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Let R be a commutative ring with identity and let H be a com-
mutative Hopf R-algebra with antipode [3] which is a flat R-module. In
[3, chap. I], it is shown that the collection of isomorphism classes of
Galois H-objects E(H) in the category of commutative R-algebras forms
an abelian group. If H is the dual Hopf R-algebra of a group algebra
RG, where G is a finite group, then an arbitrary Galois H-object is a
Galois extension of R with Galois group G [3, p.59] in the sense of
Chase-Harrison-Rosenberg [2]. In this paper we compute E(H) for a
group algebra which satisfies some conditions. In §1 we describe how to
construct an abelian group E(H) of a finite commutative Hopf R-algebra
H which is given in [3]. In §2 we generalize the well known description
of normal separable extensions of degree p of a field of characteristic p,
and in §3 we give some similar results of §2. The materials of §2 and §3
are closely related to recent papers [8] and [9].

Throughout the following discussion R will be a fixed commutative
ring with an identity 1 and all modules will be unital. Moreover, every
ring has an identity which is preserved by every homomorphism, and all
ring extensions will be assumed to have identities coinciding with the
identity of the base ring. Unadorned & will mean Q.

1. Preliminaries. Let H be a Hopf algebra with algebra structure
maps #: HQRYQH—>H, 7:R—>H, and coalgebra structure maps 4:H
—>HQH, e: H—> R. An H-object is a pair (A, o), where A is a com-
mutative R-algebra and a¢: A—> AQH is an R-algebra homomorphism
such that

(@@a=1RMNa : A—> AQHRH
and
(1Re)a=1,: A—> AQR=A.

For brevity, we shall usually denote the pair (A4, «) by the symbol A4
alone. When the map @ needs explicit mention, we shall write a=«,.
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A homomorphism f: A—> B of H-objects is an R-algebra homomorphism
such that (f@1)a,=ca,f. Now let (A, «,) be an H-object. We define
the R-algebra homomorphism j,: AQA—> AQH by the formula

ra(x@y)= (x®1)aA(J’)-

A will be called a Galois H-object if the following conditions hold :
(a) A is afaithfully flat R-module.
(b) 7.:AQA—> AQH is an isomorphism.

Let H be a commutative Hopf algebra, A, B, C Galois H-objects,
and B=C as H-objects. Then AQB is a Galois HQH-object with the

structure map
ay®ap

QR
ARB —> AQHRBRH —> AQBRQHRH
and AQB=ARC as HEH-objects. Furthermore,

1) J(ARB) —»A@B@H{;A@B@H@H@H

is an equalizer diagram in the category of commutative R-algebras, with
HARB)= {x€ AQBRH ; w(x)=6(x)} [3, p.31], where » and 4 are the
compositions
1Q1Q4 1QI®IR1
w: AQBRH —> AQBRXHRH ——> AQBRHRHRH,

and
@ @zl 1RID!

0: AQBRH —> AQHRBRQHRXH ——> AQBRQHRQHRH

respectively (¢ : HRB3hQb —>bQheE BQH), and the unlabeled map is
the inclusion.

Theorem 1.1. ([3, Th. 2. 20]). j(A(X)B) is a Galois H-object with
the structure map «: J(ARQB)—> J(AQB)RQH which is induced by the
equalizer diagram (1).

If H is a commutative Hopf algebra with antipode which is a finitely
generated projective R-module, we shall denote by E(H) the set of H-
isomorphism classes of Galois H-objects. Then E(H) is an abelian group,
with addition

(A)+(B)=(4(ARB)) ((A), (B) in E(H))
and (H) is the zero element of E(H) [3, Th. 3.9].
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Now let G be a finite group. For the group algebra RG of G over
R, we write GR=Hom,(RG, R), which is a Hopf algebra with the usual
structure maps (in the sense of [3, p. 59]).

Theorem 1.2 ([3, p. 59]). Let A be a commutative R-algebra. Then
A is a Galois GR-object if and only if it is @ Galois extension of R with
Galois group G in the sense of [2].

Remark 1.3. A G-Galois extension (resp. a Galois GR-object) will
be called a Galois GR-object (resp. a G-Galois extension) by the corre-
spondence G-Galois extensions and Galois GR-objects as in the proof of
Th. 1.2

Let A, B be G-Galois extensions of K. Then

(1) A is isomorphic to B as GR-object if and only if there exists
an R-algebra isomorphism ¢: A—>B and a group automorphism p of
G such that ¢(ox)=p(0)g(x) (s€ G, xE A).

(2) When A, B has no proper idempotents, A is isomorphic to B
as GR-object if and only if A is isomorphic to B as R-algebra (cf. [5]).

