A NOTE ON GALOIS THEORY
MIGUEL FERRERO

Throughout the present note, RCS will reprsent rings with common
identity such that RC Z(S) (the center of S). If G is a finite subgroup
of G(S/R) (the group of all R-automorphisms of S) with S=R and there
exist elements x;, . (=1, -+, n) in S such that > ,x,0(y)=46,, for every
o€ G, then we say that S is strongly Galois over R with Galois group
G. On the other hand, if S is an R-separable algebra and finitely
generated (abbr. f.g.) and projective as an R-module, and if there exists
a finite subgroup G of G(S/R) with S°=R, then S is said to be weakly
Galois over R (see [10]).

In §1, we prove that if S is weakly Galois over R then C=Z(S) is
weakly Galois over R, S is f.g. projective as a C-module and separable
as a C-algebra and there exists a finite set LC G(S/R) such that S*=C.
If R has no idempotents except 0 and 1, S is weakly Galois over C (see
[7; Th.3] and [4; Th.1]). On the other hand, every R-automorphism
of C can be extended to an automorphism of S. In §2, we obtain certain
results on the quaternion algebra Q(R) over a local ring R in which 2
is invertible. Although there can be a finite subgroup H of G(Q(R)/R)
such that Q(R)" is not R-separable, we have a 1-1 correspondence between
R-separable proper subalgebras of Q(R) and subgroups of G(Q(R)/R)
whose orders are 2.

The author wishes to thank Dr. M. Harada for the useful suggestions
in the preparation of the manuscript.

1. Weakly Galois extension

The following generalizes [7; Th. 3] as well as [4; Th. 1] (the defini-
tions of weakly Galois are slightly different).

Theorem 1.1. Let R aud S be rings, where RCC=Z(S) and S is
weakly Galois over R. Then, C is weakly Galois over R, S is C-separable
and f.g. projective as a C-module and there is a finite se¢ LC G(S/R)
such that S'=C. In particular, S°S'°=C. Furthermore, for every
o€ G(C/R) there exists == G(S/R) such that <|C=o. If every auto-
morphism in G(C/R) can be extended uniquely to an automorphism of S
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then S is commutative. Finally, if R has no idempotents except 0 and
1, there is a finite subgroup FC G(S/R) such that ST=C, i.e, S is
weakly Galois over C.

Proof. Since S is R-separable and f.g. projective as an R-module,
S 1is C-separable and f. g. projective as a C-module and C is R-separable
and f. g. projective as an R-module ([1; Prop.1.2 and Th.2.3] and [7;
Lemma 2]). Let H be a finite subgroup of G(S/R) with S¥=R, and
H=H|C={o|C:0cH}. Then, C*=R and C is weakly Galois over R.
Now, we shall consider the following three cases :

I) C has no idempotents except 0 and 1: In this case, C is H'-
Galois over R. Let F={s=H: ¢|C=1}. Then, CCS* and F is a
normal subgroup of H. Therefore, H|S” is a group of R-automorphisms
of S* isomorphic to H|C. Since (S")?=R, we obtain S"=C by [3; Cor.
5.6]. On the other hand, H’ is the group of all R-automorphisms of C
([2; Cor.3.3]), and so G(C/R)=H|CC G(S/R)|C.

II) R has no idempotents except 0 and 1: Since C is weakly
Galois over R, there exist mutually orthogonal minimal idempotents e,, -+,
e, in C such that C=@,Ce; where Ce, has no idempotents except 0 and
1 and it is Galois over R ([9; Prop.1.3]). Since every e, is central,
S=@®7..Se;, where Se¢ is R-separable and f. g. projective as an R-module.
Let H,={c|Se,:0=H, ole))=e¢,;}C G(Se;/R). As in [9; Prop. 1.3], we
can prove that H is transitive on {e, *-, e.}. Now, let s&(Se)™ and
let o;€H be such that o;(e;)=¢; where o,=1 by definition. We put
t=Y00(s)=S¥=R. Then, s=te,ERe,~R. Therefore, (Se;)'=R and
Se, is weakly Galois over R. Since Z(Se,)=Ce, has no idempotents
except 0 and 1, by I), there exists a finite group F, of automorphisms
of Se, such that Ce,=(Se,)1. Similarly, for every i we obtain a finite
group F, of automorphisms of Se; such that Ce,=(Se)™. Patting
F=T111..F;.= G(S/R), F is a finite group and S*=C.

Now, let c€G(C/R), and o{e)=e,. Putting ty=0,007'E G(S/R),
it is clear that 000t |CeiE G(Ce/R). By I), we can find some
+E G(Se,/R) such that rojioo-oq,-|Ce¢=T:]Ce,, or, rwjoriof.j]CeFGICet-
Let p,-¢=fwj°ri°7,-,:Se,-—> Ses, and let o:S—S be defined by p(s)=27
ps(se;). Then, it is easy to verify that p= G(S/R) and p|C=o.

