FURTHER RESULTS ON THE DISCRETE ANALYTIC
DERIVATIVE EQUATION UNDER THE
PRIME CONVOLUTION PRODUCT
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1. Imtroduction

The concept of a discrete analytic function was introduced by Jacque-
line Ferrand [3], and many properties of discrete analytic functions were
obtained by Duffin [4]. Duffin and Duris had studied a convolution product
of the discrete analytic functions in [2]. Those functions are defined as
follows. The points of the complex plane with integer coordinates are
called lattice points. Consider a complex valued function defined on the
complex plane. If f is defined on the square consisting of the lattice
points {z, z-+1, z+1-+{, z+£}, then f is said to be discrete analytic on
that square if Lf=f(2)+if(z+1)—fz+1+i)—if(z+4)=0. If f(z) is
discrete analytic on every square in a simply connected region R on the
complex plane, f(z) is said to be discrete analytic in R, and the set of
all functions discrete analytic in R will be denoted by A(R).

The line integral of f(z), the double dot integral of f(z) and g(2),
a convolution product for two functions f(z) and g(z2) are defined
respectively by

j:" f(t)ot= ;, %[f(z,) +f(z-)1[z.—2-1]
[0 g00t= 5 L0r@)+ £ 50 +oeD ez

frgl@)= So flz—1): g@)dt
where R is a convolution region containing the origin and f(2), g€
A(R).
If FEA(R), the nth discrete derivative of F will be denoted by

D*F., 1In [2], it has been shown that there exists a unique discrete
analytic function F(z) such that

D'F(2)+c,o D" ' F(2) 4+ +cDF(2)+ ¢ F(2)=f(2)

where f(z)=A(R), =2 and *2i are not roots of
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r”+cn_1rﬂ—1+ ............ +C]r+6()=0

and F(z) is given by appropriate boundary conditions and ¢; (=0, 1, 2,
-«», n—1) is an arbitrary constant.

In {1], Duffin and Duris have discussed the general solution of a
discrete derivative equation of the first order with constant coefficient. If
a'+#16 then the general solution of DF(z)—aF(2)=b(z) with F(0)=c is

F(z)=ce(z, a)+ 50 e{z—t, a): b(t)at

where b(z)€ A(R), ¢ is an arbitrary constant and e(z, @) is called the

2_—(—_cz)x(2+ia)”
2—a/ ‘\2—ia
for z=«x-+iy. This function has been investigated previously by Ferrand
[3] and Duffin [4].

In [5], the present author has shown that there exists a unique
analytic function F(z) in R such that DF(z) —aK~*F(2)=5b(z) with F(0)
=¢, and b(z2)E A(R), if K(2)€A(R) and ah’[K(0)+K(h)]%48 for h=
+1 or +1.

In [6], the author also has proved that if a#*[K(0)-+ K(k)]5~16 for
h= =1 or =i, then there exists a unique function F(z)= A(R) such that
D*F(2)—aK+*F (2)=0b(z) with F(0)=c¢, and DF(0)=c¢, where K(z) and
)= A(R).

In [2], the prime convolution product of f(z) and g(z) is defined
by

discrete exponential function which is defined as e(z, ¢)=

f*’g(2)=5:f(z—t):g’(t)3t+f(z)g(0), ie. frlg=f+g'+f(2)g(0)

where the line integral is taken over a chain in R, whose counter chain
is alsoin R and

K f: g’(t)3t=%§':[f (@) +f(z-0)][g(@)—g@-)], (a=z, 2, +++, 2,=D).

In [7], Deeter and Lord have shown that the ring (A(R), +, *') can
be embedded in a quotient structure, And they defined operators as ele-
ments of this quotient structure then developed an operational calculus on
discrete analytic functions as Hayabara did in [8].

Section 2 of th's paper is concerned with a solution of the discrete
analytic derivative equation of the first order with a constant coefficient.
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And the major purpose of this paper is to present the general solution of
discrete analytic derivative equations of the first and the second order.
Thus in sections 3 and 4, we will discuss the general solution of DF(z)—
aK*'F(z2)=b(z) and D’F(z)—aK+'F(z)=5b(z) respectively. In secticn 5,
we briefly discuss the nth order. We only verify the solution for the
points on the positive x-axis in the proof of Theorems 1, 3, and 5. This is
sufficient because we can use a similar process to prove that is has a
solution for the points on the negative x-axis and the whole y-axis., Then
following the remarks of Duffin [4] a function F(2)EA(R) is uniquely
determined by its values on the real and imaginary axes. Throughout
this paper, R denotes a convolution region containing the origin.