Remark 1.4. Let G=(s) be a cyclic group of order n. Then
GR=Y""@PRv, (v(o)=1 if i=j; vle)=0 if i5~j) is a finitely gen-
erated projective R-module which is a commutative Hopf algebra with

v, if i=j
algebra structure : /A(v,-®u,)=v;vj={ L ]
0, if iy,
w(r)=r (r in R),

coalgebra structure: J(v;)=31;2v,Qv=, where i—j=i—j (mod #),

1, if i=0
o= f
0, if =0,
antipode : 20,)=Va_s.

2. A group of cyclic p-extensions. Throughout this section R will
be a commutative algebra over the prime field GF(p) (p5~0), and G will
be a finite cyclic group of order p. First, we shall prove the following

Lemma 2.1. Let r be an arbitrary element in R. Then X, r]=
R[X]/(X?—X—7) is a Galois GR-object with the structure map «: [X, r]
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—>[X, 7JQ GR which is defined by a(X)= S0 (X+1)Qu,, where
X=X+(X"—-X—7). Moreover, if A is an arbitrary Galois GR-object,
then A isisomorphic to R[X]/(X?—X—7) as Galois GR-object for some
v in R. Therefore we may write A=[X, r].

Proof. By [8, Th.1.1], [X, r] is a Galois extension of R with a
Galois group generated by an automorphism ¢: X —> X+1. Then we
have aa)=22%1 6'(e)Qv; for a in [X,r]. Hence, by the discussion on
[3, p.59], we see that [X,r] is a Galois GR-object with the structure
map «  Moreover, if A is a G-Galois extension of R then by [8, Th.
1.2], A isisomorphic to [X, 7] for some » in R as G-Galois extension,
and so as Galois GR-object.

The following theorem is useful in this section.

Theorem 2.2. Let A=[X,r] and B=[Y,s] be Galois GR-objects.
Then J(AQRQB)=[Z,r+s].

Proof. If v; is defined as in Remark 1.4, we evidently have
200 (0,Qu=) =120 (i +7) (v,Qw))
where 0=7<p—1, and
Zﬁ;o(i'*‘]‘) (U:’®UJ)=25'-_01 i(vi®1+1®vi)'
We set z=XR1Q1+1QY®1+ 3" i(1®1Qwv,). Then by the preceding
equalities, we have
(0—d)(2)= (=) XR1IQL+1Q Y®1)+ (0 —4) (X2} {(1R1R2))
=—1R1Q25 i(v: Q1+ 1Qv,)R1
-+ 1®1®E{{},‘k=n Z(Uk®7)j——_l.®va'—_1)
—1®1R2 5 (1Q1Qw,)
=—1Q1Q2155 -+ ) v:Quv)R1

+1R1Q X5 k-0 ((+ 7 + B} 0:R0,Q0:)

—1R1R 315 i(1Q1Qw,).
Since >, v;=1, we have w(z)=4(z), that is, z isin _.T(A®B). More-
over, noting that the v, are orthogonal idempotents, we have z’—z=
r+s.

Let a*: I(A(X)B)——*I(A(X)B)@ GR be the structure map which is
induced by (1). Then «* is the unique homomorphism such that the
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diagram below is commutative
1(ARB) ARBRGR
a* l l 1Q1RJ
J(ARB)QGR —> AQRBRGRQQGR

where the unlabeled arrows denote the inclusions. We consider here the
following diagram

[Z, 7+s] 1(ARQB)

«a o*
l 1 _ l

[Z,r+5]QGR —> 4(AQRB)RQGR
where f is an R-algebra homomorphism mapping Z into z. Then we have

a*(z)— 205 (2+1)Qv;

=(1Q®1QN(2) — (@1 115 i(1Q1R1R)vy))

=375 (I + ) (1R1KQv,Qv:)

— 25 {(1Q1Q1Qw; 4- 1R1RQ Q1)

=0
in AQBRGRQGR. Thatis, a*(z)=>1 (z+1)Qv; and so (fRl)x=
a*f. Thus f is (homomorphic, and hence by [3, Th.1.12]) isomorphic
to ,_T(A®B) as GR-object. Hence JARB)=1Z, r+s].

Corollary 2.3. [X, s]=GR if and only if s=rS—r, for some v,
in R.

Proof. Since ([X, 01)+([X, r])=([X, r]) for all ([X, »]) in E(GR),
we have ([X,0])=(GR), that is, [X,0]==GR. Noting that {1, X, -,
X7} is a basis of [X, 0], it follows that a®*—aE {#*—7;r in R} for
every «=[X,0]. Hence, if [X,s]==[X,0] then s=X"—X€E (r'—r;7
in R}.

