PRIME NUMBERS IN ARITHMETIC PROGRESSIONS
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For any positive integer ¢ and any integer ~ with (4, g)=1, we
write as usual
0(x, q, h)= ,,% log p
p=h (mod ¢)
and
P(x, g, )= le An),
a=h (mod ¢)
where £ (1) is a real variable and A(n) is the arithmetical function
which is defined to be log p if # is a power of the prime p and 0 other-
wise. These functions are analogues of the functions 0(x) and y-(x) in-

troduced and studied by P. L. éebyEev, namely, of
O(x)= 2 log p
pST
and

Y(x)= % A#) ;

we have in particular

3 00, 4, 1) =0(s) + O((log g)log 2

-1
{h,g)=1
and

q

f‘_,l yr(x, g, k) =y(x) -+ O((log q) log %),

li=

h,q)=1

where the constants implied in the symbol O are absolute.
E. Bombieri [1] proved that for any positive number A there exists
a positive constant C (=3A+23) such that if

1
X<x*(log 2)°°
then

o Yy -4
(a) 2> sup max|y(y,q, k) o) < B x(log )™,

es X ysz (@)=

187
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where B=B(A) denotes an unspecified positive constant depending at
most on the value of the parameter A. (We shall employ similar notations
such as B=B(H), c;=c¢,(H) and so on.)

On the other hand, improving a previous result of H. Davenport and
H. Halberstam [2], P.IX. Gallagher [3] gave an ingenious proof of the
inequality

q

(b) 25:""(1».:])_1(V(x 0. =g )) < Bx¥(log x)~**

where A is any fixed positive number, B=B(A)>0, and
X< x(log x)~".

We know that this result of Gallagher is substantially the best possible
one of the sort, in view of an investigation by H. L. Montgomery [4].
Now, our aim in the present paper is to prove the following theorems.

Theorem 1. Let A>0 be any fixed number. Then, if
X<x(log )~

we have

2

3 g B—_*
v?zf"o.%;l ?'g‘p( Gra )= '(q)) (log 2

with a constant B= B(A)>>0.

Theorem 2. For any fixed number A>0 we have

0 2

pIDS ‘<p_ %
52 swn(vtn e ) S Bt

with a constant B=B(A)>>0, provided
X<zx(log x)~*.

We shall first prove Theorem 2 and then deduce Theorem 1 from
Theorem 2. It does not seem so obvious to substitute & (x, ¢, #) for
Jr(x, g, #) in Theorem 2 as in the inequalities (a) and (b), whereas the
replacement of +r(x, ¢, %) by 0(x,q,4) in (a) and (b) is quite immediate,
since we have

ylx, g, )=6(x, q, h) +0(x%)
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and

() =0(x) + 0(),

the O-constants being again absolute,

There have been several occasions to announce without detailed proofs
our results presented in this paper. For an application of Theorem 1 we
should like to refer to [6].

Proof of Theorem 2.

We define for each residue character X (mod q)
SX)= 2 A(m)X(n).

ngxr
Then we have for (%,¢)=1

=1 X
y(x, g, b)= 5] » (mZDd o X(h)S(X),

where ®(g) is the Euler totient function.

In Theorem 2, as well as in Theorem 1, we may clearly assume that

#=N and y=n are integer valued variables, thus replacing sup with
max.

Assuming further that N=2, taking a positive integer L which is
uniquely determined by
2 NL 2,
and setting
1 for 12N
= { 0 for N<n<2t’
we define for 1 < <2*

S(n, X)= g CnA(m) X (m).

msn

For integers k,/ with 1<k<2 0</< L, weput
rel—t

Si.(X)= > Cad (m)X (m)

m=Cx-1)2L "ty

"and write for (g, =1

1 —_
T\(q, b= = 2 X(B)S,, .
(g, 1) xgﬁﬁ ) %'xo (B) Sk (X)
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If we put
S (n, xn)
g |’

where X, is the principal character to the modulus ¢, then we have, on
taking account of the dyadic development of an integer n, 1<<n#=<_N,

4(N, g, B)=max |(, g, h)—

L
.d(Ny Q: h) g 1;0 Tl(qy h)’

so that
AN, g, VS L+D) 3 (Tla, 1))

by Cauchy-Bunjakovskii's inequality. Hence, putting
Q=N(log N)™,

we get
O TS WUNgRI=C+D S N S (T W)
qsQ Ch,q)=1 l=0 ¢3Q (h,q)=1

We need the following lemma, for a proof of which we refer to [5;
IV. Satz 7.2 combined with Satz 8.2] :

Lemma. If X is a non-principal character (mod gq), then there
holds the inequality
| S(n, X) | < Bn exp (—c,(log n)''?)
uniformy for qg=(log n)?, where H>0 is any fixed number, B=B(H)>0

and c¢,=c¢,(H)>0.
Now we have

s Tews o 3L s X o

h,q)=1 (h@)=1 k=1 (,5( )
= 2 5.3, 18001
and so
? k(X
@ BE @S 55 5 s

Since each non-principal character X (mod g) is equivalent to a
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primitive character X* to a modulus d with d|g,d>1, and X(n)=X*(n)
unless (n, ¢)5=1, it follows that

Sk.l(x)=sk.l(x*)+Rk.l(x))
where

| Ry, (X) | = N logp=R;,, say. Hence, noticing that

-2l lep¥gral 7
bl

SISL@'S2n | 2t (S +26@R,
U d|>q] % (mod d

where 3} indicates that the sum is taken over primitive characters X
only, and using

1 1+log(Q/d)
1 plT
250="" sa),
we find
Z % 5 & IS0
3 <B Z:: Zs a(d) x(%:ﬂ) |Se.(X)|*+ R,
where
_ 14-log(Q/d)
@=""3a
and
R<2Y T RL2 ¥ (2 Rui)
=2 (X IOgP
9sQ :ﬁv
2 2 N?
< BQ(log @)*(log N)é.B(l M
Put
D=(log N)***
and

E=-explc.{log N)'%
with
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c=c,(A+2)/2>0.

