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1. Introduction

In this note, we shall show that L. Schwartz’s convergence theorem
[5] is still valid, when the linear topology of a sequential linear topological
space of measurable functions is monotone complete and continuous.
For this purpose, we shall consider ‘“‘monotone completeness”’ and discuss
some related topics, though substantial investigations on the theme have
been done in [2], [3] and [4].

2. Sequential topology

Let 2 be a measure space with measure . We shall assume that for
every non-null measurable set A of £, p#(A)=sup ((F) where F is a
FCA

measurable set of non-null finite measure. Let L be a linear space of
pr-measurable functions which take finite values for almost all £ with
respect to 7 We shall suppose that L is normal, i.e. if x¢)=L and y(@)
is measurable with |y(®)| < |x()| a.e. for t€ @, then y(#)&L. In the
sequel, we shall identify two elements of L if they coincide except on a
measure zero set. A linear topology = on L is called an ordered topology
(order-preserving topology) if there exists a base of neighborhood system
of 0 which is normal, i e there exists a neighborhood system of O:
{Va}rea such that x(f)EV,, y@®EL with |y¢) ) < | 2@¢) | imply yHEV,.
A functional || - || defined on L is called a quasi-norm if the following
conditions are satisfied :

(1) | 2]l =0<=>2x=0,

2) lz|=|yl=> =12l

3) [|Ex | =0 if £-0 for a fixed xEL,
4) l'Ex||—0 if || x[|—0 for a fixed &,
5 lz+ylI<[l2ll + [[¥]l for 2, yEL.
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HV,={x; il#l]| £1/2"}, then {V,} (n=1, 2, ---) defines an ordered
sequential topology on L.

Theorem 1. An ordered linear topology < on L is sequential iff there
exists a quasi-norm ||+ || and - is equivalent to the topology defined by

=11

Proof. Let {V,} (=1, 2 ) be a base of neighborhood system of 0,
where V, is normal, symmetric and V,,,+V,,,CV, for all » = 1.

U=Vi 4 Vigat Vit
where ¢g=3>(p,/2") and p.=0o0r 1 and V=V, Vi={0}.
n=1

Putting

[l ]| = inf g,
J;El'll

then we have
{x:llzll<<1/2)CV.Clx:[x]|< 1/27

and ||-|| satisfies the conditions of quasi-norm.

We shall consider some properties concerning the topology and order
in L.

A normal subset ACL is called semi-continuous if 0 < x; 1., x,.€4
(¢=1,2, ) imply x= A.

An ordered topology v in L is called semi-continuous if there exists a
base of neighborhood system {V,}.=, which are semi-continuous. We have
the following theorem by definition and by Theorem 1.

Theorem 2. A sequential order-topology = on L is semi-continuous
iff there exists a quasi-norm which is equivalent to = such that

0= = T.x implies sup || x|l =[x

An ordered topology = on L is called guasi-continuous if there exists
a base of normal neighborhood system {V.} e, of 0 such that for every V,,
there exist « >0 and 4’ ¢ /4 such that 0 < %, T, x, .EV, imply xEaV,.
A topology = on L is comtinuous if x; |, O implies #;, > O by =. If cis
continuous, 0 < #; T, x implies x; — 2 by -. If 7 is continuous, then < is
semi-continuous and if = is semi-continuous, then v is quasi-continuous.
By definition, © is monotone-complete if every topologically bounded
monotone countable set A is order-bounded, i. e if 0 < x; T, and A= {x/}
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is topologically bounded, then there exists % such that 0 < x; 1, « (cf. [3]).

Theorem 3. If a sequential ordered topology - on L is monotone
complete, then © is complete.

Proof. We shall show that - is quasi-continuous if © is monotone
complete. There exists a normal neighborhood system of zero V, such that
Vasi+ Ve CV,and NV,={0}. Let

rV,y)=|{x; 0 % 1: x for some z,€V,}.

