 0 be an exact
sequence and A be an abelian group which contains Z5° as a subgroup.
Then A is isomorphic to ZW+Z.

Proof. Let B be the subgroup Z{® of A. Since Im « is free, we
have BNIm »=0, and so ¢|;:B—> Z{’ is monomorphic. This shows
that o|z is isomorphic and the lemma follows.

In virtue of the fundamental theorem of abelian group, we can easily
see the following :

Lemma (2.2). Let 0—>Z® L5 A —>ZPV4+Z —>0 be an exact
sequence and A be a free abelian group of rank vr+s. Then, for any

basis ey, -, e; of Z> we can choose a basis wy, *-*, 4rrs 0f A such that
wle) =2u 1<i<Z5s).

3. Known results on K*(D(m, 2r))

We recall from [6] the results on K*(D(m, 27)) which is needed for
the computation of KO*(D(m, n)). Denote by £ the canonical real line
bundle over the real projective m-space RP(m), and & =p' £ the induced
bundle of £ by the projection p : D(m, n)—> RP(m); by 7 the canonical
complex line bundle over the complex projective n-space CP(n); and
denote by 7 the canonical real 2-plane bundle over D(m, n) (cf. [6, §2]).
Then the generators for our groups are defined as follows :

A =E—1 e KO(R P(m)),
v =ek € K'(RP(m)),
p=7—1 & KYCP(n)),
ry=pi e KOYCP(n)),
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m=pg'n € KO™MCPn) (i=1,2,3),
& =7,—&—1 € KO(D(m, n)),
a =eq, e K'(D(m, n)),
7 =rflg'n € KDt n),
B =(sf)'g™'r e K- (D@2t+1, n)),
g'=(sf)lg"** and v,=p!v € p! K*(RP(m)),
2 =2'2 € p'KO(RP(m)) C KO(D(m, n)),
where g is the generator of I?”(S‘-’) given by the reduced Hopf bundle, ¢

is the complexification and p is the real restriction.
By {6, Theorem (3.14)], we have

Theorem (3.1). i) K%2t, 27) is the free abelian group generatedb y
a’ aﬂ’ -." af’ TY ra, ...’ ar_l.
il) K2t,27)=0
iii) K°2t+1,27) is the free abelian group generated by «, -, o,
iv) K™'(2t+1, 27) is the free abelian group generated by B, fa, -+, o=,

Also, by [8, Theorem 2], we have

Theorem (3.2). i) K*(CP(n)) = Z[p]] .
ii) KOYS*A\CP(27)) is the free abelian group generated by 11, i, o+,

r—1

Hefly .

iii) KOYS*~'ACP(27)) = 0.

The following lemmas are useful to introduce the generaters of KO~
(D(m, n)).

Lemma (3.3). We have the following relations :

= (-7 (¢: evem) Lo
(1) 7 ={ s o) in K2t, 27),
= _(—8  (t: even) .=
(2) A= { 3 ¢ odd) in K-Y(2t+1, 27),

where @ means the conjugation of a.

Proof. By [8, Lemma (1.2)], we have
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= { flg'e (£ : even)

"Tlofign ¢:odd),

{ —(sf) g™"'r  (¢: even)

(sf) g™ (¢: odd).

Since K%2t,27) and K '(D(2t-+1,27)) are free, the Chern charactors
ch: K2t 2r) — H*(D(2¢, 2r)]D(2¢,0); Q) H*(D(2¢,2r); Q),
ch: K- (D@2t+1, 27)—>H*(S' AD@2t+1, 27); Q)

are monomorphic. Moreover, by [6, Corollary (1.11)], we have

ch f! g = f*(su N(—2+2"[2} — o +27[(27)1))
= —b(l+af3!+-+a '/ (2r—1))
= —ch flg'p.
Ch(sf)l gH-Iﬁ = S/\f*(SQ(+1/\('_x+x2/2! —‘"'+xzr/(27)!))
= sAb(a/2!+---+a[(2r)!)

= ch(sf)ig"" .
Therefore we have the results.

ol

Lemma (3.4). For ra""EI?“(D(Zt, 27)) and fa*-'eK “D(2t+1, 27))
we have the following formulas :
(1) oot N)=g'(p—pm) (p+p)”"
(2) o(Ba*")=g"""(1+p)",
where 8 is the homomorphism in (1. 2).

Proof. By [6, Corollary (1.11) and Lemma (3. 6)] we have
ch o(ra* ) =02""p(1+a/3! + - +a [ 2r— 1)) a/2! + - +a"/2r) )
=25 su N(x+2%31 oo+ 27"/ (2r—1)1) :
X (221 4o+ 2™ [(2r) 1))
=ch g'(p—7) (+ ).
Since K*(CP(2r)) is free, ch: K*(CP(27)) —> H*(CP(2r); Q) is mono-
morphic. Therefore, we have the formula (1).
Similarly to the above, we have the formula (2).

4. The rank of KO~(m,2r)

In this section, we determine the rank of KO~‘(m, 2r) in Proposition
(4. 8). First we have the following lemmas.

Lemma (4.1). Every torsion element in KO~*(m, 27) is of order 2.
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Proof. Since K~%(m,2r) is free and pe=2, we have the result.

Lemma (4.2). Leti: Dim,n)CDm',n') m<m', n<n') be thein-
clusion, and z be a generator of K¢ O(S*). Then we have
i) () = af and i} (20} = zak.
Especially, for m = 0, we have
ii) iY(ak)=pt and il(zaf) = zpf = 2p,u%7,
Proof. Since ¢! is a ring homomorphism and also a homomorphism
of KO*(point)-module, i) is trivial from the construction of a,.
If m =0, by [6, Theorem (2. 2)],
it (o) = i! ('{’1'— E—1)= P(’f"‘lc) = Jhy.
Therefore i!(af) = ¢f and i'(zat) = zpf. Furthermore, we have
e(zr) = 2g°(n + 1),
(") = gi(e + 7.
Since ¢ : KO~{CP(2r)) —> K~*(CP(2r)) is monomorphic, we have 2uE=

k-1
20050,

We shall consider the spectral sequence in K O-theory for D(m, 2r)/
D(m, 0). Then, we have

Ep 7= = H?(D(m, 27)] D(m, 0) ; KO™*"(point)).