To see the converse, let s=#7—7, for some 7, in R, y=X—7E
[X, s], and z=X<=[X,0]. Then we have R[y]=R[z] (as GR-object),
mapping y into z. Thus we obtain [X, s]==[X, 0].

In virture of the preceding corollary, we obtain

Theorem 2.4. E{(GR)=R*/{r’—r;r in R} as groups, where R~
is the additive group of R.
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Let R be a ring without proper idempotents, & a separable closure
of R in the sense of G. J. Janusz [5, Def. 3], and II the set of R-algebra
automorphisms of &. Moreover, we denote by F the set of subrings of
£ which are G-Galois over R. Then we obtain the following lemma by
(8, Th.1.6], Cor, 2.3, Remark 1.1 (2) and the results of [5], [7].

Lemma 2.5. Let R be a ring without proper idempotents, and A a
G- Galois extension of R. Then

(1) Az==GR as GR-objects if and only if A has no proper idempo-
tents, and which is equivalent to that A=S as R-algebras for some
Se.

(2) For S, S.=F, S,=S, as GR-objects if and only if S,=S..

Now let CEE(GR). If CZ(GR) then, by Lemma 2.5 there exists
a unique element S in & with (S)=C, and we write C'=S. Moreover,
if C=(GR), we write C'=R. Then by Lemma 2.5, we have a one-to-
one correspondence E(GR)—> {&, R} mapping C into C'. In this situa-
tion, we have

Lemma 2.6. Let G={0,1, -, p—1} CR, and ¢ €Hom.(II, G). Then
there exists an element a in £ such that o(a)=a+¢(a) for every o= 1I1.
In this case, there holds 9% 9=([X, a®"—a])".

Proof. If ¢=0 then, for every ¢€1I, ¢(s)=0, where o(a)=a+
¢(0) for any a=R. Let ¢50, and A=£""“. Then there exists an
element t& 11 with ¢(r)=1. Moreover, we have A=([X, »])' for some
([X, r])E(GR), and so A=R[c], ¢"—c=r for some c¢. Since r&
Ker(¢), we have t(c)=c+j, 1<j<p—1. Set a=j'c. Then (a)=
a+1l=a+¢(-). Noting II= U5 " Ker(g), it follows that o(a)=a-¢(a)
for every e« 1I. This implies that ¢€Ker(¢) if and only if o(a)=a.
Since a"—a<ER, R[a] is separable over R by [8, Lemma 1.1]. Hence,
by [7] and [8, Lemma 1.1], we obtain €% “=R[a]=([X, a*—a])'.

Now we shall prove the following theorem which corresponds to the
result of D. K. Harrison [4, Th. 4] and S. U. Chase [1, Th. 3. 5].

Theorem 2.7. If R has no proper idempotents, then
Hom(I1, G)=E(GR)
with I1 the group of automorphism of a separable closure 2 of R inthe
sense of Janusz [5, Def. 3], and the left-hand side denoting continuous
homomorphisms from the compact group T1 fo the discrete group G.
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Proof. We consider a correspondence #k: Hom.(II, G)—> E(GR)
defined by

(‘Dl——>_¢2K“'(“’7=C'|—)C=II(¢) ((;EHomc(H, Q).

Clearly # is a mapping which is bijective. Let G={0,1, -, p—1}CR
and ¢, »EHom,(II, G). Then by Lemma 2.6, there exist elements g, b
€2 such that o(a)=a+¢(a), o{b)=>b--+(0o) for every s&1II; whence we
have

g1 —> Q0 =(IX, @ —al)'—> (X, a"—al)= ()

and ([Y, b"—b])=h(y-). Since a(a+b)=a(a)+¢(a)+a(b)+(0)=0(a-b)
+ (@ -+ )(e), it follows that i(g+)=(IZ, (a-+b)Y—(a-+b)])=([X, a’—al)
+([Y,o*—b))=h(¢)+h(y-). Hence I is a homomorphism, and so an
isomorphism.

We conclude this section with a corollary, which is the well known
description of normal separable extensions of degree p of a field of
characteristic p.

Corollary 2.8. Let R be a ring without proper idempotents. Then
we have group isomorphisms

Hom (11, G)=E(GR)=R*/{#’—7r;r in R}=H*R, G)

where H*(R, G) is the second cohomology group in the sense of Harrison

(cf. [1]).