2. First order nonhomogeneous equation

Theorem 1. If a's416 then there exists a unique solution F(2)
analytic in R such that

(2.1) DF(2)—aF(2)=0 with F(0)=c,

And F(z) has a form F(z)=co(§i2)x(§i:_2)y=coe(z, a) where 2=x-yi.

Proof. Integrating both sides of (2.1), we have F(z+h)—F(2)=
2+ R
a& F (t)o"t=%ak [F(z+ 1)+ F(z)]. Since a'5<16, we obtain the stepping

formula for the solution

2.2) F(z—l—lz):gizz F(2) for h=+1 or +i.

Then, in order to find a solution of (2.1), we integrate both sides of
(n)
(2.1) from O to z, and then using the formulas [7] / *’"=Z—I and /+'F(2)

- SD F()ét, we get
F(2)—F(0)=al+' F= qz®« F— aSl (@—0)®: Fi)st+ aF (0)2®, i e.
2.3) F(2)=cl+az")+ agz (z—B)™ . Fi(t)ot .
0

It remains to prove that (2.3) is a required solution. From (2.3) we get
Fhy=c,(1+ah®)+ —é—ah‘”[F (h)—co). Since 2—ah’5£0 for h==x1 or

(€3]
+i{, we have F (h)zgi—z:mcn and F(1)=§%gco. And then we get
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DF(1)=2[F(1)—~F(0)]—DF(0)=aF (1), i.e. (2.1) has a solution for
z=1. By induction, if (2.1) has a solution for z=%, then we can show
(2.1) also has a solution for z=k-+1. This follows from the following
lemma.

Lemmal. If F (z)=co(l+az(")—l—a§:(z~t)“) : FI(t)6t and DF(k)—
aF(k)=0 then DF(k+1)—aF(k+1)=0.

Proof. %{DF(k—k 1)+ DF(B)} =F (k+1)— F(k)
—aal(+ DO kT +a " b+ 1—0: F@t—a| (=1 PO
—acvtal [41=00 (=01 FOt+a( (k10 Pt
=2 FE+D+F(®). aed

Therefore, (2.1) has a solution for the points on the positive x-axis.
Uniqueness of this solution F(z) with F(0)=c¢, is clear from the step-
ping formula (2.2). Using (2.2), the general solution of (2.1) can be
found, i.e.

F(Z) =y

2+ a)”(2+ia

v
5, 2__2_“) =ceelz, a) for z=x-+1iy.

Corollary. If b(z)€EA(R) and a's~16 then there exists a unique
analytic function F(z) in R such that DF(z)—aF (2)=0b(z) with F(0)
=c¢,. And the general solution F(z) is given by

F(2)=co(1+az) +a5'(z—t)w . F(8)ot+ 5 b(2)ot
0
and the stepping formula is
_2+ah hb(z+ )+ b(2)]
F(z+ k) 2—ahF(Z)+ 5k .

The proof of this corollary is similar to that of Theorem 1.

3. The general case of the first order equations

Consider the general case of the first order homogeneous discrete
analytic derivative equation

(3.1) DF(z)—aK*'F(2)=0 with F(0)=c,.

The following lemma is easy to prove.
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Lemma 2. If DF(z)—aK+'F(2)=0 with F(Q)=c¢, then LF(z)=
%iaL [K+'F(2)]

Theorem 2. Let K()=A(R) and if (3.1) has a solution in R and
4—ah[KQO)+K#)]40 for h==*1 or *i then this solution is discrete
analytic in R

Proof. L[K+'F(z)]= S LK(z—1): F'(t)az+ij " Ke+1—8) : F'@)ot—

z

g‘“”K(z+1+i—t) : F’(t)l)‘t—ing(z—%i—i) : F'())ot+ F(O LK (2). Since
LK(z—£)=0 and LK(z)=0, we have L[K*'F(Z)]=%[K(O)+K(i)]LF(z)'

By Lemma 2, we get LF(2)= %az' [K(Q)+K(@#)]LF(z). From this it follows

that LF(z)=0 since 4—ai[K(0)+ K(7)]5~0. Similarly, we also can obtain
the following three expressions: {4—a[K0)+KQ)]}LF(z)=0, {4+
a[K(0)~K(—2#)]}LF(z)=0, and {4+a[K(0)+K(—1)]}LF(2)=0. Thus,
if4—ah[K(0)+ K(h)]540 for k equal to one of the values *1 or =i,
the nLF(z)=0. This proves Theorem 2.