By Theorem 1 and [6, Proposition (1.6) and Theorem (1.9)], we can
enumerate EJ~?~" for {=0, 1,2, +--,7; and we obtain the following results
as for the rank of > ,Ef 77%:

W 4, 21 | @ar+1, 20 | @42, 20 | (@2 +3,20)
0 (mod 4) r r 2r r
(4.3) 1 (mod 4) 0 0 0 .
2 (mod 4) r 0 0 0
3 (mod 4) 0 r 0 0

Then, the rank of KO *(m, 27) is at most as the above.
Next, we shall show that the rank of KO~*(m, 27) is no less than that
of 3,EP-7* The element &, of KO%D(m, n)) belongs to the direct sum-

mand KO(m, n), because i'a,=0 in the exact sequence (1.1) (cf. [6,
Theorem (2. 2)]). Therefore, by Lemma (4.2), ii), and Theorem (3. 2), ii),
KO%m, 2r) and KO *(m,2r) have r independent elements «, +--, a} and
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20, -+, 205 respectively.
In case of m=4¢+42, consider the following commutative diagram

~ s ~
KO ™(4t+2, 27) —> KO Y*(S“** ACP(2r))

~ Pl le 5~ el le
K-9(4t+2,2r) = K~ 7(S“*\CP(2r)),

where ¢ is the homomorphism in (1.2) and j=Oor 1. Let /=27+2f+1,
then by Lemma (3. 4)

Opg ratTl = poghraT! = pg!(p— )+ )T =2, 57
Therefore, there are r independent elements pg"7, pg¥ra, ---, pg¥ra’~* in

KO ™(4t+2, 27). That is, KO Y(4¢+2, 2r) has 2r independent elements.
We put

Ve = pghivar™ (=1, 7).
Consider the following commutative diagram
- o~
KOs A\CP@2r)) -L> KO-(4t+2, 27)
~ pT le FI. el le
K-49(S“** \NCP(2r)) — K Y(4t+2, 2r),
where f! isthe homomorphism in (1.2). Since
FUe'm(p+7)7") = g = g¥ra*  (cf. [6, (3.9)]),
we have
T = flo(gu(p+1Y") = f1pps™).
In summary
324: = 2 g1
(4. 4) [T T o
Tirues =S (st ).
In the same manner as the above we can define the independent
elements as follows :
In case of m = 4f + 3, define the elements in KO~ “i(4¢+3,2r) by
T§j+1.4l+3= Pgu ak—] (k=1s R r)!
Then, we have
(. 5) {ﬂ?:],wrs = fl(/‘l.’:::l)
6‘7,,,+L“+3 = 215,14 ,
where /=2j+2¢+ 2.
In case of m = 4¢, define the elements in K O0~Y7*(4¢, 2r) by

T:/n.n = Pg””ra"‘ (k=1, °cy f):
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then, we have

(4.6) { Tivna = S (s™)

0o = 287,
where [ =27+ 2¢+ 1.
In case of m=4¢+1, define the elements in KO~*~%(4¢-+1, 27) by
Thrsuer =pgor B! (k=1, -, 7),
then, we have
{T;‘Hs.qzn = fl(#u“o-]) .

7 — k—1
8T§j+s.4z+l = 2Mm ),

(4.7)

where /=2j+2t+2.
From the above mentioned facts, we have the following results :

Proposition (4.8). The rank of KO~"(m,27) is given by the table
(4. 3).

5. The Bott sequence

There is an exact sequence due to Bott, which may be written as
follows:

(6.1) > K0X) > KY(X) 5 KO (X)) S KO (X)) —> o,

where I: K***(X) —> K*(X) is the Bott periodicity isomorphism and d
is the multiplication by the generator w of KO(S') (cf. [2], [3]). The
sequence commutes with homomorphisms induced by a mapping f : X—>
Y, and also the homomorphisms in (1.2). In our case, & is immediately
known by §4. As for additive homomorphism pI~?, from the observation
of §4, we have the following

Lemma (5.2). i) Inpl™": K™Y"%m, 2r) — KO~Y(m, 27),
pI(ga*) = 2af (¢f 7=0),
eI (g'a*)=za% mod 2 Gf j=1).
i) In pI'; K9 (4242, 2r) —> KO™Y(4t+2, 27),
PI—I(g2j+l-Ivak—l)= 7’:7'.4! o
i) In pI™': K~Y%(4¢+3, 2r) —> KO~Y-'(4¢+3, 27),
PI"(g""“ﬂaH) = Tfjn.um-
iv) In pI7': K~Y-'(4t,2r) — KO %42, 2),
pI"(g"’“?‘a"") = T’;j+ 2,4t
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vy In plI': I’Z""“’(/lt, 27) —» KO~Y9(4¢, 27),
eI (g¥ra* ) =0 mod 2.
vi) In pI7': K™¥%4t+1,27) —> KO %4t+1, 27),
pI—l(g‘lﬁﬁﬁak—l) = T’:j+3,u+1-
Proof. Since 2zak= pe(za) = p(2g°a*) =2p(g’®*), we have p(g’a¥)
=za* mod 2. i.e. pIY(g'a*)=za% mod 2.
Since epI ' (g¥+ra* ™) = g¥(y+7)** =0 in K-(4¢,2r) by Lemma
(3.9), 2pI7(g" ™) = pepfig et = 0. ie. pI-(gH 7 =0

mod 2.
The rest is trivial.

6. Computation of T(O"(m, 2r) for m=0,1,2 and 3

Since D(0, 27) ~ CP(2r) and KO0, 2r) = KO~(CP(2r)), we deter-
mine KO~‘(m, 2r) for m = 1,2 and 3 by the induction on m.

6. 1. Considering the following exact sequence
0 — K0(1, 2r) —> KO0, 27),
rank KO7(1,27) = 0 implies KO*(1,27) = 0.

In the same way as the ahove, we have KO~%1,2r) = 0.
Consider the following exact sequence

_ T ~ ;
0 —> KO'1,27) ‘— KOY0,2r) — KO~(S'ACP(2r))
—> K07'(1, 2r) —> 0.
By (4. 2), i'(ag) = p5, therefore #' is epimorphic. Hence we have
KO'Q,2r) = < &, v, 0 >
and 1?0'7(1, 2r) = <pha o 7T >
Consider the following exact sepuence
~ b~ ~
0 — K01, 2r) — KO0, 2r) —> KO*(S'ACP(2r))
—> K01, 2¢) —> 0.

Since rank KO=%(1,2r) = r and KO ¥S'A\CP(2r)) is free, i' is isomor-

phic. Therefore we have KO~*(1,27)=Z® and there is a basis a,, **, @,
such that ¢! (ax)= 4" and 2a; = zaf by Lemma (4. 2). Furthermore,
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we have KO3 (1, 27) = <7rhy ot TEa S
Consider the Bott sequence

~ -1 . ~ ~
K1, 2n "5 B0, 27) 24> BO'(1, 20) —> B2, 29).

Since rank KO™'(1, 2r)=0 and K~*(1, 27) is free, we have e=0. Further-
more plYga*)=2at by Lemma (5.2). Therefore we have I?O"(l, 27)=
Z{”, which is generated by wa,, -, wa;.

