ON THE DEFICIENCIES OF MEROMORPHIC
FUNCTIONS OF FINITE ORDER

MasayosHl FURUTA

1. Introduction

Let f(z2) be a meromorphic function in [z[<Ceo. The standard
symbols of the Nevanlinna theory

log*, m(r, @), N(r, a), T(r, f), z=re",

are used throughout this note. Moreover, we use the following notations.
The order 4 and lower order g of f(z) are defined by

A=lim sup _]P_g_M ,‘=lim inf ]'Og T(r: f).
Toeen logr ’ P log »

The deficiencies (g, f) in the sense of Nevanlinna and J(e, f) in
the sense of Valiron, of the value @, are defined by, respectively:

e omlr, G) T m(r, a)
o(a, f)—hrrrl_.}nnf T f)’ Aa, f )—11131 sup T )"

where the total deficiency X d(q, f)<2.
The quantity #(f) is defined by

N(r, 0)+ N(r, =)
T(r, 1)

Now, oneof the conjectures of F.Nevanlinna [5] is that 6(a., f)=

g(k)/ % (g(k) : an integer) if f(2) is a meromorphic function of finite order
4 with 3d(e, f)=2.

A. Pfluger [6] showed that the conjecture is valid for the entire
functions, and A.Edrei [2, p.54] pointed out without proof that it is also
valid for meromorphic functions with ; d(a, f)=1 and (e, f)=1. We

x(f)=1lim sup =2—-3(0, f)—d(eo, f).

shall show that g(%) is the number of asymptotic paths with the asympto-
tic value @ (Theorem 1).

It is plausible that contributions, to a deficiency 6(a., f), of f near
the paths are even, and considering a subdivision of deficiencies, we
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obtain some results: that reflect this in a sense (Theorem 2 and its Corol-
laries).

The method of proofs in this note is mainly due to A. Edrei and W.
H. J. Fuchs [4].

2. Statement and discussion of results.

We take 2,=0, @.=cc and finite values a, (k=1,2, -+, 5).

Let f(z) be a mercmorphic function of finite order 4 in |z|<Too,
and p the integer defined by

1 1
1y, 1.
prg=i<ttg

From Theorem 6 of [3] (p.298), Lemma 1 of [3] (pp. 298—299) and
Theorem 3 of [1] (p. 173), we see that if

2.1) § 6(a, f)=1 and &(, f)=1,
then
(2.2) A=p and 1=p=1.

Frequently we use the following

Lemma A (Edrei and Fuchs [4], p. 279). Lef f(2) be a meromor-
phic function of finite order 2 in |z| <<oco. Give ¢ (0<<e<<1/16) and
0 (0<<d<<l/e) arbitrarily. If .(f)=0, then A=p and there exists a
sequence {c,) (c.=c(@®); a=e**") such that

|log|f(2)] —Re c.2”|<<de|c.lr”  forzE I',—E, (|z|=r)if r is

sufficiently large, r>>r, where
r={z; "< |z)<a*i)

and the exceptional set E, is contained in the finite number of discs in
I U Ul.,, the sum of whose radii doesn't exceed 4e’0a”.

From Theorems 2 and 3 of [4] (pp.263—264), we see that if (2.1)
holds, there exist p asymptotic paths £®(k=1,2, -, p) with finite
asymtotic values such that each of £®(k=2, ..., p) is the rotation of
D around the origin, of angle (k—1)2x/p, and denoting by a. (k=
1,2, -+, s; s<p) distinct values among the asymptotic values correspond-
ing to these paths, then
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(2.3) k§ oa., f)=1.
As an immediate consequence of this result, we obtain the following

Theorem 1 (see. Edrei [2], p. 54). Let f(2) be a meromorphic
function of finite order * in |z|<<oo. If (2.1) holds, then

é(ax, f) = q(k)/2,
where q(k) is the number of asymptotic paths with the asymptotic value
a: (k=17 2’ M S)'

Now, we consider a subdivision of deficiencies. To do this we need
the following definitions;

D= >1}n{3; Izl>ro}’

. 1
{z @) —ad
D.={z; |f@)|>1}N{z; |z]|>7r}  (7,>0)

and D{P(=1,2, -, q(k) or DP(=1,2, -, g(c0)) are the disjoint com-
ponents of D, or D., respectively. We set

F. (N={0; z=re®ED, } where F.(r)C[0, 27),
F.(N={0; z=re®eD..} where F.(r)C[0, 2x),
FP(n)=1{0; z=re’eD} (1=1,2, -, q(k)),
FO(r)=1{0; z=r7e"=D®} (1=1,2, +-, g(e0)).