Theorem 3. Let K€ AR) and if 4—ah[KOQ)+K(h)]1#0 for
h==x1 or *i then there exists a unique analytic function F(z) in R
such that DF(2)—aK+'F(z2)=0 with F(0)=c,. And the stepping formula
of the solution is

I e 2l K b=+ Ka—1]:
F@dt+al K+ )+ K@}

Proof. Integrating the expression DF(z)=aK+'F(z) from z to z-+#,
and letting G=K=*'F we have F(z+ h)—F(z)=%czh[G(z+h)+ G(z)] and
Glz+h) + G(z) = Si+hK(z+lz—t) : F’(t)5t+S:[K(z+h~t)+K(z~t)]: F'()dt
+FOLKGE+B)+ K@) =S KO+ KWIPG+ R —F@)]+ g:[K(z—l-h—t)
+K@=0]: F'@dt+FO [Ke+D+K@], ie Fe+h—F@=—rah
[K(O) + KR [Fe+h)—F@)] +%ahS:[K(z+ =)+ K81 FOdt+%
ahF(0)[K(z+h)~K(2)]. By the hypothesis 4—ah[K(0)+K(h)]#0 we
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obtain the stepping formula. It remains to prove that the values which

we get from (3.2) satisfy the equation (3.1). First, we will show that

(3.1) has a solution for z=1, Since F(l)z“a—li(l)co where K(1)=
4—aqKQ)

KO)+ K1), weget DF(1)=2[F(1)—c¢,]—DF(0) and ¢G(l)=aK+'F(1)=

%az_(a)F(l)nF%acntKa)—K(O)j. Since DF(0) = zK(0)F(0) we have

DFL)=ac, [4K—(_1)

4—aKQ@Q)
—aK+'F(1)=0. By induction, we suppose that (3.1) is true for z=m, i. e.
DF(m)—aK+'F(m)=0. We claim that DF(m-+1)—aK«'F(m+1)=0.
Before we show this, we first prove the following identity :

3.3) 2{Fim+1)— F(m)}=aK+*'F(m-+1)+ak+'F(m) for m=0

—K (0):'. From this it is not difficult to show DF(1)

If m=0or 1, itis true. Suppose it is true for m=p, i.e. 2{F(p-+1)
—F(p)}=aK+'F(p+1)+aK+'F(p). We claim that 2{F(p+2)—F(p+1)}
=gK+'F(p+2)+aK+'F(p+1). Itissufficient to prove

(3.4) 2{F(p+2)—F(p)}=aK+'F(p-+2)+2aK+"F(p-+1)+aK+"F(p).
Since czK*'F(p+2)+aK*'F(p+1)=%a{lf(l)[F(p+2)—F(p-l—l)]+

K(p+2)[F1)—FO)1+K(p+1DLFQR)—FQ)]+ - + K@ [Flp+1)—Fp)1}
+aK(p+2)F0), (3.4) becomes

BF(p+2)=aK(@)F(p+1)+F(p){B+aK(3)} +aF(p—1)
(3.5 (K@ —EK@)+ - +aFO{K(p+2)—K(p)} +
aF(O{K(p+2)—K(p)}

where K(p)=K(p)+K(p—1), K(p)=K(p) ~K(p—1) for p=1, and
B=4—aK(Q).
On the other hand, by the stepping formula we have

BF(p+2)=BF(p+1)+a{K(p+2)[F(1)— FO)]+ K(p+1)
(3.6) [F)—F1)]~+ -+ K@[F(p-+1)—F(p)]1}
+2aF(O)K(p+2)
and
BF(p+1)=BF(p)+a{K(p+1)[F(1)—FO)]+K(p)
3.7 [F(2)—F )]+ +K@[F(p)—F(p—1)1}
+2aFO)K (p+1).
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Substituting (3.7) into (3.6) and rearranging into polynomial form with
respect to F(p), we obtain (3.5). Therefore we have proved (3.4).

