A NOTE ON GALOIS THEORY

MIGUEL FERRERO

Throughout the present note, $R \subset S$ will represent rings with common identity such that $R \subset Z(S)$ (the center of S). If G is a finite subgroup of G(S/R) (the group of all R-automorphisms of S) with $S^a = R$ and there exist elements x_i , y_i ($i = 1, \dots, n$) in S such that $\sum_i x_i \sigma(y_i) = \delta_{1,\sigma}$ for every $\sigma \in G$, then we say that S is strongly Galois over R with Galois group G. On the other hand, if S is an R-separable algebra and finitely generated (abbr. f. g.) and projective as an R-module, and if there exists a finite subgroup G of G(S/R) with $S^a = R$, then S is said to be weakly Galois over R (see [10]).

In §1, we prove that if S is weakly Galois over R then C=Z(S) is weakly Galois over R, S is f.g. projective as a C-module and separable as a C-algebra and there exists a finite set $L \subset G(S/R)$ such that $S^L = C$. If R has no idempotents except 0 and 1, S is weakly Galois over C (see [7; Th. 3] and [4; Th. 1]). On the other hand, every R-automorphism of C can be extended to an automorphism of S. In §2, we obtain certain results on the quaternion algebra Q(R) over a local ring R in which 2 is invertible. Although there can be a finite subgroup H of G(Q(R)/R) such that $Q(R)^H$ is not R-separable, we have a 1-1 correspondence between R-separable proper subalgebras of Q(R) and subgroups of G(Q(R)/R) whose orders are Q(R).

The author wishes to thank Dr. M. Harada for the useful suggestions in the preparation of the manuscript.

1. Weakly Galois extension

The following generalizes [7; Th. 3] as well as [4; Th. 1] (the definitions of weakly Galois are slightly different).

Theorem 1.1. Let R and S be rings, where $R \subset C = Z(S)$ and S is weakly Galois over R. Then, C is weakly Galois over R, S is C-separable and f. g. projective as a C-module and there is a finite set $L \subset G(S/R)$ such that $S^L = C$. In particular, $S^{G(S/C)} = C$. Furthermore, for every $\sigma \in G(C/R)$ there exists $\tau \in G(S/R)$ such that $\tau \mid C = \sigma$. If every automorphism in G(C/R) can be extended uniquely to an automorphism of S

12 M. FERRERO

then S is commutative. Finally, if R has no idempotents except 0 and 1, there is a finite subgroup $F \subset G(S/R)$ such that $S^F = C$, i.e., S is weakly Galois over C.

Proof. Since S is R-separable and f. g. projective as an R-module, S is C-separable and f. g. projective as a C-module and C is R-separable and f. g. projective as an R-module ([1; Prop. 1.2 and Th. 2.3] and [7; Lemma 2]). Let H be a finite subgroup of G(S/R) with $S^H=R$, and $H'=H|C=\{\sigma|C:\sigma\in H\}$. Then, $C^{H'}=R$ and C is weakly Galois over R. Now, we shall consider the following three cases:

- I) C has no idempotents except 0 and 1: In this case, C is H'-Galois over R. Let $F = \{ \sigma \subseteq H : \sigma \mid C = 1 \}$. Then, $C \subseteq S^F$ and F is a normal subgroup of H. Therefore, $H \mid S^F$ is a group of R-automorphisms of S^F isomorphic to $H \mid C$. Since $(S^F)^H = R$, we obtain $S^P = C$ by [3; Cor. 5.6]. On the other hand, H' is the group of all R-automorphisms of C ([2; Cor. 3.3]), and so $G(C/R) = H \mid C \subseteq G(S/R) \mid C$.
- II) R has no idempotents except 0 and 1: Since C is weakly Galois over R, there exist mutually orthogonal minimal idempotents e_1, \dots, e_n in C such that $C = \bigoplus_{i=1}^n Ce_i$ where Ce_i has no idempotents except 0 and 1 and it is Galois over R ([9; Prop. 1.3]). Since every e_i is central, $S = \bigoplus_{i=1}^n Se_i$, where Se_i is R-separable and f. g. projective as an R-module. Let $H_i = \{\sigma \mid Se_i : \sigma \in H, \ \sigma(e_i) = e_i\} \subset G(Se_i/R)$. As in [9; Prop. 1.3], we can prove that H is transitive on $\{e_1, \dots, e_n\}$. Now, let $s \in (Se_i)^{H_1}$ and let $\sigma_j \in H$ be such that $\sigma_j(e_1) = e_j$, where $\sigma_i = 1$ by definition. We put $t = \sum_{j=1}^n \sigma_j(s) \in S^H = R$. Then, $s = te_1 \in Re_i = R$. Therefore, $(Se_1)^{H_1} = R$ and Se_1 is weakly Galois over R. Since $Z(Se_1) = Ce_1$ has no idempotents except 0 and 1, by I), there exists a finite group F_1 of automorphisms of Se_1 such that $Ce_1 = (Se_1)^{F_1}$. Similarly, for every i we obtain a finite group F_i of automorphisms of Se_1 such that $Ce_1 = (Se_1)^{F_1}$. Similarly, for every i we obtain a finite group F_i of automorphisms of Se_i such that $Ce_i = (Se_i)^{F_i}$. Putting $F = \prod_{i=1}^n F_i \subset G(S/R)$, F is a finite group and $S^F = C$.

Now, let $\sigma \in G(C/R)$, and $\sigma(e_i) = e_{\theta_i}$. Putting $\tau_{ij} = \sigma_j \circ \sigma_i^{-1} \in G(S/R)$, it is clear that $\tau_{\theta_j i} \circ \sigma \circ \tau_{ij} | Ce_i \in G(Ce_i/R)$. By I), we can find some $\tau_i \in G(Se_i/R)$ such that $\tau_{\theta_j i} \circ \sigma \circ \tau_{ij} | Ce_i = \tau_i | Ce_i$, or, $\tau_{i\theta_j} \circ \tau_i \circ \tau_{ij} | Ce_i = \sigma | Ce_i$. Let $\rho_{ji} = \tau_{i\theta_j} \circ \tau_i \circ \tau_{ji} : Se_j \to Se_{\theta_j}$, and let $\rho : S \to S$ be defined by $\rho(s) = \sum_{j=1}^n \rho_{ji}(se_j)$. Then, it is easy to verify that $\rho \in G(S/R)$ and $\rho | C = \sigma$.

III) General case: We use the same notation as in [10]. Let $x \in \text{Spec}B(R)$. Then, S_x is R_x -separable and f. g. projective as an R_x -module. On the other hand, we have $(S_x)^{H_x} = R_x$. Furthermore, since S_x

is f. g. over R it is easy to see that $Z(S_x)=C_x$. Then, by II), there is a finite subgroup H(x) of $G(S_x/R_x)$ such that $(S_x)^{H(x)}=C_x$. Since C is f. g. over R, by [10; (2.14)], there exists a finite subset H^x of G(S/C) such that $(H^x)_x=H(x)$. Therefore, $(S_x)^{(H^x)_x}=C_x$ and there is a neighborhood V(x) such that $(S_y)^{(H^x)_y}=C_y$ for every $y\in V(x)$. By the compactness of $\operatorname{Spec} B(R)$, we can cover it with a finite number of these neighborhoods: $\operatorname{Spec} B(R)=V(x_1)\cup\cdots\cup V(x_p)$. Since $L=H^{x_1}\cup\cdots\cup H^{x_p}$ is a finite subset of G(S/C), $S^L=C$. But, for every $y\in\operatorname{Spec} B(R)$ there exists some i such that $y\in V(x_i)$. Then, $L_y\supset (H^{x_i})_y$ and $(S_y)^{L_y}\subset (S_y)^{(H^x\circ_y)}=C_y$, whence it follows $S^L=C$.

