ON THE SOLVABILITY OF UNIT GROUPS
OF GROUP RINGS

Dedicated to Professor MASARU OSIMA on the occasion
of his 60th birthday

KAORU MOTOSE and YASUSHI NINOMIYA

Let P be a 2-Sylow subgroup of GL(2,3). Then, it is clear that
P=<a,b:a*=1 b0'=1,bab'=0a*>. Since the unit group of the group
ring of P over GF(3) is solvable by Lemma 1 (2), we see that Lemma 2,
Theorem 11, Theorem 12, Corollary 1 and Corollary 2 of J. M. Bateman’s
paper [2] are all incorrect. They should be corrected respectively as in
Lemma 1 (3), Theorem, Corollary, Proposition 2 and Proposition 3 of the
present paper.

In what follows, G will represent always a finite group, G’ the
commutator subgroup of G, G, a p-Sylow subgroup of G, and O,(G) the
maximal normal p-subgroup of G. Moreover, R will denote an Artinian
simple ring with center C, RG the group ring of G over R, U(RG) the
unit group of RG, and J(RG) the radical of RG. Weset D=<a,b:a'
=1, 0=1bab '=a"'> Q=<a, b:a'=1, &=V, bab'=a'> and P=
<a,b:a°=1, b°=1 bab'=a’>. We notice that a result of P. B. Bhatta-
charya and S. K. Jain[3; Theorem 1] will be used freely.

Lemma 1. Let R be GF(3). Then there holds the following :

(1) U(RA,) is not solvable, where A, is the alternating group of
degree 4.

2 If G=D,Q or P, then URG) is solvable.

(8) If H is a non-abelian subgroup of GL(2, 3) such that U(RH)
is solvable and H' is not a 3-group, then H is isomorphic to D, Q or P.

Proof. (1) A, has an absolutely irreducible representation of degree
3 over the rational number field and hence, by [4; Theorem 1], A, has
also an absolutely irreducible R-representation of degree 3. Hence,
U(RA,) is not solvable.

(2) Since the factor group G/G' is a 2-elementary abelian group of
order 4, G has four linear R-representations. Concerning non-linear
irreducible representations, it is known that D has one absolutely irredu-
cible (faithful) R-representation U:
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va-(_] ). we=( 7 ),

@ has one absolutely irreducible (faithful) R-representation V:

vo-( [ ). ve=(_] ),

and that P has two absolutely irreducible (faithful) R-representations
T, T, and one absoultely irreducible (non-faithful) R-representation 7;:

r@=( 7 7)., ne=( | ),

1 0
rw-( | ). ne=( )
r@-(_) ). mo=(° )

Hence, U(RG) is solvable in either case.

(3) Since IGL(2,3)|=48, |H|=6,8,12 16,24 or 48. If |H|=6
then H' is a 3-group, because H is isomorphic to the symmetric group
of degree 3. If |H|=8, then

=<3 N (] e

<L (S e

If |H|=12 then H' is a 3-group. In fact, every subgroup of order 12
of GL(2, 3) is dihedral. If |H|=16 then H is a 2-Sylow subgroup of
GL(2, 3), and hence H=P. If |H|=24 then H=SL(2,3). Since PSL
(2,3)==A, ([1;p.170]), U(RH) is not solvable by (1). Finally, if |H|
=48 then U(RH) is not solvable by H=GL/2, 3)DSL(2, 3).

Lemma 2. If R=GF(3) and U(RG) is solvable, then G, is normal
and G/ G, is either an abelian group or a non-abelian 2-group.

Proof. Suppose that G*= G/0(G) is non-abelian. Then, by
[2; Theorems 7 (1)] and the solvability of U(RG), G*S URG)/1+
J(RG)=U(RG/ J(RG)=U(R(G/ G'G;)) xGL(2, 3)*> for some positive in-
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teger s. Hence, G* is isomorphic to a subgroup of Il.ezus, T:(G),
where {T;:{= 1} is the complete set of inequivalent irreducible R-repre-
sentations of G such that 7.(G) is commutative and {7,:/€ L.} is the
complete set of inequivalent irreducible R-representations of G such that
T{G) is non-commutative. Since every 7T(G) (= 1,) is a subgr.up .f
GL(2, 3) such that U(RT:(G)) is solvable and T(G)' is not a 3-group,
we see that G* is a subgroup of a direct product of cyclic groups of order
relatively prime to 3 and copies of D, @ and P (Lemma 1 (3)). Therefcre,
G; is a normal subgroup of G. Further, U(R(G/G,)) being solvable,
G/ G; is a non-abelian 2-group by [5; Theorem 1].

In case G is a 2-group, we sst e(G)=(| G|—(G: GN)/4, r(G)=
| {INGG: G/N=P}| and s(G)=]|{NdG: G/N=D cor Q}|. Then, recall-
ing that {7\, 73}, U and V are absolutely irredubible faithful GF(3)-
representations of P, D and @, respectively (cf. the proof of Lemma
1 (2)), we can see that G has at least 2r(G)+s(G) atsolutely irreducible
GF(3)-representations of degree 2.

Proposition 1. Let R be GF(3), and G a 2-group. Then, U(RG)
is solvable if and only if e(G)=2r(G)+s(G).

Proof. If U(RG) is solvable, then a brief computation shows that
RG=R(G] GYP(R)¥“”, Accordingly, by the above remark, it f.llows
e(G)=2r(G)+s(G). Further, if T is an arbitrary irreducible representa-
tion of degree 2 induced by a simple component of capacity 2then G'Ker T
is isomorphic to one of D, @ and P (Lsmma 1 (3)), which m:aas
e(G)<2r(G)+s(G). Conversely, assume that ¢(G)=27(G)+s(G). Then,
we can easily see that RG=R(G/G)P(R)y >, namely, U(RG) is
solvable.