In the same way as the above, we have KO™(1, 2r)=Z5”, which is
generated by wae,, -, wa,.

6. 2. Consider the following exact sequence
0 —> K02, 2r) — K0O'(1, 27) > KO(S* ACP(27))
—> KO'(2, 2r) — K01, 2r) —> 0.
Since 4=0, we have
K02, 2¢) = Z
and KO%2,27) = <yba voe) 7ha, Coy voe, 05 >,
In the same way as the above, we have
K02, 2r)=2Z%,
and KO ™2,2¢) = <rls *, 7ha by, =+, B, >,
where #!(b) = a. and 2b. = 2ag.
Next consider the following exact sequence
0 — K072, 2r) —> K0~(1, 29) —> KOS A\CP(27))
—s> KO™%(2, 2r) — KO™*(1,2¢) = 0.
Since (r%,)=2p/45" by (4, 7), we have KO %2, 2r)=Z¢ and KO%2, 27)
=0.

In the same way as the above, we have KO™%2,2r) = Z{” and KO~
2, 2r)=0.

6. 3. Consider the following exact sequence

0—> KO3, 2r) > K0°2. 2r)—2>K0(S* ACP2r))
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—> K073, 2r)—> KO7(2, 2r)=0.

Since rank KO°(3,2r)=r and ¢ af=a% we have KO%3,27) = <d,, -,
a;>. Furthermore we have KO7'(3,2r)=Z”, because &(yf,) =2
Consider the following exact sequence

0—>KO0™43, 2r)—> K02, 2r) —> KO Y(S* \CP(2r))

L, R073, 2) — KO'(2, 27)—>0.
KO0™(3,2r)=Z is trivial. Consider the Bott sequence
B3, 20255 K003, 2r)—> KO3, 27).

Then, since pI-'(ga®)=2a% it is known that KO~'(3,27) contains Z{

as a subgroup. Therefore, by Lemma (2.1), we have K 073, 2r)=Z"+
{7, whose free part is generated by 7is, **, ri.s
Now, to continue the computation, we use the following proposition
which is proved in the next section.

Proposition (6.1). KO3, 2¢)=0.
Consider the Bott sequence
0=KO0%3, 2r) —> K0~*(3, 2r)—>K (3, 2r)—> KO~%3, 2r) —>0,

then we have KO3, 2r)= <20y, -+, 205>, because e(zaf) = 2g°a*,
Consider the Bott sequence :

_~ I-1 ~ -~
(3, 2n——>KO0(3, 2r)—> KO3, 2) — K*(3, 2r)
— KO3, 2r)=0.
Since KO™%(3, 27) is free, by Lemma (5.2), i), pI™': K53, 2r)—> KO
(3,27) is isomorphic. Therefore, KO~%3,2r) is a free abelian group of
rank r. Now, considering the following exact sequence

0 — KOS ACP@r)) L> RO4(3, 27)—> RO*(2, 27) —>0,

by Lemma (2. 2) we obtain KO %3, 27) = <sl,, -+, s5s >, where 25, =
2’:.3 (k=1’ A r)'
Considering the following exact sequence

0 —> KO3, 27) — KO %2, 2r) — KO~*(S* \CP(27)),
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KO%3,27) = Z{” is trivial.
Our induction has completed.

7. Proof of Proposition (6.1)

To prove Proposition (6.1), we study the spectral sequence of KO-*
theory in detail. In general, the filtration of K 0~%(X) is given as follows :

KO™(X)=D""2D"*D.. DD #15... D,

where D*~?=3=kernel (5! : K 0-4(X)—KO0~¥(X?™) (X? denotes the p-skele-
tonof X). And, E, and E.-terms are given by

H*X;Z) for p=1, 5(mod 8)

By =BOC KO (p0in) = { 7 coe yme tmed 8

(7.1) {
E5 3= pr-p-3/pett.—p-i,
The dfferentials of this spectral sequence are given by

dr—=S8q*: H{(X ; Z)—>H** (X ; Z)
(7.2) {dp"'=Sg*: HY(X; Z)—>H"¥X; Zy)
dy ~**=0,08¢": ﬁp(X; Zz)_"ﬁms(X; Z)

where, 6, is the Bockstein operator associated with the exact coefficient
sequence 0 —» Z—XLZ —> 7, —> 0 (cf. [8]).

In virtue of [6, Proposition (1.6) and Theorem (1.9)], we have the
following results as for E,-terms of total degree —3 of the spectral sequence
for D(3, 27) :

If r iseven,

Efro -8t =7, ; generator : (c¢f, d***
g )
Egc-»s.—st-s =Z,+Z. . generators ; FCat ISy R
’
Byttt = 7.+ Z, ; generators : cd"*® c’d'*?
Eyre-s-ii= 7, ; generator : (¢ d“*°)

other term = 0,
where £=0,1, -+, [#/2] —1.
If r=2s+1, we can find extra terms E3** % °=Z, and E}*" %1
= Z, in addition to the above, whose generators are cd“** and c’d“**
respectively.
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Also, we have the following formulas as for Sg¢' and Sq’.
Sqg*(c)=(e)c*",
(7.3) Sq(d)=cd, Sg'(d)=0, Sq'(d’)=cd’, Sq*(d@*)=0,
S¢(d)=d’, Sg¥d)=c'd, Sg(d)=d'+c'd’, Sg¥d")=0.

Since dy(c? d**)=c’d*** by (7.2) and (7. 3), the differential

d:: Egﬂs.—sﬂ—l} > E§i+7.—-8!-9

is a monomorphism. Therefore E} % %% = Q,
In the chain complex

d

- —_ 2 - — dz —_ -
E&+4-st-8 > ESire -8i-9 5 E;aus, 8 w,

we have dy(c’, d"**?) = ¢'d™** and d(d**®) = d*** + *d*** by (7.2) and
(7.3). Therefore E*%~%-°=(,
In the chain complex

da . ds
E§‘+5.—8‘l—9 > ng#-.—sl—lﬂ 5 Eg{+0,—81—ll —_ 0,

we have di(cd"*?) = ¢*d*"* and dy(c’d**') = c*d*** by (7.2) and (7.3).
Therfore E*"~%" = Z, whose generator is ¢d“*®, where {=0,1, -,
[r/2]—1. M is trivial that E§*'%-8-2= Ei+10-8-12- 7 and its generator
is (¢’ d"“*) for i=0,1, -, [r/2] — 1. Since dy(cd“*’) = (¢’, d***), the
differential

d3: E§(+7.—M—10 > Eg(-i-lo.—al—ll
is an isomorphism. Therefore E¥*" %1 = (,

It is easy to see E3*® % B=FE}**-%-11 In the chain comlex

ds dy
S+ -89 > ES+8.-8-10 > ESt+8 8-l

we have dz(d‘”z): cldit? and dg(Czdiﬁl):Czd“n. Therefore Egﬂ-«-s.—ai—w:Z

2

whose generator is d**°, where {=0, 1, ---, [#/2]—1. Then the differential
dyy ER+6-8-10 o psivs,—s-11

is an isomorphism, because dy(d***)=(c® d**®). Therefore E%*" %1=(),
Hence we have KO~%(D(3, 2#))=0.
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8. Computation of KO~‘(m, 2r) for m > 3

Now, we prove Theorem 3 by induction on m.