III) General case: We use the same notation as in [10]. Let zE
SpecB(R). Then, S. is R,separable and f. g. projective as an R,
module. On the other hand, we have (S;)>=R,. Furthermore, since S
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is f. g. over R it is easy to see that Z(S;)=C,. Then, by II), there isa
finite subgroup H(x) of G(S./R.) such that (S.)*®=C,. Since C isf.g.
over R, by [10; (2.14)], there exists a finite subset H* of G(S/C) such
that (H®),=H(x). Therefore, (S,)":=C, and there is a neighborhood
V(x) such that (S,)" »=C, for every y=V(x). By the compactness of
SpecB(R), we can cover it with a finite number of these neighborhoods:
SpecB(R) = V(x,)U---UV(x,). Since L=H="1y---UH’» is a finite subset
of G(S/C), S*=C. But, for every y € SpecB(R) there exists some i
such that y=V(x,). Then, L,O(H™), and (S,)% C (S,)* % = C,, whence
it follows S“=C.

Now, let o¢= G(C/R). By IlI), for every x=SpecB(R) we have
7.€G(C./R.)C G(S./R.)|C,;, and so o,=(z%),|C. with some =€ G(S/R).
There holds then (*(c)—e(c)).=0 for every ¢=C. Therefore, there
exists a neighborhood U, (¢* is an idempotent in #) such that (z*(¢)
—a(c)), =0 for every yE Us. We cover SpecB(R) by {U., -, U. }
where e¢;=¢%, and put v;=7".  Then, for every y &SpecB(R) there
exists { such that yeU.(e,€y) and furthermore (r(c)—a(c)}(1—e)=0.
We set here fi=e, and fo=1—(l—e))e,. Then, 1—f; and 1—f, are
mutually orthogonal idempotents, (z(c)—ea(c)) (1—f,)=0 (cEC,i=1,2),
and U, UU,=U,UU, where U, and U, are disjoint. By induction,
we can prove that if A<# then there exists a family of idempotents {f,,
-+, fn} such that 1—f, -, 1—f, are pairwise orthogonal, (r{c)—a(c))
(1—f)=0(ceC, i=1, -, k) and U, U--UU,=U,U--UU, where U, s
are pairwise disjoint. In fact, if f}, ---, fn_; have been defined, it is
enough to put fo=1—(1—e)fi***fns. Eventually, we obtain idempotents
fu++, fu in R such that 1—f, «+, 1—f, are pairwise orthogonal, (z{c)
—a(e)(1—f)=0(ceC, i=1, -, n) and SpecB(R)= U,U--UU, where
U,’s are pairwise disjoint. For every x& SpecB(R), there exists some
{ such that x€U, and x& U_,«j for each j~i. Then, we have ﬂx=.0
and (1—f£),=0 for each js4i, which implies (X.,(1—f)),=1,. It fol-
lows therefore 27.,(1—f;)=1. Now, we define t:S— S by (s)=27,
z((s)(1—7). Recalling that 1=337,(1—f;) is a decomposition of 1 into
pairwise orthogonal idempotens, we readily see that t€ G(S/R). If ceC
then we have (:(c)—o(c))(1—f)=0 (=1, ---, n). Let y=SpecB(R). Then,
there exists a unique j such that yeU, (f;€5) and we have (z(c) —o(c)),
=0. It follows therfore 7|C=ao.

Finally, if every R-automorphism of S can be extended uniquely to
an automorphism of S, then G(S/C)=1, which implies S=85/=(,
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Remark. If S is commutative, then G(S/R) is locally finite ([10;
(2.16)]. However, in the present stage, G(S/R) is not so and we can
not prove that S is weakly Galois over C (see §2).

Corollary 1.2. Let RCS be rings such that RCC, and let G(S/R)
be locally finite. If S is weakly Galois over R then S is weakly Galois
over C and C is weakly Galois over R.

Proof. It is enough to consider the finite group generated by H1U
-« U H* (under the notation in the case III) of Th. 1.1).

2. Quaternion algebra

Let R be a commutative ring, and Q(R) the gquaternion algebra
over R: Q(R) is a free R-module with basis {1, {, j, £} and the multipli-
cation in Q(R) is defined by #*=j*=F=—1, ij=—ji=k, jk=—kj={
and ki=—ik=j.

Suppose R is of characteristic 2 and has no idempotents except 0
and 1. Then, Q(R) is commutative and has no idempotents except 0
and 1. If Q(R) is Galois over R then o(G(Q(R)/R))=4([8; p.165]).
However, every permutation of {4, 7, k} defines an R-automnrphism of
Q(R), which forces a contradiction o(G(Q(R)/R)>6. Therefore, Q(R)
can not be Galois over R.