By the definition of the derivative DF(m+1)+DF(m)=2[F(m+1)
—F(m)] and using identity (3.3) we obtain DF(m +1)+ DF(m)=
aK+«'Fim+1)+aK+'F(m) for m=0. Since DF(m)=aK+'F(m), we have
DF(m+1)—aK+'F(m+1)=0,

We have proved that (3.1) has a solution for the points on the positive
#-axis. Uniqueness of this solution given by F(0)=¢, is clear from the
stepping formula and F(z)€ A(R) is clear from Theorem 2. Similarly,
we have the following corollary.

Corollary. Let K(z) and b(2) be discrete analytic in R. If 4—ah
[KO)+K(R)]5£0 for h=*x1 or =*i, then there exists a unique function
F(2) discrete analytic in R such that

(3.8) DF(2) —aK+'F(2)=b(z) with F0)=c,.

And the solution of (3.8) can be calculated by the following stepping
formula

Flz+h)= Fz)+ 2k

4—ah[KQ©)+ K (k)]
tac[Kz+m)+K@)]+bz+h) +b(z)}.

{aSZ[K(z%—h-—t) +K(z—1t)]: F'(f)ot

4. Discrete derivative equations of the second order

In this section we consider the case of a discrete nonhomogeneous
derivative equation of the second order, i.e. D*F(z)—aK*'F(z)=>5b(z) with
DF(0)=¢, and F(0)=c,.

In [7], Deeter and Lord have shown the following result.

Lemma 3. Let f(2) and kR(R€AR). If i[kQ)+Ek(R)]F2 for
h==x1 or =i then
(I) there exists a function u(2)E A(R) such that

@.1) (@)= f(z)—}-ig:k(z——t) w13t
(1) the stepping formula is
_ 2 _
4.2) u(z+lz)—-u(z)+z_z[k(0)+k(h)]{f(z+h) A2+

iS:[k(z-l-h—-t)-—k(z—t)] : u'(t)at} i
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Proof. Conclusion (I) is easily obtained by a method similar to the
proof of Theorem 14 in [7]. From (4.1) we have

w(z+ ) —u(@) = flz+ ) — f(2) -+ X\:[k(z+h—t) —kz—D1: ()5t
+ 4 ket h—t ey at

Jz

and then we obtain
{2—;.[k o) +k(h)]}{u(z+h) -—u(z)} =20 Fz+ ) —f(2)]
+21§:[k(z+ h—t)—EGz—D1: w' ()L,

This completes the proof of conclusion (II).
In [8], Hayabara has shown the following :

Lemma 4. For GEAR), ’”SZ S’,‘---X"G(fm)atm o O =
0Jo 0

gz(z—t)("’: G0t where zP= (n+‘1)£zt‘">5t, 20=1,
0 0

In [2], it is shown that the convolution product and the prime con-
volution product for  f and g=A(R) respectively are commutative,
associative and distributive over usual pointwise addition. Using the
commutativity of the convolution product and the definition of the prime
convolution product we have fx(g+'h)=[g+h'+g(2)h(0)]+f. And then by
the distributivity f*(g+'s)=(g*h")*f+g(2)h(0)*f(z). On the other hand
(frg)*'h=(frg)+h'+ (f+g)(2)h(0). Using the associativity and commuta-
tivity of the convolution product we obtain the following result.

Lemma 5. f*(g«'h)=(f*g)*'h for f, g, h&E A(R).

Theorem 4. Let K(z)EAR). If 8—ak[KO)+K(n)]=0 for h=
+1 or xi, Then

(4.3) D*F(z) —aK+'F(2)=0
with DF0)=c, and F(0)=c, has no solution for z=h if 2c¢,+ he, 0.

Proof. Suppose, there exists a solution of (4.3) for z=£4, integrat-
ing (4.3) from 0 to &, we get DF(h)—DF(0)= agp G(#)3t where G=K+'F.
And then we have DF(h)—DF(0)= —;—ah[ Gh)+ G0)] = %—ah (K@) +K ()]
[F(h)+co).
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Using the definition of the derivative we have A{DF(kh)-+DF(0)}=
2[F(h)—F(0)]. Therefore we get {8—al’[K(0)+K(h)]}F(h)={8+ak’
[KO)+K()]}eo+8ke.

By the hypothesis if 8 —a#*[K(0)+K(h)]=0 then 2¢,+hec,=0. This
contradicts the assumption. q.e.d.