We shall show that for every V,, there exists & > 0 with aV,>(V,,) for
some . If not, for every integer k there exist », and x, with

Xk EE kVn, X € F(Vnk)

and there exist 0 < %, 1 2 With 2, €V, and n <y < m, <e--.
Put
b,,.=x1,k+xz,k+ "'+xk,k (k 2 1).
Then b, € Vy+-+V, and {b.} is topologically bounded. Hence, there

exists b € L such that 0="5, T. b and bRV, (k=1, 2, --). Since a set
consisting of a single element b is automatically topologically bounded,
this is a contradiction. Hence, + is quasi-continuous.

Let now {x;} be a Cauchy sequence by z. By taking partial sequence,
we find 7,<<my<<--- with ||x, —#. |l<<1/2" Putting b,=x, and b=z, —
%,,_ for i=2, we have

AR Iszl et Ibi+ﬂlevi—l= {z; llzll= 1/2;_1}- Hence, {Ibl] -+
|by| - «--+ | b, |} (n=1, 2, ---) is topologically bounded, so is order bounded

&

by the monotone completeness of -~. Hence, > |b;] is order convergent to
i=1

3 13 o0
> ||, and so &, =3 b; (k=1,2, --) is order convergent to b=3_ b, (cf.
t=] i=1 i=1

Theorem 3.4 in [3]). By quasi-continuity, for every m, there exists N
such that |, —b|< X |b,| EV., for k=N, since 3 (5| €V, for m=k+1.
i 1

i=k+ i=k+1
k
It means that X, = > b; converges to b by the topology ©. Since apartial
i=1
sequence z., converges, x, converges to b, therefore < is complete.

3. Completion of topological vector lattices

In this section, we shall consider the completion of a topological
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vector lattice. Let L be a m-complete vector lattice with linear topology =
in which there exists a countable normal neighborhood system of 0. Let

Z be the completion of L with respect to =. We shall define an order rela-

tion in L. L is considered as a set of equivalent classes of Cauchy sequ-
ences of L, since ¢ is sequential.

We define x = y for %, yEIj if there exist Cauchy sequences {x;} Ex,
{») =y with x; = 9:(6=1, 2, ---) such that v,EL, y,€L.

Lemma 1. {1} €% (s} =% imply {z:Ux}, {x.Nx}Ex

Proof. |xmUzi—z;Ux|<|xUx—5Us + |oUxi—xUx) < |2 —
%]+ |x;—%;|. Hence, {x,Ux]} is a Cauchy sequence. Similarly we see
that {x,Nx;} is a Cauchy Sequence. Since |# U%—2]=|0U (z/ —2)|<
%i—x;) and |%,Nxi—x)=|0N(x;—%) |<|2,—=], the Cauchy sequences
{x:U2} and {x:Nx]} are equivalent to the Cauchy sequence {z.}.

Lemma 2. The relation = inL is an order relation :

W =% ]
(2 x=yandy=ximply x=
(3 z=yandy=2zimply x =

Proof. (1) is clear from definition. (2) Let {x,} =%, {y,} €y with .
=y, and {x}} €%, {y;} =5 with y. = x,. Then by Lemma 1

¥,
2.

% =Ny, =N ~ %, and

yiZxNyi=y.Ny ~ v
where ~ means the equivalent relation for Cauchy sequences. Hence,
{x:} ~{2: Ny} ~{»}. This proves (2).

Let ¥ =y and ¥ = 2. Then we have %, = y,, ¥; = 2, for some {x]} Ex,
{y}, {»} €y and {2} E2z. Since {#} ~ {x.Uy]} and Uy = y: =z, we
have ¥ == 2,

Proposition 1. L is an ordered topological vector lattice with sequen-
tial linear topology ~ induced by <.

Proof. We have only to prove that there exists U0 for +=L. We
see easily that {x;UO0} is a Cauchy sequence if {x,} is a Cauchy sequence.

We shall denote this Cauchy sequence by z,. Let y =% and 5 == 0. Then,
for some {x;} €% and {y;}, {y;}€% we havey, = x and y: =0 and {y,U

¥ }~{9:}~{»:}. Since y;Uy; =% U0, we have 3 =%. Hence L is a
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vector lattice.
4. Topological conditions

We shall consider the following condition :

(A) If0< 4 T and {x} is topologically bounded, then {&} is a
Cauchy sequence by =.

If = satisfies the above condition, then = is called s-coninuous.