Now, let $\sigma \in G(C/R)$. By II), for every $x \in \operatorname{Spec} B(R)$ we have $\sigma_x \in G(C_x/R_x) \subset G(S_x/R_x) | C_x$, and so $\sigma_x = (\tau^x)_x | C_x$ with some $\tau^x \in G(S/R)$. There holds then $(\tau^{x}(c)-\sigma(c))_{x}=0$ for every $c \in C$. Therefore, there exists a neighborhood $U_{e^x}(e^x)$ is an idempotent in x) such that $(\tau^x(c))$ $-\sigma(c)$ _y = 0 for every $y \in U_{e^x}$. We cover $\operatorname{Spec} B(R)$ by $\{U_{e_1}, \dots, U_{e_n}\}$ where $e_i = e^{x_i}$, and put $\tau_i = \tau^{x_i}$. Then, for every $y \in \operatorname{Spec} B(R)$ there exists i such that $y \in U_{e_i}(e_i \in y)$ and furthermore $(\tau_i(c) - \sigma(c))(1 - e_i) = 0$. We set here $f_1 = e_1$ and $f_2 = 1 - (1 - e_2)e_1$. Then, $1 - f_1$ and $1 - f_2$ are mutually orthogonal idempotents, $(\tau_i(c) - \sigma(c)) (1 - f_i) = 0 (c \in C, i = 1, 2)$, and $U_{e_1} \cup U_{e_2} = U_{f_1} \cup U_{f_2}$ where U_{f_1} and U_{f_2} are disjoint. By induction, we can prove that if $h \le n$ then there exists a family of idempotents $\{f_1, \dots, f_n\}$ \cdots , f_h such that $1-f_1$, \cdots , $1-f_h$ are pairwise orthogonal, $(\tau_i(c)-\sigma(c))$ $(1-f_i)=0$ $(c \in C, i=1, \dots, h)$ and $U_{e_1} \cup \dots \cup U_{e_h} = U_{f_1} \cup \dots \cup U_{f_h}$ where U_{f_i} 's are pairwise disjoint. In fact, if f_1, \dots, f_{h-1} have been defined, it is enough to put $f_h = 1 - (1 - e_h) f_1 \cdots f_{h-1}$. Eventually, we obtain idempotents f_1, \dots, f_n in R such that $1-f_1, \dots, 1-f_n$ are pairwise orthogonal, $(\tau_i(c))$ $-\sigma(c)$) $(1-f_i)=0$ $(c\in C, i=1, \dots, n)$ and $\operatorname{Spec} B(R)=U_{f_1}\cup \dots \cup U_{f_n}$ where U_{f_i} 's are pairwise disjoint. For every $x \in \operatorname{Spec} B(R)$, there exists some i such that $x \in U_{f_i}$ and $x \notin U_{f_j}$ for each $j \neq i$. Then, we have $f_{i_x} = 0$ and $(1-f_i)_x=0$ for each $j\neq i$, which implies $(\sum_{i=1}^n (1-f_i))_x=1_x$. It follows therefore $\sum_{i=1}^{n} (1-f_i)=1$. Now, we define $\tau: S \to S$ by $\tau(s)=\sum_{i=1}^{n} f_i$ $\tau_i(s)(1-f_i)$. Recalling that $1=\sum_{i=1}^n(1-f_i)$ is a decomposition of 1 into pairwise orthogonal idempotens, we readily see that $\tau \in G(S/R)$. If $c \in C$ then we have $(\tau(c) - \sigma(c))(1 - f_i) = 0$ $(i = 1, \dots, n)$. Let $y \in \operatorname{Spec} B(R)$. Then, there exists a unique j such that $y \in U_{\ell_j}(f_j \in y)$ and we have $(\tau(c) - \sigma(c))_y$ It follows therfore $\tau \mid C = \sigma$.

Finally, if every R-automorphism of S can be extended uniquely to an automorphism of S, then G(S/C)=1, which implies $S=S^{G(S/O)}=C$.

14 M. FERRERO

Remark. If S is commutative, then G(S/R) is locally finite ([10; (2.16)]. However, in the present stage, G(S/R) is not so and we can not prove that S is weakly Galois over C (see §2).

Corollary 1.2. Let $R \subset S$ be rings such that $R \subset C$, and let G(S/R) be locally finite. If S is weakly Galois over R then S is weakly Galois over C and C is weakly Galois over R.