Further we set
. W =ig 1 =
m(r: ak: f» Fk (1')) 27!. Fg)(r)log If(z)_alcl d0 (l 1; 2: b q(k))

m(r, oo, f; FO(r)) =§1‘;SF2>(,,10g* |f(z)| a0 (1=1,2, -+, (o))

and

S —13 3 m(rx Qi f; F(;’(r))
09(a,, f)—lurr_x.:nf T )

@ o m(r, a, f3 FL@) o '
4ay, f)—hrgl*gup ) (l=1,2, -, q(k)).

Then we have



28 M. FURUTA

£ 0%a,, ) < Na, £)< day, 1)< 5 8a, ).

When we take f'(z) for f(z) in the above definitions, we use the
symbols Gy(7), Gu(r), G°(r) and G¥(r) in place of Fy(r), F.(r), F(r)
and F&(r), respectively.

We set '
3 m(r, ax, f; Gm(r)) i i @, £ 3 Gi(7)
5(ak, f)_ hl’]il’:nf ( r, f) é(ah f)_ llm lnf T(r, f) ’
G — m(f av, f; GS (7')) i m(r, L an S GP (7’))
0(a,, f)= I1E:nf 0, F) 8%y, f)= hm 1nf ACED) ,
m(r a, [ Ga (f)) m(r a [ Go(r))

Hax, f )—hm sup T 7) , da, f)= hm  sup 0 )
AYq,, f)—hm supm(r a,,,(f’ ‘g (7)) , 4%as, f)= lun supm(r a"(f 2 fC)?“’(r)).

Using Lemma A, we obtain the following

Theorem 2. Let f(2) be a meromorphic function of finite order 2
in [z]<<oo. If 8(0, f)=1 and (o, f)=1, then

30, F)=TI0O, /=1, oo, )=13%e0, £)=1,
000, F)=1/4, 3o, £)=1/1  (U=1,2, ).

Corollary 1. Let f(2) be an entire function of finite order A.
If 60, f)=1, then

A, f) =3 A“’(oo =1,
89 (oo0, f) = d“’(w, fl=1/2 (1=1,2,-,4).

Corollary 2. Let f(z) be @ meromorphic function of finite order A in
|z] < oo. If(2.1) holds, then

3o, £)=B(e0, 1) = 250, F)=1, Fe0, )=1/2 (=12, 1),
3(2, £)=0 (so that 39(o0, £)=0 (I=1,2, -, ),

Aae, £)=0 (so that 6(ay, f)=0 (=1,2, 7)),

Naw, £)=da, £)=Mawf), 1@, ISI2 (=12, 1),

From Theorem 1 and Corollary 2, the author thinks that the following
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could be ﬁroved: Under the condition (2. 1),

A

3o, £) = 280(co, f)=1, 2 5109a, f) =1,

0®(e0, f) =1/2(=1,2,++,2),  0%a, f)=1/2 (=12, -, q(k)).

Theorem 2 shows that this is valid in the special case that 3(0, f)=1
and (0, f) = 1.

3. Proof of Theorem 1

We put 6=1/(p+1)", where p=24 by (2.2), and take ¢ (0<<e<C1/16)
arbitrarily.

Since f(2) satisfies (2.1), «(f)=0 by Lemma 1 of [3] (pp. 298—
299). Hence, by Lemma A and Theorem 1 of [4] (pp.261—262), there
exist sequences {r,} and {¢.] such that

1 —~ —
<Ly, <oy (a=eP*D), {z;|2z|=r}N(E.VE,.)=0,

(3.1) llog|f'(2) | —Re €.2°| <4e|E,|r2 (lzl=r.; n>n)
and
(3.2) lealre=QQ+o0)nT (r,, f) on I',, where E, are the

exceptional set for f'(z).