Theorem 4. If < is s-continuons and quasi-continuous, them © is
continuous.

Poof. If 0<« 1 %, then {x]} is a Cauchy sequence by s-continuity.
For every V,, there exists V, and a number N(#») such that x,—x.€V,, for
j=i=N(n) and 0 < x—x,EV, by quasi-continuity, Hence, x: converges
to x by =.

By definition, we have

Theorem 5. Let = be complete. < is s-continuous iff v is monotone-
complete and continuous.

Theorem 6. < is s-continuous iff = satisfies the following condition :
* IfFOZ % Ty, xi—%a Ly and (%) is topologically bounded by <,
then {x} is a Cauchy sequence by the topology <.

Proof. We have only to prove that - is s-continuous from (*). Let
0<x 1. and {x;} be topologically bounded. Then, lim x.(f)=2() a. e.

t~roo

and x(?) is finite a. e.

Since (*) is satisfied, for every x=L, {f; x2(¢)%0} is a countable
union of measurable sets of finite measure. Hence, as we easily see, for
every n=2, there exist a number i(») and a measurable set M,C {f; %.)(2)
=(1—1/mx@®} with {(2)<<---<i(n)<---such that M,CM,C---with UM,
= {¢; x()70}. Putting b,=X, -x where X,, is the characteristic function

of M,, wehave 0< b, < {1/(1—1/n)} 2w and b,E L.

Since {;} is topologically bounded, {b,} is topologically bounded,
therefore {b,} is a Cauchy sequence by (*). Now, we shall consider the

completion Lof L. Z is a vector lattice, as we have shown already. For
the limiting element b= L of {b,}, we have 0 << b, < b (the order being

considered in Z) and ||b,—b|| < ¢ for a prescribed ¢ = 0 and for » = n(e)
where n(¢) is a number determined by e. Hence for m = N,
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0 g Xicn; — xi(n)é (1/ (1 _ 1/m)bm _ (1’_ 1/n)bn+ z(b—"bn), “ xi(m)'—xi(n) ”
g “ (1/(1-1/7%)) bm’—(l_]-/n)bu ” - ” Z(b’_’b,,) ” —0 as n, m—> oo,
Hence, {z.} is a Cauchy sequence.

5. Convergence of C-sequencc

In this section, we shall consider a generalization of L. Schwartz’s
theorem.

Theorem 7. Let © be a sequential order topology on L, complete and
continuous, and let x,—0 (v). Then, on every finite measurable set %,—0
(in measure).

Proof. Suppose that p(¢; |2.(8)|= ¢, tEM) =6>0 and|| 2.[| <1/2",
where M is a finite measurable set. By the completeness of -, there exists
= i %, L. Similarly, there exists y,.= i‘ |z EL for all n=1,2 -

n=1 k=un

and it is easily shown that ||»,||— 0. Let E,={¢; ».() ==¢} NM. Then
#(E,) =46. On the other hand, we find y, such that y,| o= L. Fora

measurable set E= ﬁE,,C {t; yo(t) = ¢}, we have #(E) =0, i.e. y,50.
n=1

But, this is a contradiction by the continuity of -.
If for every {c.} E¢, (i. e. sequence of real numbers with limit zero),
3 ¢.x. is convergent by =, then {x,} is called a C-sequence by =.

Theorem 8. Let = be monotone-complete and continuous. Then, for
every C-sequence {%.}, x. converges to 0 by the topology <.

Proof. By Kolmogorov-Khintchine's theorem (i. e. for every C-
sequence {x,} by the topology of convergence in measure almost everywhere
on every finite mesurable set, x,—0 (a. e.) on every finite measurable set,
cf. [13), x,— 0 (a.e.) on every finite measurable set, since {x,} is a
C-sequence by the topology of convergence in measure by Theorem 7.

Suppose that the sequence #x, does not converge to 0 by the topology
=. We shall show that there exist pairwise disjoint finite measurable sets
M.(k=1, 2, ---) and 7,<ny<-++<m;<-+- such that

1) [ Xy, 2., 1|>0 for some 6>>0,
(2) ZE: E:II*Q% qu” < oo,
k=1 j#k

We can find a positive number ¢ such that
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(3) | %.]] = 38 for infinitely many #.