Proof. It is enough to consider the finite group generated by $H^{x_1} \cup \cdots \cup H^{x_p}$ (under the notation in the case III) of Th. 1.1).

2. Quaternion algebra

Let R be a commutative ring, and Q(R) the quaternion algebra over R: Q(R) is a free R-module with basis $\{1, i, j, k\}$ and the multiplication in Q(R) is defined by $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i and ki = -ik = j.

Suppose R is of characteristic 2 and has no idempotents except 0 and 1. Then, Q(R) is commutative and has no idempotents except 0 and 1. If Q(R) is Galois over R then o(G(Q(R)/R))=4 ([8; p. 165]). However, every permutation of $\{i, j, k\}$ defines an R-automorphism of Q(R), which forces a contradiction o(G(Q(R)/R)) > 6. Therefore, Q(R) can not be Galois over R.

We assume henceforth that 2 is invertible in R. The set of all invertible elements of Q(R) will be denoted by U(Q(R)). Given $u \in U(Q(R))$, σ_u will denote the inner automorphism defined by u.

Lemma 2.1. Q(R) is strongly Galois over R with Galois group $H = \{1, \sigma_i, \sigma_j, \sigma_k\}$, and central separable over R. If R is a local ring then $G(Q(R)/R) = \text{Int } (Q(R)/R) = \{\sigma_u : u \in U(Q(R))\}$.

Proof. It is easy to see that $Q(R)^H = R = Z(Q(R))$. Putting $x_1 = 1/2$, $x_2 = -i/2$, $x_3 = -j/2$, $x_4 = -k/2$, $y_1 = 1/2$, $y_2 = i/2$, $y_3 = j/2$, $y_4 = k/2$, we obtain $\sum_{i=1}^{4} x_i \sigma(y_i) = \delta_{1,\sigma} (\sigma \in H)$. Therefore, Q(R) is R-separable by [5; Prop. 3.3]. The final assertion is obvious by [1; Th. 3.6].

As was mentioned in §1, G(S/R) is not necessarily locally finite. In fact, if R is the field of real numbers then it is well-known that $G(Q(R)/R) = \operatorname{Int}(Q(R)/R) \simeq U(Q(R))/U(R)$ contains an element of infinite order.

Now, let $z=z_0+z_1i+z_2j+z_3k \in Q(R)$. Then, the following results are easy, and will be used occasionally in our subsequent study.

- (I) $z \in U(G(R))$ if and only if $z_0^2 + z_1^2 + z_2^2 + z_3^2 \in U(R)$.
- (II) Let one of z_1, z_2, z_3 be in U(R). If $u \in Q(R)$ and zu = uz then $u = a_0 + a_1z$ with some $a_0, a_1 \in R$.
 - (III) Let $z \in U(Q(R))$. Then, $\sigma_z = 1$ if and only if $z = z_0 \in R$.
- (IV) Let $z \in U(Q(R))$. Then, σ_z is of order 2 if and only if $z_0 z_1 = z_0 z_2 = z_0 z_3 = 0$. In case R is a local ring, σ_z is of order 2 if and only if $z_0 = 0$.

From now on, we assume further that R is a local ring with maximal ideal m.

Lemma 2.2. Let $u, v \in U(Q(R))$. If σ_u and σ_v are of order 2, then the following conditions are equivalent:

- (a) $Q(R)^{(\sigma_u)} = Q(R)^{(\sigma_v)}$, where (σ_u) is the subgroup generated by σ_u .
- (b) v = au with some $a \in R$.
- (c) $\sigma_u = \sigma_v$.

Proof. It is enough to prove that (a) implies (b). By (IV), $u=u_1i+u_2j+u_3k$ and $v=v_1i+v_2j+v_3k$ ($u_i, v_i \in R$). Since $u_1^2+u_2^2+u_3^2 \in \mathbb{M}$, one of u_1, u_2, u_3 is not in \mathbb{M} . Noting that uv=vu by (a), (b) is obvious by (II).