Let @, be the argument of ¢,. We put E.,(rﬂ)= {0; cos(pf+a,)=<

—~ P o~ —~ °
—5¢}. Then Go(r,.)=LZ; G®(r,), where each G{(r,) is a component of
~ .. [(4=3)_ @, (4—1) ru,,]
Gy(r.) contained in [(—zr—— =g T (1=1,2, -, p). We
(r2) % " 2 pl (=12 )

put P = {r.e”®; 0€GP(r,)} (1=1,2,:,p). Let ¢(1) be the number
of asymptotic paths with an asymptotic value @, We may assume with-

out loss of generality that ~#“(/=1,2, .-, g(1)) are these asymptotic
paths.

As shown in [4] (pp. 289—290)
lim f(2) = a,

uniformly on 4¥ for each /=1, 2, ---, g(1).

)~
We put Gi(r,) = iZiG.S"(r,,). Then
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w1

A log
= 2 5 u(") lf(Z) I
In view of (3.1) and (3. 2), we deduce from Lemma 7 of [4] (p. 285)

d7=0(1) (lz] =7, ; n>no).

di log* —7——df+O(log r.)

SES log S
£ 20 gco(r) -6l If(z) akl = 2 Golrd- G(r)]f()l

—2~ ]c,,lr (p— q(l))r— cos (p)di+4e|¢,|r2+0O(log 7,)

ap

= (1+0(1)) (1—-‘1-2_) +dne)T(r., 1) +OClog 7.),

Sl 5 log* S
iy g dog IO
k=227 [0, 21y — (,0(1 3 lf(z)’— l 27 [0.2:)—Eo(gr ) lf,( )I

<9+ 0(1))=e T(r,, f)+O(log 7,) (|z]|=ru).

=7 d9+ O(log 7,)

Therefore
élm(r,,, a)<(1+0(1) (1 _q_g) +137e)T(r., )+ O(log 7,).

By Lemma 1 of [3] (pp. 298—299)

T(r,f) _
3.3) lim T(r A =L

Hence

5 \ﬁ m(7., ax) < lim i m(r., ax) (1)
(ax, f) S 1171113001nf T f) 11E:nf1§2 TG f) <1- 3 + 13me.

Thus, we deduce from (2. 3), being ¢ (0<<e<C1/16) arbitrary,

oa, £) = q(1)/p.
Similarly, we have for 2 < k <,
oas, f) = q(k)/p.
Since :;—“. g(k)=p, we deduce from (2. 3)

iay, f) = q)/p (k=12 -,5)

Since p=/, the proof of Theorem 1 is now complete.
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4. Proof of Theorem 2

We take ¢ (0<<e<<1/16) and 0 (0<<d<<1/e) arbitrarily. By Lemma
A and Theorem 1 of [4] (pp. 261—262), there exist sequences {r,} and
{c.} such that

A, <y, << Q™ {z; |z]=r.} N(E,VE,.)=0

(4.1) [log| f(2)| —Re c.2” | <4elc,|7? (lz|=r)
and
“4.2) lea|rP=Q+0Q))=T(r, f) (lz]=r, zET,).

We put ¢, = |c.|e™ (c.20) and Fu(r, n) ={0; cos(p?+ w,) = 4e}.

~ P A —~
Then we have F.(r,n) = 3. F®(r, n), where each F®(r, n) is a compo-
=1

nent of F.(r, n) contained in [@%27:—%” (412"; Dy ] (=1,2,-,p).

In view of (4.1) and (4. 2)

mlr., 0, F1 FOr)) < - Icnlrng{cos(pﬂ—{—w )-+4e}dd

F (r)
”

glr lenl rﬂrp‘ cos(pf) do+4e|c,|r?

p

= (1+0(1)) (% +4re) T(r., f),
m(rs, 0, f3 FO(r,) — FO(r,)) < 8(1+0(1)7e T(ra, f) (n>n,),
where FO(r,)= F‘S’(r,,, n), so that we have
mr., o, 3 FOr.) < (140(1)) (% + 127€) T(ra, f).