8.1. Assume Theorem 3 for m= 8¢ (f==1), i.e. the followings:

KO'(8t, 27) = <@, -, >, KO™'(8t, 2r)=Z¢, KO8t 2r) = Z{+
<fy o, fr >, where e(f)=gya*™ and 2f = riq, I?O'”(St, 2¢) = ZP,
KO™(8t, 2¢) = < 20y, -, 205> + Z{, KO~%(8¢, 27) = 0, KO~%8t, 27) =
<tha ot 7es=>, KO7(8 2¢)=0.

Consider the following exact sequence

0 —> KO'(8t +1, 2r) > KO'(8t, 2r) —> KO(S¥** A\CP(27))
—> KO"(8t+1, 2r) —> KO'(8t,2r)=0.

Then, i!(cf)=a% implies KO"(8t+1,27) =<y, -+, &> and KO~'(8t+

1, 27’)= < r;.GH-h ) T7r.s¢+1 >.
Consider the following exact sequence

~ ~ 5 -~
0 — KO *(8t+1, 2r) —> KO~ *(8t, 2r)—>KO'(S*** ACP(27))
—> KO (8¢ +1, 2¢) — KO™'(8¢, 2r) —>0.
Since KO S**'ACP(2r)) is free and rank KO %8t+1, 2¢)=0, we have
KO*(8t+1,2r)=Z{. From 2fi,=7ks, Wwe have &(fi)= it by (4.6),
because KO~Y(S**! A CP(27)) is free. Therefore KO Y(8t+1, 2r)=2Z5".
Consider the exact sequence
~ I ~
0 — KO 48t+1, 2r)—>KO™(8¢, 2r) —> KO (S*** ACP(2r))
—> KO™%(8¢t+1, 2r) —KO™(8t, 2r)——0.
Since KO (S***ACP(2)) is free and {!(zaf)=za, 3! is an isomorphism.

Therefore KO™(8t+1,2¢) = Z® 4+ Z{, whose free part is generated by
zay, --+, zoy.  In the Bott sequence

—~ ~ ~ d
KO™(8t+1, 2r)—> B8t +1, 2r)—> KO8t +1, 27) —>
~ ~ ~ d
KO8t +1, 2r)—>K (8t +1, 2) — KO (8t +1, 2r) —>

KO8t +1, 2r)—> K-8t +1, 27),
e,=0 implies that d, is isomorphic, and e za})=2g'«" implies d,=0.
Therefore it is known that e, is an isomorphism and KO8t + 1, 27)
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is a free abelian group of rank r. Now, by Lemma (2.2), we have
X0“3(8t+1, 27’)=<S§,sl+1, oo S3a41 where 23§.u+1=7§,&+1-

Considering the following exact sequence
~ ~ S ~
0 —KO(8+1, 2r)—> KO8, 2r)—> KO~*(S*** A\CP(2r))
—> KO~*(8t+1, 2r)—> KO8, 27),
rank KO~%(8¢t+1, 2r)=0 implies KO~*(8t+1, 2r)=0, and 6§ &) =2%ustt™*
implies KO*(8¢+1,2r)=Z5".

8.2. Considering the following exact sequence

0—>KO~(8¢+2, 2r)—> KO~ (8t +1, 2r) —- KOY(S*** ACP(27))
—>KO0"(8t+2, 2r) —> KO8t +1, 2r) —0,
KO '(8t+2, 2r) =25 and KO"8t+2, 27)= <iydass s Thass Qo *+*, 05 >
are trivial.
Considering the exact sequence
0—>K0-%(8t+2, 2r) — KO~8t+1, 2r) == K0Y(S*** ACP(27))
-~ KO~X8t+2, 2¢) —> KO8t +1, 2r)—>0,
rank KO-%(8¢t+2, 2r)=0 implies KO %8¢ +2, 2r)=0, and &(s% g01) = ftu 4225 ™"
implies KOX8t+2,2r)=2Z".
Consider the exact sequence
0—> KO~%8t + 2, 2r) —> KO~ *(8t+1, 2r) —> KO {(S*** ACP(27))
——> KO (8t +2, 27)—> KO8t +1, 27).
KO™(8t+2,2r)=Z is trivial. By the Bott sequence
0=KO~%(8t+2, 2r) —> KO8t +2, 27r) —> K8t +2, 27),
we have KO~48¢+2, 2r)=Z, because K~48t+2, 2r) is free by Theorem

(3.1) and rank KO™*(8t+2,2r)=2r. Hence, by Lemma (2.2) we have

K0—4(8t+2; 27') = <S}.m+2, “ee, St 2o, o0, 200 >, where 23:.3;”:)":,8”2-
Considering the exact sequence

0—> KO~ (842, 2r)—> KO~(8t+1, 27) —=> KO-%S*** ACP(21))
—> KO8t +2, 2r) —> KO8t +1, 2r)=0,
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rank KO8t +2,2¢) =0 implies KO~(8¢ -+ 2,2r)=0, and 0(rfg.) =
204467t implies KO%(8¢+2, 27)=2Z5.

8.3. Considering the exact sequence

0—> KO'(8-+3, 2r)——> KO%8t +2, 2r) —>RK0~(S*** ACP(27))
~—KO"(8t+3, 2r) — KO7'(8t+2, 2r)=0,
i) = of and rank KO(8t+3,27)=r imply KO%S8t+ 3,2r)=<ay, **,
a;>, and O(yfsss) =24.557" implies I?O"(8t+3, 2r)=2Z5".