For the terms with 1<<d<<D in the first member on the right-hand
side of (3) we argue in the following way. If 2'<E, then we have uni-
formly in 1=kR2'

log k2t '=log N+ O((log N)'?)
so that

(log k2%~ ‘)”’> (log N)'*

and
(log k2L—I)A+2> (log N)A-u

for N>n,(A). Hence, applying the lemma with H=A+2, we find for
N>n.(A)

ot

3 B ad) T IS0

k=1 1<d3gD

al
> 3(1+log %—) BR2* ¥ exp(—c,(log N)'¥)

k=1 dSD

IA

2
< BN'DE exp(—c(log Ny =B ___
(log N)*
If 22>E, then we have evidently

| Se X)) | < 25 'log N

for all X and all 1=<k<2'. Hence

Z > ald Z: ]Skl(x)]

k=1 1<dsD

IIA

z Q\or-u 2
3 dg}(1+logd)2 (log N)
NB
(log N)*

for N>n,(A). It follows that for N>n,(A)=max (n,(4), n,(A)) we have
in either case

< BNDE~'(log N)'SB +—5

2t . . N2
(4) k=21 1<ér ﬂ(d) 2 ]Skl(x)l gB(lOg N)4

uniformly in 0<{/<<L, which is also valid for 2<<N=<n,(A) by a suitable
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replacement of B if necessary.

In order to treat the terms with D<(d<{Q in the first member on the
right-hand side of (3), we follow the argument of P. X. Gallagher [3].
Thus, putting

b(t) = 1+10§(Q/t) ,

we have
> ald) T*|S. )]

nLdse
Q
< BO(D)(D*+ 249 + Spb(t)t dt Ze,
< BQZ..,

where B is uniform in / and where

ral—t

Zk.z = Z cm(A (m))zt

meCk—12l "t

Since
2
3N Zy= 2 (dm))<=BNlogN,
k=1 nsy
we obtain
al N3
* 2 e
(5) X 3 e TS0’ B{iog Ny

which holds uniformly in /.
It now follows from (1), (2), (3), (4) and (5) that

) N?
(§Q (h,qz)—l (J(N’ q, k)) S B(].Og N)A..a ’

and this proves Theorem 2, since we have
S(n, X)=n-+O(n exp(—ci(log n)'*))+O((log q)log n)

for all n==1, where X, is the principal character to the modulus g¢.

Proof of Theorem 1.
If we write
(%, g, B)=0(x, g, k) +p(x, g, k),
then p(x, g,k =0 and
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sup (0(y, q, ) — e ))3

< -2 ?
=2 sup («;r(v, q, k) rb(q)) +2 sup (p(y, 4, )
Thus, it will suffice to show

(6) P % sup (p(y, g, 1) §B—3— .
eSxCog 2™ (hyp=1 (log x)*
Again, we shall assume that ¥=N and y=n are integer valued
variables and that N=2. As before, we put
1 for 1< N
c”={0 for N<n<2"’
where 2''<< N< 2%, Setting
2 = {1 if » is a prime

)

0 otherwise

we put for integers %,/ with 1<r<2, 0/ L,
kﬁl‘_l

Prq, )= 2 ca(l—an)A(m)

maCe—1)2 L=lig
and define
olg, k)= max py.q, k).

1sks3!
(Note that c,.(1—a.)4(m) =0 for all m, 1 < m < 2-.) Then we have
def L
3(Ny q: k) = n?sa\x p(n) q) h) g IZ o'l(q) h)’
nEN =0
and the inequality of Cauchy-Bunjakovskii gives

O, ¢, V< (L+D) % (alg, B

= (L‘r‘l) 2 "_ZE (Plc z(q, m)

<(L+1) E Z Pr.(q, h))

= (L+1)"(e(N, ¢, h))’,
whence
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3,00, ¢, B S L+1F 3 (o, g, 1))

<@+ (3 eV, g, ).

Since
L+1<Blog N
and since we have
2 p(N, g, h) = O(N'*)+O((log ¢) log N)

h,)=1
uniformly in ¢, we obtain

> > N?
O(N, q, I)’<B —————
¢S ¥Qlogiy~ A (BO)=1 OW, g, 1) (log N)**

which is equivalent to the desired result (6).

Acknowledgement (added in proof, June 12, 1972).

In [6] the author proved that if p(k, {) denotes the least prime num-
ber in the arithmetic progression ! (mod k), (!, k)=1, 0 <7<k, and if
A is an arbitrary real number with A>3, then for almost all (i. e. all but
possibly a sequence of zero density) integers k we have

Dk, 1) < (k) (log k)*

for nearly ¢(k) values of ! with (/, )=1, 1</< k. The proof depended
essentially on Theorem 1 of the present note. It has been brought to the
author’s attention that the above result on p(k, /) had already been
obtained, even with A>1 instead of A>3, by P.D.T. A. Elliott and
H. Halberstam : The least prime in an arithmetic progression (Studies in
Pure Mathematics Presented to Richard Rado. Edited by L. Mirsky.
Academic Press, London and New York, 1971; pp. 59—61). The writer
regrets that he had been unaware of this result of Elliott and Halberstam ;
the present paper will, however, not entirely lose its interest and mean-
ing, as it seems to contain something new.
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