In order to find the stepping formula of the solution of (4.3), we in-
tegrate twice from O to z: F (z)=agz K ' G(t)0t3t,+ crz+c,. Using Lemma

0,0
4 and Lemma 5, this becomes (4.1), i.e. F(2)=az=K*'F(2)-+cz+co
Let H(z)=z+K(z). Then

(4.4) Flz)= aiZH(z—t) . P3¢ -+ aH(Z) FO) + ¢+ o

Assuming ¢[H(0)+ H(h)]lséz and K(z)€ A(R), and then using Lemma
3 we obtain that (4.4) has a solution F(z)€ A(R) and the solution F(z)
can be calculated by

F(z+h)=F(2)+

1 - —
2—a[H(O) + H] {elEG+n—E@]+

ZaEZ[H(z +h—H—HEz—D]: F’(t)&t}
where E(z2)=aH(2)c,+c¢2+¢,, H(0)=0, and
HZ)=2z+K(2)= };71—(22——15,, —t K@)+ KE.-)]E.—E.-0).

Since E(z+h) —E@)=ac,[Hz+h)—H(2)]+ck and the condition
a[H(0)+H (h)]+2 is equivalent to the condition 8—ah*[K(0)+ K(#)]50,
the required stepping formula can be written in the form

8
8—al*lKO)+K ()]
C,/l'i"aSZEH(Z-i‘ h—t)—H(z—1)]: F’(t)r?t}

0
where H(z)=z+K(2).

Fle+h)=F@)+ {aco[H(z+ ) —H(z)]+

4.5)

Lemma 6. For n=2
4{FoD—Fn—1)+25 (— )" [F(j) = FG = D]+ (=D’
=agK+' F(n)+aK+'Fn—1).

(4.6)

Proof. Itisclear for n=2. Suppose (4.6) is true for n=p, i.e.

4 F()— Fo—D+2 8 (1Y TF(G) = FG =D + (=%, }
=gK+*'F(p)+aK*'F(p—1).
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We want to show
?
4{F(P +1)—F(p) +2?‘.‘—‘1 (=" F())—F(—1)]-+(— 1)”“01}
=aK+'F(p+1)+aK+"F(p).
Adding both expressions, it is sufficient to prove

4 F(p+1)—2F(p)+ F(p—1)}=aK+'F(p+1)+2aK+'F(p)

“.7) +aK+'F(p—1).

However, aK*'F(p-+1)+ aK*’F(p)=%a{E(1)[F(P-I- 1)—F(p)]

+:;_:1={(p+1—j)[p‘(j+1)~zr(j)]+21?(p+1)F(0)}. Hence, rearranging

the right-hand side of (4.7) into the polynomial in terms of F(j), j=0,1,
2, --., p+1, it becomes
aK«'F(p+1)+2aK+'F(p)+ aK+'F(p—1)=

S POIEQp+D—K)]+E FG)R(p+2—7)— K(p—5)]
+F(p—DIK@—KM]+F()K@+F(p+DEW).
Letting B=8—aK(1) and substituting into (4.7) we have
4.8) BF(p+1)=aF(0) [K(P+1) K(P)] +aF(1)[K(i> 1)- K(P 1)
+ o+ F(p—1)[aK(3)—aK (1) —8] + F(p)[aK(2)+16].
By the stepping formula we have

4.9 BF(p+D= BF(p)—i—czcoK(p+1)+aF(1)[K(p+1)-rK(P)J +
+aF(p—1)[KQR)+K©2)]+aF(p)[K(2)+2K(1)] +8c,.
Similarly,

BF(p)=BF(p—1)+acK(p) +aF)[K(p)+ K(p—1)T + -
+aF(p—2)[KB)+K©2)]+aF(p—1)[K(2) +2K(1)+8¢c,.

Subtracting (4.9) from (4.10) we obtain
BF(p+1)=2BF(p)—BF (p—1)+ac,[ K(p+1)—K(p)]

(4.11) +aFIK(Pp+1D)—K(p—1)] + -+
+aF(p—1)[K@B)—2K1)] +aF(p)[K(©2)+2K1)].

Since (4.8)=(4.11), this lemma is proved.
Theorem 5. Let K(z)= A(R). If 8—al* [K)+K (h)]#%0 then

(4.10)
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D'F(z)—aK+'F(2)=0 with DF0)=c¢, and FQ)=c, has a solution F(2)
€ A(R) and the solution can be calculated by the stepping formula (4.5).