Consider the exact sequence
0—> KO %(8¢+3, 27) —> KO8t +2, 2r)—> KO~'(S*** A\ CP(27))
—> KO (8¢+3, 2r) —> KO (8¢ +2, 2r) —>0.
KO™(8¢+3,2r)=Z% is trivial. In the Bott sequence
B(8t+3, 20) 25 R0o@8t+3, 20— KO'(8¢+3, 27),

oI (ga®)=2af implies that KO~'(8¢t+3,2r) contains Z§ as a subgroup.
Hence, by Lemma (2. 1) we have KO~ (8¢+3,2r)=Z"+Z¢’, whose free
part is generated by yis+s, **, FLass ‘
Considering the exact sequence
~ i~ A~
0—> KO8t +3, 2r)——> KO8t +2, 2r)—2> KO(S*** A\CP(2r))
—— KO~%(8t+3, 2r)— KO™(8t +2, 2r) =0,
i'(zal) = zalb and rank KO%(8¢+3, 2r)=r imply KO8t +3,2r) = <za,
e, zay>>, and (st g.a)=pusspft”t implies KO™*(8¢+3,2r)=0.
Consider the exact sequence
0—>KO~%8t +3, 2r) —> KO~(8¢+2, 2r) —>KO~%(S*** ACP(2r))
—— KO (8¢t +3, 2r) —> KO8t +2, 2r)—>0.

KO™%8t+3,2r)=2Z§ is trivial. In the Bott sequence

~ I-1 ~ ~
K-8 +3, 27)~—> KO~(8t +3, 2r)—> KO%(8t+3, 2r) —>
K-%8¢-+3, 2r) —> KO~*(8t+3, 2r)=0,
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pI'(g*a*) = za; implies that KO™%8¢ + 3, 2r) is a free abelian group of
rank 7. Hence, by Lemma (2.2), we have KO *(8t+3, 2r) = <Shsws o,
S5,8043 =, where 23:.&”:7’:.&4-3-

8.4. Consider the exact sequence

. - 5~

0—>KO (8t+4, 2r) —>KO(8¢+3, 2r) —> KO(S*** ACP(2r))

—> RO8t+4, 2r)——> KO8t +3, 2r) —> 0.

Since KOYS***\CP(2r)) is free and rank KO '(8¢-+4, 2r)=0, we have
KO8t +4,27)=Z{. Furthermore, o(fg.a)=2ppp™ and (o) = of
imply KO'(8t+4, 2¢)=Z{+Z", whose free part is generated by o, ***, a.

Consider the exact sequence

0—> KO8t +4,2r) —> K038t +3, 2r) —KO™(S*** NCP(2r))
—>KO0(8t+4, 2r) — KO *(8¢+3, 2r) —>O0.
KO %8t+4,27)=0 is trivial. By the Bott sequence
0—> KO (8t +4, 2r)— KO8t +4, 27),

it is known that KO~%(8¢+4, 2r) contains Z{ as a subgroup. Hence, by

Lemma (2.1) we have KO8t +4, 2r)=Z™ + Z{, whose free part is
generated by 7iees, %, Thaese
Considering the exact sequence

~ ~ 5 ~
0—> KO8t +4, 2r) —>KO™8t+3, 27) > KO {S***ACP(27))
—>KO8t+4, 2r)—> KO8t +3, 2¢v)—> 0,

rank KO8t +4, 27)=0 implies KO8t +4, 2r)=0, and &(sg.s) =
Lartd ™t implies KO (8t+4, 27)= << zay, *+, 2 >.
Consider the exact sequence

0—>KO(8t+4, 2r) -»KO~(8t+3, 2r)—> KO%(S*** \CP(27))
—> KO %8t +4, 2r)—>KO™%(8¢t+3, 27) —> 0.
KO~ "(8+4,27)=Z is trivial. By the Bott sequence

0=KO%(8t+4, 2r)—> KO-*(8t+4, 2r)—> K-8t +4, 27),
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it is known that KO8t + 4, 2) is a free abelian group of rank 7.

Hence, by Lemma (2.2), we have KO (8¢ +4, 2r) = < SGa4d **, Shates >,
where 28;&“:2‘:.8:“-

8.5. Consider the exact sequence
0—>KO (8¢5, 2r) —> KO (8t +4, 2r) 2> K0(S*** A\ CP(27))
——> KO™\(8¢+5, 2r)—> KO (8¢ +4, 2r) —>0.

Since KO™Y(S“**\CP(2r)) is free and rank KO-8t+5, 27)=0, we have
1?0'2(8t+5, 2r) = Z{”. Furthermore, 0(rfs,s) = 2ptusspt™" implies KO
(82+5,2r)=Z¢ by Lemma (4. 1).
Considering the exact sequence
0 —> KO8t +5, 2r)—> KO8t +4, 2r) —> KO~s(S*** A\CP(27))
—> KO %8t+5, 27) —>KO0~8t+4, 2)=0,
KO8t +5, 2r)= <zay, -+, za;> and KO8t + 5, 2r) = < Thaes 0

7ie+s > are trivial.
Considering the exact sequence

0—> K-5(8¢+5, 2r) —> KO8 +4, 27) —2-> KO*(S*** A CP(27))
——> KO™%(8¢+5, 2r)—> KO~%(8¢ +4, 2r) =0,

rank KO %(8t+5,2/)=0 implies KO (8¢+5,2¢)=0, and O(sk gss) =

tursps™' implies KO~%(8¢+5, 27) = 0.
Consider the exact sequence

0—> KO%8¢ +5, 2r) > RO"8t+ 4,2r)—> KO~"(S*** ACP(2r))
——> KO (8¢ +5, 2r) —> KO~"(8¢ +4, 2r)—>0.
Since KO7(S¥** A CP(27)) is free and 4! (o) = af, 4! is an isomorphism.

Hence, KO'8t+5,27)=2"+2 §”, whose free part is generated by a,, **-,
ap. By the Bott sequence

0—> KO (8t +5,2r)—> K"(8¢+5, 2r)—> KO~%8¢+5, 2)=0,

KO'(8t+5,2¢) is a free abelian group of rank 7. Therefore, by Lemma
(2.2) we have KO '(8+5,27)= <! g+s, oo STaes>>, Where 28 g s=77 s
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8. 6. Considering the exact sequence
0—> KO8t +6, 2r)—> KO8t +5, 27) —> KO *(S*** ACP(2r))
—> KO8 +6, 2r)—> KO8t +5, 2r)—>0,
rank KO %8t +6, 27) = 0 implies KO %8¢+ 6, 2¢) =0, and 8(rfaxs) =

Oty implies KO~*(8¢+6,27)=Z§” by Lemma (4. 1).
Considering the exact sequence

0—> KO8t +6, 2r)—> KO %8t +5, 2r) —> KO~4(S*** A CP(2r))
— K048t +6, 2r)—> KO *(8¢+5, 2r) —>0,

I?O‘“(St—l—ﬁ, 2r)=0 and I?O“(SH—G, 2r)= <yiass **°, Trare 200", 205>
are trivial.
Considering the exact sequence

0—> RO~(8¢+6, 2r)—> KO (8t +5, 2¢) 2> KO~%(S*** ACP(27))
—>KO~*(8¢t+6, 2r)—> KO8t +5, 2r)=0,

rank KO'(8t + 6, 27) =0 implies KO (82 + 6, 27) =0, and (st g.s) =
Pusopd™ implies KO~%(8¢+6,2r) = 0.
Consider the exact sequence