Proof. Let X=X+(X*—X—7) bein [X,7]. Considering the dif-
ference sequences of X7, a(X?7Y), -+, 6>~ (X *™'), We can easily see that
e (XP N — X" o(a(XP ) — X" ) —(a( X)) — XP7Y), eveee generate [X, 7],
namely, X' generates a G-normal basis (see also [10, Th.4.1(b)]).
Therefore the corollary is an immediate consequence of Th. 2.4 and Th. 2.7

and [1, Cor. 2.16(b)] (or (10, Th. 2.2]).

Remark 2.9. E(GR) is isomorphic to the group 7(G, R) defined on
4,p.3]. If G=(6)%x--X(0,) where (s;) is a cyclic group of order p,
then by (3, Th. 3.11], we have

E(GR)=E((a,)R) X -+ X E((¢)R).

Hence, the group E(GR) of abelian (p, ---, p)-extensions of R in the
sense of [8, p. 88] is completely determined by the group E((#)R) of cyclic
p-extensions of R, where (o) is a cyclic group of order 2.
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3. A group of strongly cyclic extensions. Throughout this section
R will be a commutative ring which contains a primitive »n-th root ¢ of
1 such that » and {1—-8%;i=1,2 .- n—1} are in U(R), the set of all
inversible elements of R, and G will be a finite group of order #. In
[6, Lemma 3.2], it is shown that for a cyclic extension A of R with
Galois group G, if A has a G-normal basis then A is a strongly cyclic
n-extension in the sense of [9, Def. 1.11.

The converse is also true.

Lemma 3.1. Let A be a cyclic extension of R with a Galois group
G. Then, A has a G-normal basis if and only if A is a strongly cyclic
n-extension.

Proof. Let A be a strongly cyclic n-extension of R. Then by {9,
Th.1.2], A is isomorphic to R[X]/(X"—u) for some u< U(R) (as Galois
extension). Set =327 X' Since {a, o(a), -, oY (a)} generates
R[X]1/(X*—u) as R-module, A has a G-normal basis.

Now, a Galois GR-object A will be called a strongly Galois GR-
object if A 1is strongly cyclic in the sense of [9, Def. 1.1]. Moreover, we
denote SE(GR) the set of GR-isomorphism classes of strongly Galois GR-
objects, which is a subset of E(GR). The following lemma is an im-
mediate consequence of [9, Th. 1.1 and Th. 1.2] and the proof of Th. 1.2.

Lemma 3.2. Let u be an arbitrary element in U(R). Then (X, u)
=R[X]/(X"—u) is a strongly Galois GR-object with the structure map
a: (X, u)—> (X, W)QGR which is defined by «(X)=3 72} ' XQu,, where
X=X+(X"—u). Moreover, if A is an arbitrary strongly Galois GR-
object, then A is isomorphic to R[X]1/(X"—u) as GR-object for some
u in U(R). Therefore we may write A= (X, u).

Replacing z in the proof of Th. 2.2 by SIS X® YR¢'v,, we can prove
the following

Theorem 3.3. Let A=(X, u) and B=(Y,v) be strongly Galois GK-

objects. Then HARB)=(Z, uv).

Let (X, #) be a strongly Galois GR-object. Then the map +r: (X, %)
—> GR is isomorphic as GR-object if and only if \;p()? )= r§v; and
u=r", vin R. Then by Lemma 3.2 and Th. 3. 3, we have the following

Theorem 3.4. SE{(GR) is a subgroup of E(GR) and is isomorphic
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to UR)/UR)" as group.
The following corollary is proved in a similar way as in the proof of
Th. 2.7.

Corollary 3.5. Let R be a ring without proper idempotents and G
a group of prime order q. Then SE(GR) is isomorphic to a subgroup of
Hom(I1, G), where 11 is the group of R-algebra automorphisms of £,
a separable closure of R.

Finally, we have

Theorem 3.6. Let R be a ring without proper idempotents, and
assume that every G-Galois extension of R is strongly cyclic (this will be
the case if, for example, R is a semilocal ring, see [2, Th.4.2)). Then

Hom,(II, G)=SE(GR)= E(GR)=U(R)/ U(RY'=H*R, G).
Proof. Thisis an immediate consequence of Th. 3.4 and [10, Th. 2.2].

Remark 3.7. Let R be as in Th. 3.6. Then E(GR) is isomorphic
to the group T(G, R) defined on [4, p. 3]. If G=(s,)X -+ X (o;) where (o})
is a cyclic group of order », then by [3, Th. 3.11] we have

E(GR)=E((7,)R) X --* X E((¢:)R).

Hence, the group E(GR) of strongly abelian (ay, -+, 64; n, --«, n)-exten-
sions of R in the sense of [9, p. 99] is completely determined by the group
E((6)R) of strongly cyclic n-extensions of R.
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