Now, we can prove the following theorem, which contains [5; The-
orem 1].

Theorem. U(RG) is solvable if and only if there holds one of the
Jollowing :

(1) R=C (of characteristic p), G,is normal, and G is a semi-direct
product of G, and an abelian group. (G,=1 by definition.)

(2) R=GF(2), G} is normal and elementary abelian, and G* isa
semi-divect product of Gi and a group <a)> of order 2 such that axa™'
=% for every x= Gf, where G*=G/0O.(G).

(8) R=GF(@3), G, is normal, e(G)=2¢(G)+s(G,), and G is a
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semi-direct product of G and G,

(4) R=(GF(2))2 and G=G..

(5) R=(GF(3)),, G; is normal, G, is elementary abelian, and G
is a semi-direct product of G, and G,

Proof. I U(RG) is solvable then U(R) is solvable, and hence
R=C, (GF(2)), or (GF(3)).. We shall distinguish therefore between these
three cases.

Case 1. R=C#GF(2) or GF(3): Let R be of characteristic p.
Then, G/O,(G) is abelian and hence G, is normal and G is a semi-direct
product of G, and an abelian group. (O(G)=1 by difinition.)

Case 2. R=GF(2) or GF(3): If R=GF(2) (resp. GF(3)), then we
may restrict our attention to the case where G/O)G) (resp. G/Oi(G)) is
non-abelian. Now, (2) (resp. (3)) is clear by [2; Theorems 9 and 10]"
(resp. Lemma 2 and Proposition 1).

Case 3. R=(GF(2)), or (GF(3)).: Since RG/J(RG) is isomorphic
to (CG/J(CG)), and U(RG/J(RG)) is solvable, we obtain CG/J(CG)=
C® for some positive integer #. Further, we claim that G/O,(G) is
ismorphic to a subgroup of U(GF(p)G/J(GF(p)G)) ([2; Theorem 7 (i)]).
If C=GF(2), then G/0,(G)=1, namely, G=G, While, if C=GF(3)
then G/Oy(G) is 2-elementary abelian, sothat G, is normal and G isa
semi-direct product of G; and an elementary abelian 2-Sylow subgroup.

The proof of the converse is obvious by [5; Theorems 1 and 2], [2;
Theorem 9] and Proposition 1.

Corollary. Let G be a non-abelian 2-group, and R=GF(3). If
URG) is solvable then G is a subdirect product of copies of Z,,Z,, D, @
and P, where Z, is a cyclic group of order i.

Proof. As is easily seen from the proof of Lemma 2, G is a subdirect
product of cyclic 2-groups and copies of D, @ and P. If G has an
absolutely irreducible R-representalion T such that 7(G)=P, then G
has also an absolutely irreducible R-representation 7' such that 7'(G)
=D (cf. the proof of Lemma 1 (2)). Accordingly, it suffices to prove that
if S is a subdirect product of Z,; and one of D and @ then U(RS) is
not solvable.

1) In the proof of [2; Theorem 10], p1,:*+,ps and p1,+--,pr should be understood res-
pectively as the irreducible representatins of G over F and the commutative irreducible

representations,
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-First, assume that S is a subdirect product of Zy;=<{c> and D. " Then,
up to isomorphism, S=<{cd>XD, S=<{c>*D={c*»x<a)>UclcY)x¥a) or
S={cd*+ D=L x<a? bYUcdcHxala®, by. I S=<{c)xD, then U(RS)
is not solvable by [2; Lemm 3]. If S={c)>*D, then |S|=32, |S'|=2
and e(S)=4. S contains only two normal subgroups N;=<(c? 1)> and
N.=<(c* a*))> of index 8 not containing S’, and does not contain a normal
subgroup N such that S/N=P. Hence, U(RS) is not solvable by
Theorem (or Proposition 1). If S={c>**D, then |S|=32, |S'|=2 and
e(S)=4. Again S contains only two normal subgroups N,=<{(c* 1)) and
N.={(c*, &) of index 8 not containing S’, and does not contain a normal
subgroup N such that S/N=P. Hence, U(RS) is not solvable by
Theorem.

Next, assume that S is a subdirect product of Zs=<{c) and @. Then,
up to isomorphism, S=d{ed>XQ or S=L{c>*Q=<{c*> X <{a)> U c{c* xbla).
If S=<{c>xQ, then U(RS) is not solvable by [2; Lemma 3]. If S=
{c>*Q, then |S|=32, |S'|=2 and e¢(S)=4. S contains only two normal
subgroups N;=<(c*, 1)> and N,={(c¢* @) of index 8 not containing S',
and does not contain a normal subgroup N such that S/N=P. Hence,
U(RS) is not solvable again by Theorem.

The next is clear by the preceding corollary.

Proposition 2. Let G be a non-abelian 2-group, and R=GF(3). If
URG) is solvable then G is of exponent 8, the center Z(G) of G isof
exponent 2, and G/Z(G) is of exponent 4.

Finally, Proposition 2 enables us to apply the same argument as in
the proof of [2; Lemma 3 and Corollary 2] to see the following :

Proposition 3. Let G be a non-abelian 2-group, and R=GF(3). If
U(RG) is solvable, then G=EXI, where E is 2-elementary abelian and
1 is an indecomposable non-abelian 2-group which is a subdirect product
of copies of Z,, @, D and P.
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