0—> KO (8¢ +6, 2r)—> KO '(8¢+5, 2r)—> KO"(S*** A CP(27))
—> KO8t +6, 2r)—> KO"(8¢+5, 2r) —>0.
KO™'(8¢-+6,2r)=Z¢ is trivial. By the Bott sequence

0—> KO8t +6, 27) —> K%8¢+6, 2r)—> KO (8t +6, 2r) =0,

KO8t +6, 27) is an abelian group of rank 27. Therefore, by Lemma (2. 2)
we have KO8t+6,2r) = <ay, ***, ab, St,ure, ***, Shmrs>>, Where 2stg.s=

k
To.8e4 60

8.7. Consider the exact sequence
~ o~ ~
0—>KO'8t+7, 27) —— KO8t+6, 2r) > KO (S**" A\CP(27))
—> KO (8¢+7, 2r) —> KO~ "(8¢+6, 27) = 0.
i) =at and rank KO"(8t+7,2r)=7r imply KO8t +7, 27) = <a, -+,
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5>, and O(skeve)=fty.-p8™" implies KO~'(8¢+7, 2¢)=0.
Considering the exact sequence

0—> KO8t +17, 2r)—> KO8t +6, 2r)—> KO~ (S**" A CP(27))
—> KO (8¢ +17, 2r)—> KO8 +6, 2r)—>0,
K O7°(8t4+7,2r)=Z¢" is trivial. In the Bott sequence
K-8t+7, 2) 215 RO%8t +7, 2r)—> KO8t +7, 27)
£ KY8t+17, 2r)—>KO~(8t+17, 2r)=0,

pI(ga*)=2a% implies KO '(8t+7,2r)=Z{+ <e, -, &>, where e(er)
=ﬂak—1 an.d 2(3/‘5;"{_3,4.7 (mod 2). FOI’

e(7E arr) =ep(Ba* )= (34 8)a* '=2P3a*" by Lemma (3. 3)
=2¢(gy).

Hence 7%e.:=2e (mod 2).
Considering the exact sequence

0—>KO4(8t+7, 27) —1> KO8t +6, 27)—2> KO-Y(S**' A\CP(27))
——> KO8t +7,2r)—> KO8t +6, 2¢)=0,

' (zo) = zat and rank KO~(8¢ + 7, 2r)=r imply KO™8t+17,27) =<
Zao, °*% Za;>, and a(rf, 8t *5) =2{u4t+5/l§_1 implies EO—3(8t+7: 2r)=Z§r)'
Considering the exact sequence

0—> KO8t +7, 2r)—> KO8t + 6, 2r) —> KO~ %(S**" ACP(2r))
——>KO™*(8t-+17, 2r)—>KO™%8¢+6, 2r)=0,

KO™8t+7,2r)=0 and KO %(8t+7,2r)=<ylaur, -+, Thnsr=> are trivial.

8. 8. Considering the exact sequence
0—> KO~'(8¢-+8, 2r)—> KO~ '(8+7, 2r) —> KO (S*** \ C P(27))
—> KO8t +8, 2r) —> KO8t +7, 2r)—>0,

rank KO '(8¢+8,2r) =0 implies KO~ '(8t+8,2r)=Z", and 2, =17 u.r
(mod 2) implies KO(8t+8, 2r)= <, ++, >,
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Consider the exact sequence

0—> KO (8t+8,2r)—> KO8t +17, 2r)—> KO ¥S*** \CP(27))
——> KO8t +8,2r)—> KO 48t +7, 2r)—>0.
KO8t +8,2¢)=2Z is trivial. In the Bott sequence

0——> KO (8¢+8, 2r)—> KO (8t +8, 2r) —> K~%(8¢ +8, 27)
I Rovst+8, 27),

I (ga)=20k and pI (gra =0 imply EO"(BH—S, 2 =29+ < f,
-+, f,>, where e(fi)=gra*' and 2fi,=7%s.s (mod 2). For

e(riurs)=cp(gra*™)=gly —r)a*"'=2gya*"' by Lemma (3. 3)
= 2€(f k)
Hence 7fge=2f; (mod 2).
Considering the exact sequence
0—> KO™%(8t-+8, 2r) —> KO *(8¢+7, 2r) —> KO~(S*** \CP(2r))
—> KO *(8t+8,2r) —> KO (8t +7,2r) —> 0,

rank KO(8t+8, 2r) = 0 implies KO8 +8,2¢) =0, and 8(%g.) =

2p00p85™" implies KO (848,21 =2+ <za,, e, 200>,
Considering the exact sequence

0——> KO (8¢+8, 2¢)—> KO8 +7, 2r) —> KO~ (S*** A CP(27))
—> KO~%(8t+8, 2r) —> KO~(8¢+7, 27)=0,
KO7"(8t+8,2r)=0 and KO™(8+8,2r)= <rhuuss, =+, ro.sers > are trivial.
Our induction has completed.
9. Change of some generators

Now, we should like to change some generators.
In case of m=1, ¢: KO(1, 2r)—> K (1, 2r) is monomorphic for
j=3,4 or 7, because EO"(I, 2r) is free. Furthermore, we have

€(r5.1) = e(r}.af™) (/=380r7) and e(a)= e(aiaf™).
Hence
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W = g -
=7 and e =aaf! for k=1, 7.

Define y;=7}; and a =a,, then the Bott sequence implies the results in
Theorem 3.

Incase of m=2, e: KO %2, 2r) — K~%(2,27) is monomorphic for
j=0 or 1, because KO~¥(2,27) is free. Furthermore, we have

e(rh) =e(rly06™") (j=0o0r1) and e(b) = e(bat™).

Hence

k—1

7‘4‘4].2=":j,2a§—_1 an.d bk = blaﬂ for k= 1’ e 7

Define j,=yl. and b=b,. Considering the Bott sequences
K™72(2,27)—> KO~¥(2,27) —KO 41 (2,2r) —> 0

and 00— KO¥'(2,2¢) —> KO%(2, 2r),

we have the results in Theorem 3.