By induction, let n,<n,<{---<m., and finite measurable sets K,, K,, -+, K;
be chosen so that

() 1%, 2, | 228 (=1, )

and
(5) X, 2l S 5 (G=1, o, k1),

Let L and %, — 0 (a.e.) on a finite measurable set M. Then, by
Egoroff’s theorem and the continuity of ©, we see that for every ¢ 0 there
exists a measurable set SC M with

[[Xex|| =
and
[[Xy-sx.]] = 0an n— oo,

Hence, applying this to a finite measurable set M=T;DK,U K,U - U K
and z= |z, | +--+|x, |, wecan find a finite measurable set S, such that

1

®) %y ms | S s

for sufficiently large »

and

(7) %5 2, Il = (G=1,2 -, k.

22A+.l

We take 7. DK, U K.U --- U K, with the following property :

(8) [P - G=1, -, k).

== gii+3

We choose x., satisfying (3) and (6) with n,<m,.,, i. e.

1 N P
(9) X5 s % 1| Soird and |z, 1| =30,

o1 =

| =30 —=L 0>2

Since i]x,;k xl —kan“rl “ = ”xn - “ XTA.—S‘:xn 22L+1

A+l|| A+l

by the continuity of - we find a finite mesurable set K., with

(10) WXk, %, Il =20

Kpe1™ k41

and
(11) Kin H(Tk"‘sk): g.
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Since || X =1 X2, | + [ X550 || = 55 1 8(j=1, - k) by (7) and

Kk+lxnj == grk+1
(8), we have thus a sequence {K,) satisfying (4) and (5).
Let M,=K,— U. S; (k=1, 2, --+). {M,} is a sequence of pairwise disjo-

int finite mesurable sets with

0>0(k=1,2 ).

%X 1| 21, | = 35 1) Ko | 2 20— 52
Thus (1) is satisfied.

We shall now show that (2) is satisfied.

If <<k by(5)

1 X, 1 < 1 X, (| ey 3.
If j >k, by (9)
1% | SN, 0 | S s 0 S iy

Thus, we have (2), namely,

53 (X < 20

k 1

Since {x. } is a C-sequence, {X,x.} is a C-sequence for M=U M,
k=1

and so {X_,,kx,,k} is a C-sequence by (2). We shall show however that there
exists a real number sequence ¢, — 0 with the property: X c.y. (With y,
=Xy x,) does not converge by the topology -.

Let us define A(k) (=1, 2, --+) by

(12) h(k)=inf sup (1)) ynart -+ ya )l

Then, A(k) is a decreasing sequence of numbers. We shall show that lim

k—voo
h(k)=46,> 0. If lim Ai(k)=0, the sequence fj ¥x is topologically bounded,
k—eco k=1
since |ymt 4 Yneg | = | I | + ot [ Ines] @and || yat ot Inas | S Nym+
+9..5 || if §<<j' by the mutual orthogonality of {y,}. By the s-continuity
of -, we must have ||9.||— 0 as £ — oo ; this contradicts (1).
Hence, there exists m,<<m,<:--<m;<--+ such that

QB (Pmyer+ e +9m, D = 6/2> 0.
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Thus, we see that > c,y. is not convergent by the topology = for
{ 1/k fOI' 71=mk+1, v, Mt
=
0 otherwise.

This completes the proof.
In his paper (5], L.Schwartz proved the following: For every

C-sequence {x,} in L,(0<<p <<+4o0), > x, converges by L,-quasi-norm,
=1

The topology of L, (0 << p <+ o0) is monotone-complete and continuous.
The next is a generalization of L. Schwartz’'s theorem.

Theorem 9. Let - be monotone-complete and continuous. If {x.} is

a C-sequence by =, then > x, converges by =.

Proof. By the above theorem, we see that x,— 0 by the topology <.

Since * is complete, we see that ¥ x, converges by the topology = by the

w=1

following lemma which is obtained by L. Schwartz:

Lemma 3. Let L be a complete topological linear space with topology
© and {x} be a C-sequence. If x,— 0 by the topology =, then i %,
n=1

converges by v,
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