Proof. (4.3) has a solution for z=1, since we can calculate as
follows: D*F(1)=4{FQ1)—F(0)—DF(0)}—D*F(0), D’F(0)=aK+'F(0)=
ac,K(0), and D*FQ)=4{ F(1)—c,—c;} —ac,K(0).

From (4.5) F(1)= F(0)+ % {acs[H(1)— H(0)]-c,}. Since H(1)= —}1?(1)
and H(0)=0 we get

BF(Q1)=8¢,+ ac,K(1)+8c,
(4.12)

and D*F(1)= L“;Q (2¢0+ 1} —ac, K (0).
On the other hand
4.13) aK*'F(1)="—KB(l{ a6, K1)+ 4e,} + aK (D)co.

Since the right hand side of (4.12) equals the right hand side of
(4.13), we obtain D*F(1)—aK*'F(1)=0.
By induction, suppose D*F(m—1)—aK+'F(m—1)=0. Then using
Lemma 6 we have
D*F(m)=4{ Fom)—F(m—1)—DF(m—1)} —aK+*'F(m—1)
ri—1
= 4{Fom)— Fon=1)+ 25, (= D" [F(j) — FG =] +(~1"c,}
—aK+*'F(m—1)=aK+'F(m). q. e. d.
Corollary. Let K(2) and b(z) be discrete analyiic in R. If 8—ah’

[KQ)+K(h)]40 for h equal to one of the values +1 or i, then
there exists a solution F(z2) discrete analytic in R such that

(4.14) D*F(z)—aK+'F(z)=b(2)

with DF(0)=c¢, and F0)=c, And the solution of (4.14) can be caicu-
lated by the following stepping formula

8
8—ah'[K(0)+K(h)]

+ Mz + h)— M@ + b+ ag:[H(z +h—t)— Hz—0)]: F'e)ot)

Fi+h)=F(E)+

{aco[H(z+ B —H@)]
(4.15)

with D*F(0)=ac,K(0)+b(0) where H=z+K and M= zxb.
With a proof similar to the proof of Theorem 5, we see that the func-
tion F(z) which is obtained from (4.15) is exactly a solution of (4.14) and
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F)€ A(R).

5. Discrete derivative equations of the nth order

In this section, we briefly discuss the solution of the discrete deriva-
tive equations of the nth order. Integrating D"F(z)—aK=*'F(z)=0 with
D’F0)=¢; (7=0,1,2, -, n—1) from O to ~, we have

(6.1)  DF(h)—D"" FO)=-3ah[K(©0)+KWI[F(i)+a.
Using the definition of the derivative, we get
6.2 DTFR)F =2 (D FR—c,].
From (5.1) and (5.2) we have
D" F) =L KO+ KU LFUD + e+ hwrtcaca
Using the deﬁnition again, we get

—"F(Il)_ ZJ_H [K(O) K(h)] [F(]I)’J“Co]’i‘ C,, P kR +IZC,..._;.,1+C,,_J

7=

Therefore we have F(h)=-2%_ 2"“ KO+ K (W] F)+-2 KO+ KW

n—1

2:+l
Comy oot hey+ey, ie {(2—ah'[KO) KK F(R) = {2+ ah”

60+F
r=1

n—1
[KO)+K(h)] }eoi- 432 2" e, I 2 —ah'[K(0)+K(h)]=0 then ¥ 2"/
i=1

J=0

Wec;=0. We obtain the following result.

Theorem 6. Let K(z)EA(R). If 2"'—ah"[K(0)+K(h)]=0 for
h==1 or *i then D"F(2)—aK+'F(2)=0 with D’F(0)=c¢;, j=0,1, -»-n—1,

n—1

has no solution for z=h if 3 2"hc, 0.
j=0

In conclusion, if K(z) and &(z) are analytic in R and 2""'—ah®
[K@©)+K(h)]5#0 for = +1 or +{, by the use of the process in Sections
3 and 4, we can find the discrete analytic solution F(z) in R such that
D"F(z) —aK+'F(z)=0b(z) with D'’F(0)=c¢, j=0,1,2, -, n—1, where K(2),
b(z)€ A(R). And the stepping formula for the solution also can be found.
However, the proof is more complicate if the order is higher.



f1]
[z]
[3]
(4]
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[s]
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