In case of m=8t+1, 8 +2, 8¢+5 or 8t+6, e: KO (m,2r)—>
I}"(m, 2r) is monomorphic for j=m—2 or m—6 (mod 8). Furthermore,
we have

e(sh ) = e(sh k™) for j=m —6 (mod 8)

and e(rim) = e(rlmas ™)
e(r}m) = €(28j44,m)
Hence, we have
st =) naf! for j=m—6 (mod 8)
and rin=28_, k™ for j=m—2 (mod 8).
Define s=s} . for j =m—6. Considering the Bott sequences, we
have the results in Theorem 3.
In case of m=8t-+3 or 8¢+4, e: KO (m, 2r)—>K(m, 27) is
monomorphic for j=m —6 (mod 8) and &(s}..)= (s}, na5""). Hence, we
have

} for j=m—2 (mod 8).

st m=8mat! for j=m —6 (mod 8).
Furthermore, in the Bott sequence

RO-1(m, 2r) 2> KO~/(m, 2r)——> K ~¥(m, 27),
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we have KO (m, 2r) =Imd® Im e and e(y%,) = e(zs)sqmat™) for j=
m — 2 (mod 8). Therefore, we may choose 2Sjiim, 2ZSj+omlo, ***, 2Sitem
o' as a free basis of KO~ ¥(m, 2r) for j=m —2 (mod 8). Define s=s} .
for j=m —6. Considering the Bott sequences, we have the results in
Theorem 3.

In case of m=8t+7 (or 8¢ +8), ¢: KO ¥(m, 2r)—> K *(m, 27) is
monomorphic for j=m—2 (mod 8) and e(y}.) = e(zeat™) (or &(r}.) =
e(zfiat™")). Hence we have

7Y n=2zeaf™" (or 7¥n=2zfiat™") for j=m—2 (mod 8).

Furthermore, in the Bott sequence

——> KO *Y(m, 2r)—d—>IA{J 0~ (m, 2r)—i—> K~(m, 27),

we have KO~*(m, 2r)=Im d®Im ¢ and ¢(e;) = e(e,at™) (or e(fi) = (friat™)

for j=m —6 (mod 8). Therefore, we may choose e, e, *-, eos”' (or

Fi, Ficta, =+, fiab™") as a free basis of KO ¥(m,27) for j=m —6 (mod 8).

Define s=e¢, (or f,). Considering the Bott sequences, we have the results.
This completes the proof of Theorem 3 and Theorem 4.

10. Proof of Theorem 2

In order to prove the theorem, we show the following

Lemma (10. 1). We can define p : KO (m, 2r) —> KO~(m, 2r + 2)
such that i'op=identity, where i : D(m,2r) C D(m, 2r + 2).

Proof. If m=3, define p by
plas)=as, p(s;mas™") = s5maf”, p(2)mas™") = 28;,mal™"
pzat™) = zak™! for 1<Eky,
and pwas) = wag, plw'ag)=w'as, plwsnof™")=wssmat™
P(’s; mett™) = wis; moi ™ for 1=k 7.
Then, #!op = identity.
Similarly for the cases m=1 and 2.

The inclusion ¢ : D(m, 2r) C D(m, 2r +2) is decomposed as £ = f,of,,
where #,: D(m, 2r) C D(m, 2r + 1) and ¢,: D(m, 2r +1)C D(m, 2r + 2).
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Then we have identity = ¢lop= (5! 0d,)Jop = (4,!) o (4, op). Hence, «=14,'op
is the splitting homomorphism of the following exact sequence
~ - 1
—>KO™(D(m, 2r+1)/ D(m, 2r)) —> KO~Y(m, Zr—l-l)jtaKO“(m, 27)—>.
This completes the proof of Theorem 2.

11. Ring structures of KO’ (D(m, n))

In this section we shall prove Theorem 6.

11. 1. Since p!: I?O“(RP(m))—ﬂ?O"(D(m, n)) is monomorphic (cf.
§1), the relations 2{= —23%, and 4{*'=0 follow from those in KO°(R P(m)).

Since doaty=(,—1)®(71—&—1)= —(E:QE—1) lies in p'KO°(RP(m))
and #'a,=0 (cf. [6, Theorem (2.2)]), Awt,=2'¢'(%ay)=0, where ¢ is the
inclusion defined in (1. 1).

11. 2. In this section we discuss on the case of #=27. Since e(a}*)
=a"™'=0 and e(ap)=(1/2) G+7)a"=ya’=0 (for m=8¢-+6) (e({a}) =
(r+7)a"=2ra"=0 (for m=8¢+2)) (cf. [7, Theorem 3]), 2a5* = pe(a}*)=0
and 2Laf = pe(§ap) = 0. Hence, aj*' and o lie in the torsion part of
KOYD(m, 2r)). Therefore, in case of m=8¢, 8t+1, 8+3 or 8+7
(m=8t+2 or 8+6), o' lies (af* and Laf lie) in p'KO°(RP(m)) and
the relation i'a, = 0 implies af*' = p'él(as*) =0 (as*' =0 and o =
p'itaz) = 0).

Moreover, in case of m=8{46 (m=8¢-+2), since 2¢*= pe(£?)=py?=0
(28°= p(47%)=0) (cf. [7, Theorem 3]), &’ lies in p!KORP(m)). Also ig

lies in p'KO"(RP(m)). Considering the following commutative diagram
RO ACPEN) L5 ROD(m, 20))
Pri Rt
KO'(S™) ——> KO"(R P(m)),
we have ilt=i! fl/-hr.q-a:f!;!/hua:() (i!é’:i!f!,"uﬂ:f! z:‘!f‘4z+1=0)~
Therefore we have &%=p!71{?=0 and i =p!¢!(4E)=0.

In case of m=8¢+5, 3! : KO(D(8¢t+6, 2r)) —> KOYD(8¢+5, 2r)) is
epimorphic and #'af=af, i'(§wf)=0af. Therefore, the relations «;*'=0

and £as=0 in KO'(D(8¢+6,2r)) imply the relations «;™'=0 and faj=0
in KOYD(8¢+5,27)). Moreover we have 2,0=¢!(2,£)=0 and 82=3!(£%)=0.
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In case of m=8¢+4, i': KOYD(8t+5, 2r))—> KO(D(8t+4, 27)) is
isomorphic. Therefore, all the relations in KXO%D(8¢ + 4, 27)) follow from
those in KOAD(8t+5, 27)).

11.3. In this section we discuss on the case of #=47+1. By Theorem
1 and Theorem 2, we have

KOD(m, 4r + 1))= KO (D(m, 47))+KO"(D(m, 4r+1) [ D(m, 47)),

and by [9], the groups KOYD(m, 47+1)/ D(m, 47)) are as 3) of Theorem 5.
As for the generators of the groups we have the following

Lemma (11.3). "' is a generator of the torsion part of the sum-
mand KOYD(m, 4r+1)/D(m, 47)).