Proposition 2.3. Let T be a proper R-subalgebra of Q(R). Then, T is R-separable if and only if there exists an element $u \in U(Q(R))$ such that σ_u is of order 2 and $\{1, u\}$ forms a free R-basis of T.

Proof. First, we consider the case where R is a field. Assume that T is an R-separable proper subalgebra of Q(R). Then, $\dim_R(T)=2$ or 3. Suppose $\dim_R(T)=3$ and $\{1,u,v\}$ is an R-basis of T, where $u=u_0+u_1i+u_2j+u_3k$ and $v=v_0+v_1i+v_2j+v_3k$. Evidently, one of u_1,u_2,u_3 and one of v_1,v_2,v_3 are in U(R). If $z\in Q(R)^T$ then uz=zu and vz=zv. Hence, by (II), $z=a_0+a_1u=b_0+b_1v$ with some $a_i,b_i\in R$. It follows then $a_1=b_1=0$ and $z\in R$. We have seen therefore $Z(T)=Q(R)^T=R$, which implies a contradiction $Q(R)=T\bigotimes_R Q(R)^T=T$. Hence, $\dim_R(T)=2$. Now, let $\{1,u\}$ be an R-basis of T, where we may assume that $u^2\in R$. Since $T\simeq R[x]/(x^2-u^2)$ is separable and R is not of characteristic 2, we obtain $u^2\neq 0$. Concerning the converse, there is nothing to prove.

Next, we shall consider the general case. If T is R-separable then T is a direct summand of Q(R) as a T-right module (cf. [6; pp. 106—107]), and so T is f. g. projective over R. In the converse part too, T is f. g. projective over R. Then, recalling that T is R-separable if and

only if T/mT is R/m-separable and that by Nakayama's lemma every R/m-basis of T/mT can be lifted to an R-basis of T, the first step enables us to readily see the equivalence asserted in the proposition.

Finally, the last assertion is easy by (II).

Corollary 2.4. If $u \in U(Q(R))$ and σ_u is of order 2, then $Q(R)^{(\sigma_u)}$ is an R-separable proper subalgebra of Q(R) with $\{1, u\}$ as a free R-basis.

Proof. By (II) and (IV), $Q(R)^{(\sigma_u)} = R \oplus Ru$. Now, our assertion is clear by Prop. 2.3.

Combining Prop. 2.3 with Cor. 2.4, we readily obtain the following:

Theorem 2.5. If R is a local ring in which 2 is invertible, then there exists a 1-1 correspondence between R-separable proper subalgebras of Q(R) and subgroups of G(Q(R)/R) whose orders are 2.

Remark. There can be a finite subgroup F of G(Q(R)/R) such that $Q(R)^F$ is not R-separable. In fact, if R=Z/(5) and u=1+i+2j then $(i+2j)^2=0$ and $Q(R)^{(\sigma_u)}=R\bigoplus R(i+2j)$ is not R-separable.

REFERENCES

- [1] M. AUSLANDER and O. GOLDMAN: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367—407.
- [2] S. U. CHASE, D. K. HARRISON and A. ROSENBERG: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [3] M. FERRERO: On the Galois theory of non-commutative rings, Osaka J. Math. 7 (1970), 81—88.
- [4] M. HARADA: Note on Galois extension over the center, Revista de la Unión Mat. Argentina 24 (1968), 91—96.
- [5] K. HIRATA and K. SUGANO: On semisimple extensions and separable extensions over non-commutative rings, J. Math. Soc. Japan 18 (1966), 360-373.
- [6] T. KANZAKI: On commutor rings and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
- [7] T. Kanzaki: On Galois algebra over a commutative ring, Osaka J. Math. 2 (1965), 309-317.
- [8] O. VILLAMAYOR: Separable algebras and Galois extensions, Osaka J. Math. 4 (1967), 161-171.
- [9] O. VILLAMAYOR and D. ZELINSKY: Galois theory for rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721—731.
- [10] O. VILLAMAYOR and D. ZELINSKY; Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83—98.

UNIVERSIDAD DE ROSARIO

(Recived May 8, 1972)