We assume henceforth that 2 is invertible in R. The set of all
invertible elements of Q(R) will be denoted by U(Q(R)). Given u&
U(Q(R)), o, will denote the inner automorphism defined by .

Lemma 2.1. Q(R) is strongly Galois over R with Galois group
H={1, 0, 0,0}, and central separable over R. If R is a local ring

then G(Q(R)/R)=Int (Q(R)/R)={o,:ucU(Q(R))}.

Proof. It is easy to see that Q(R)"=R=Z(Q(R)). Putting x,=1/2,
2= —1]2, x:=—7/2, x.=—k/2, 3,=1/2, :=i/2, ».=j[2, y.=Fk[2, we
obtain .,x.0(y,)=08,, (¢c€H). Therefore, Q(R) is R-separable by [5;
Prop. 3.3]. The final assertion is obvious by [1; Th.3.6].

As was mentioned in §1, G(S/R) is not necessarily locally finite. In
fact, if R is the field of real numbers then it is well-known that G(Q(R)/R)
= Int(Q(R)/ R)~U(Q(R))/ U(R) contains an element of infinite order.

Now, let z=z,+2i+2z,j+2zk=EQ(R). Then, the following results
are easy, and will be used occasionally in our subsequent study.
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(D z€U(G(R)) if and only if 23+ zi+z+23€ U(R).

(II) Let one of 21,2, 2 bein U(R). If »=Q(R) and zu=uz then
u=a,+az with some a, @ ER.

(II) Let ze U(Q(R)). Then, o,=1 if and only if z=2zER.

(IV) Let z&U(Q(R)). Then, o, is of order 2 if and only if zz=
22,=22,=0. Incase R isa local ring, ¢, is of order 2 if and only if
2z,=0.

From now on, we assume further that R is a local ring with maximal
tdeal m,

Lemma 2.2. Let u, v€U(Q(R)). If o. and o, are of order 2,
then the following conditions are equivalent

(a) Q(R)“¥=Q(R)“», where (0.) is the subgroup generated by o..

(b) v=au with some a=R.

(c) o,=o0,

Proof. It is enough to prove that (a) implies (b). By (IV), z=ui
+uj+usk and v=vii+0vs5+ vk (us, v ER). Since wl+ui+uiEm, one
of u, us, #s is not in m. Noting that wv=vu by (a), (b) is obvious by

an.

Proposition 2.3. Let T be a proper R-subalgebra of Q(R). Then,
T is R-separable if and only if there exists an element uEU(Q(R)) such
that o, is of order 2 and {1, u} forms a free R-basis of T.

Proof. First, we consider the case where R is a-field. Assume that
T is an R-separable proper subalgebra of Q(R). Then, dimz(T)=2 or
3. Suppose dimz(7T)=3 and {1, «,»} is an R-basis of 7, where u=u,
+ i+ usf+usk and v=uvo+vi+v.j+v:k. Evidently, one of u, wu; u,
and one of vy, v, v; arein U(R). If z&Q(R)" then uz=zu and vz=2zv.
Hence, by (II), z=a,+ aiu=>b,~+bv with some @, b R. It follows then
a,=b=0 and z&R. We have seen therefore Z(T)=Q(R)"=R, which
implies a contradiction Q(R)=T®:Q(R)"=7T. Hence, dim;(T)=2. Now,
let {1, #} be an R-basis of T, where we may assume that #’R. Since
T—=R[x]/(x*—1 is separable and R is not of characteristic 2, we obtain
#*~0. Concerning the converse, there is nothing to prove.

Next, we shall consider the general case. If T is R-separable then
T is a direct summand of Q(R) as a T-right module (cf. [6; pp. 106—
107]), and so T isf.g. projective over R. In the converse part too, T
is f. g. projective over R. Then, recalling that T is R-separable if and
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only if T/mT is R/m-separable and that by Nakayama’s lemma every

R/m-basis of 7/mT can be lifted to an R-basis of 7, the first step

enables us to readily see the equivalence asserted in the proposition.
Finally, the last assertion is easy by (II).

Corollary 24. If u€U(Q(R)) and o, is of order 2, then Q(R)“»
is an R-separable proper subalgebra of Q(R) with {1, u} as a free
R-basis.

Proof. By (II) and (IV), Q(R)“”=R@Ru. Now, our assertion is
clear by Prop. 2.3.
Combining Prop. 2.3 with Cor. 2.4, we readily obtain the following :

Theorem 2.5. If R is a local ring in which 2 is iuvertible, then
there exists a 1—1 correspondence between R-separable proper subalgebras
of Q(R) and subgroups of G(Q(R)/R) whose orders are 2.

Remark. There can be a finite subgroup F of G(Q(R)/R) such that
Q(R)" is not R-separable. In fact, if R=Z/(5) and u#=1-+742j then
(t+27)*=0 and Q(R)““=RPR(+27) is not R-separable.
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