Hence, we have, being ¢ (0 <<e <C1/16) arbitrary,

D00 i ing M 0, 3 FO(ra) 1 =12 -
4.3)  %P(eo, f) < lim inf T ) Sp (=12, p).

Let J(r, n) be the part of the exceptional set E, on |z| =7, 1i. e,
J(r,n)={0; z=re®=E,}. Then we have
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4. 4) meas J(r, n) < 8re™.
In view of Lemma A, (4.2) and (4. 4)
mir, oo, £;FO0) = (log* 7 @10z k| toge1f(a)lav
27 ) p @5 2 FOr,my - acr,md

{cos(p0+w,)—4¢€) do
FOrmy-acr )

ST

(1= 48)77,

glc,._lr”{ 1] cos(pﬂ) do ——meas J(r, n)— 46}

%) st
= (1+0(1) (5% —tred—4xe) T, £),
so that we have
(4.5) 8D(co, £) 2%—-% — dme—4ng®d

We deduce from (4. 3) and (4. 5), being ¢ (0<<e<C1/16) and 8 (0<<6<<1/e)
arbitrary,

0(co, f) = 1/p (=1,2, -, p).
Thus, we have '
8(o0, £) = 530(eo, f) = 1.

Next, taking 1/f for f, we have by the same calculation as the
above one

80, f) =1/p (/=12, -, p).
Thus, we have

%0, £) = 2090, £) =

Since p=32, the proof of Theorem 2 is now complete.

5. Proofs of corollaries

(1). Proof of Corollary 1. By Lemma A for an entire function f(2),
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(5.1) log| f(2)] <Re ¢,2° + 4¢lc,|r* on I..
In view of (4.2) and (5. 1)
m(r, o, £3 FO) < (1+o(D) (- + 127) T(r, £),
e (0<<e<<1/16) being arbitrary, so that we have,
AP0, f)<1/p (=12, p).
As 69 (oo, f) < 4¥(o0, f), we deduce from Theorem 2

80 (eo, f) =d4(c0, f)=1/p (I=1,2, -, p)
and

A0, f) = 2 40, £) = 1.

(I1). Proof of Corollary 2. We deduce from [7] (pp. 23—24), (2. 2)
and Theorem 2

(5 2‘) 6”)( 0’ f,) = llp (l=1) 2’ R p)’
(5.3) 8%9(co, f1) = 1/p (1=1,2, -, p).

[}
Since log*|f'|< log*|f|-+log*| f? [,

mir, =, f'5 L) S mlr, =, f5 CO)+m(r, L)
= m(r, o, f; GX()+O0(logr)  (r>r)
and hence, we deduce from (3. 3) and (5. 3)
8D (o0, f) Z 0¥ (oo, f1) = 1/p (=12, p)
As 333%(c0, f) < ¥(eo, f) < (o0, f) = 1, we have

800, £) = &(o0, £) = 3389(c0, £) = 1

and
8¥(co, £)=1/p (1=1,2, -, p)
As 3(c0, f)+8(e0, f) < 8(co, f), we have
(co, f) =0 (so that 8 ¥(eo, f)=0  (I=1,2,,p)).
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Since we have

+ ._1_ l + f’
(5.4) log |f_akl§_log+lf, | + log If——_—akl’

. I f!

m(r, @, f; Go(r)) < m(r,0, f ,Gw(r))+m(r,m)
= O(log r) (r > o).
Hence
Na, f)=0 (so that 6%(a,, f) =0 ¢=1,2, -, p).

Therefore

A(ak,f) gz(“/nf)"‘ﬁ(ak»f) = é_(ak;f)gd(ah f)

and hence, we deduce from Lemma A of [2] (p. 59)

o(ax, f) =4 (a, f)=£(ax-, I

By (5. 4)

m(r, @y f3 GP() < m(r, 0,1 GO + m (r, L)
f—a

= m(r, 0, f'; GP(r)) + O(log 7),

so that, in view of (3. 3) and (5. 2), we have

0@, f) =620, f) = 1/p (=12, -, p).
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