Proof. By Lemma (4.2), we have i!(af)=/4% by the homomorphism
it 2 KOYD(m, 4r+1))—> KO(CP(4r + 1)). Since #*'2%:0 in KO(CP(4r
+1)) (cf. [8]), the element of*' is not zero in KOYD(m, 4r + 1)). More-

over, the element «f*' is a generator of the torsion part of order 2 of the

summand KOYD(m, 4r + 1)/ D(m, 47)), because it does not belong to KO°
(D(m, 4r)) and 2ai*'=pe(ad )=pa®*1=0 (cf. [6, Theorem 3]).
In case of m=8¢, 8-+1, 8t+3 or 8+7, since i! : KO"(m, 4r+1)—>
KOYCP(47+1)) is isomorphic, the relation aZ*?=0 is trivial.
In case of m=8f+2 or 8¢+6, considering the exact sequence
KOXD(m, 4 +2)) —> KO (D(m, 4r+1))
—> KO (D(m, 4r+2)/D(m, 4r+1)),
it is easy to see that the element fa} is a generator of the free part of the
summand KOXD(m, 4r + 1)/D(m, 47))=Z + Z, and the all relations in
KO"D(m, 4r+1)) excepting 2a2*'=0 follow from those in KOD(m, 4r
+2)), because KO'(D(m, 47 +2)/D(m, 4r+1))=0 by [9, Table (3)].
In case of m=8t+5, considering the exact sequence
ROYS*™* ACP(r+1)") L5 ROAD(8t+6, 4r+1) >
KOYD(8¢+5, 4r +1))—>0,
it is easy to see that all the relations in KOY(D(8¢+5, 4r+1)) excepting
o = 0 follow from those in K O'(D(8t+6, 4r+1)). Also we have fa? =3!
(Cad)=2!f1(z)=0, because ¥ =(1/2)f'u;p3=f"'c (cf. [8, Theorem 2]).
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Incase of m=8¢+4,i : KO(D(8t+5, 4r+1))—>KO"(D(8¢+4, 4r+1))
is isomorphic. Therefore, all the relations in KOYD(8t + 4, 4r + 1))
follow from those in KO%(D(8t+5, 4r-+1)).

11. 4. In this section we discuss on the case of #=4r-+3. By Theorem
1 and Theorem 2, we have

KO D(m, 4r +3))= KOY(D(m, 4r +2))+ KO D(m, 4r+3)/ D(m, 47 +2)),
and by [9], the groups KO D(m, 4r-+3)/D(m, 4r+ 2)) are as 3) of Theo-
rem 5.

In case of m=8¢, 8¢+1 or 8t+7, since KOYD(m,4r +3)) is isomor-
phic to KOY(D(m, 4» + 2)), the relations in KO%D(m, 47+3)) follow from
those in KOYD(m, 4r+2)).

In case of m=8¢+6, since e(fal*")=ya?"'30 in K(D(8+6, 47+3))
(cf. [6, Theorem 3]), the element {ad*' is a generator of the summand

KOYD(8t-+6, 4r+3)/ D(8¢+86, 47 +2)).
In case of m=8f+2, considering the exact sequence

> ROYS™ ACP(dr+3)") L s KOAD(m, 4r+3))
— KOD(m—1, 4r+3))—>,
there exist f!(¢) in KO°(D(m, 4r+3)) and (f!(¢)) =ya?*' 20 (cf. [6,
Theorem 3]), where 20 = p,.,,¥*". Therefore {’ =f!(s) is a generator
of the summand KOYD(8¢+2, 4r+3)/D(8¢+2, 4r+2)).
Moreover, since KO%(m, 4r+3) is free for m=8t+2 or 8+6, we
can obtain the relations in the same way as the case of zn=2r.
In case of m =8¢+45, considering the exact sequence
KO(S™*' ANCP(4r +3)")—> KO(D(m+1, 4r +3))
—> KOD(m, 4r+3))—>0,

it is easy to see that fa% ™' is a generator of the summand KOXD(m, 4r
+3)/D(m, 4r+2)) and all the relations in KO D(m, 47+3)) follow from

those in KOD(m-+1, 4r+3)).
In case of m=8¢+4, considering the following commutative diagram
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. f
0—-K0(D(m+1, 4r+3)/D(m+1, 4r +2))>K0(D(m, 4r+3)/D(m, 4r+2))
|

V! Iz

—~ ;! —~
0-K0(D(m+1, 4r+3)) AN KOYD(m, 47+3)),

it is easy to sze that #'0ai™*' and one more element x of order 2 are gene-
rators of the summand KOYD(m, 4r + 3)/D(m, 4r +2)) and the relations
in KO"(D(m, 4r+3)), excepting #°, 4%, tx and oux, follow from those
in KO(D(m-+1, 47+ 3)). Consider the diagram of Lemma 2 of [7], in
which the functor K is replaced by the functor KO, xay=0 and x7=0
are trivial. Also we have xi,=0, 0af*', x or x-+0af*' and #*=0,
¥, x or x+0ad .

Oog
In case of m=8¢+3, considering the following commutative diagram

Z,—> KOAD(m+1, 47+3)/D(m+1, 47 +2)) —>

l l,,, KOYD(m, 47+3)/ D(m, 47+2))
! Pt
RKOYS™' \CP(4r+3)")—KOND(m-+1, 47 +3))— K OD(m, 4r+3)),

it is easy to see that y=;!(x) is a generator of the summaud KO (D(m,
4r+3)/D(m, 4r+2)) and the relations in KO%(D(m, 4y +3)), excepting y?,
follow from those in KOD(m+1, 4+ 3)). Since the element y is the
image of a generator of KOYS****)=Z, by f!: KOY(S****)—> K0°
(D(m, 4r+3)/D(m, 4r+2)), we have y*=0. Therefore, we have 2?=0
or fai*'.

This completes the proof of Theorem 6.

REFERENCES

[1] J.F. Apams: Vector field on spheres, Ann. of Math, 75 (1962), 603—622.
[2] D.W. AnDErsON: Thesis,

[3] M.F. Atrivan: K-theory and reality, Quart, J. Math. Oxford Ser. (2) 17 (1966), 367
—386.

{41 R. BorT: Quelque remarques sur les théorémes de périodicite, Bull. Soc. Math. France
87 (1959), 293—310.

[5] A. DoLp: Erzeugende der Thomschen Algebra %, Math. Z. 65 (1956), 25—35.

[6] M. Fuju: Ky-groups of Dold manifolds, Osaka J. Math, 3 (1966), 49—64.

[7] M. Fu: Ring structures of Kp-cohomologies of Dold manifolds, Osaka J. Math. 6 (1969),
107—115.

[8] M. Fumn: Ko-groups of projective spaces, Osaka J. Math. 4 (1967), 141—149,



84 M. FUJII and T. YASUI

[9] M. Fum and T. Yasui: Ep-groups of the stunted real projective spaces, Math, J. Oka-
yama Univ., 16 (1973), 47—54,

OKAYAMA UNIVERSITY
YAMAGUCH!I UNIVERSITY

(Received August 21, 1972)



