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Let B be an arbitrary commutative ring with identity element, X
an indeterminate, and B[X] the ring of polynomials in X with coeffi-
cients in B where bX=Xb (b€B). A polynomial fEB[X] is called
separable if f is monic and B[X]/(f) is a separable B-algebra. Sepa-
rable polynomials over commutative rings have been studied in B. L. Elkins
[4], G.]. Janusz [5], Y.Miyashita [6], and in the previous ones {7], [8].
The present paper is a study about separable polynomials over arbitrary
commutative rings, in which we generalize some of the results about
polynomials over fields to the case of a base ring B and we establish some
fundamental properties of separable polynomials over B. We also sharpen
several results in [4]—[8]. In §1, we consider the notion of splitting
rings of monic polynomials in B{X] which plays an important part in
the present study. In §2, we characterize the separable polynomials over
B in several ways. In §3, we study ring extensions of B which are
generated by roots of separable polynomials over B.

Throughout this paper, all rings will be assumed commutative with
identity element, and all ring extensions of B will be assumed with
identity element 1, the identity element of B. Moreover, ring homomor-
phisms are tacitly assumed to take the identity element into the identity
element. For a ring extension A/T and for a group & of ring automor-
phisms in A, we shall use the following conventions: J(A/T) (abbr.
XT))= the group of ring automorphisms in A which leave the elements of
T fixed; J(@)= the fixring of & in A; &|T= the restriction of & to
T. If A is a Galois extension of T with a Galois group & (in the sense
of [3, Def.1.4]) then A is called a ®-Galois extension of 7, and occa-
sionally, A/T is called to be @-Galois. Next, all monic polynomials are
assumed to be of degree =1. Moreover, for any polynomial f(X), we
denote by deg f(X) the degree of f(X). As to other notations and
terminologies used in this paper we follow 3] and [7].
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1. Splitting rings of monic polynomials, We shall first introduce
the notion of splitting rings of monic polynomials in B[X] whose idea is
based on the theory of fields.

Definition. Let f(X) be a monic polynomial in B[X]. If Bla,
@ *+*a,] is a ring extension of B with f(X)=X—a) X—a,) - (X—a,)
then it is called a splitting ring of f(X). Moreover, a splitting ring
B[%), 2, +»+, %] of f(X) is said to be free if for every splitting ring
Bla, a, -, @,] of f(X), there exists a B-ring homomorphism

B[xh er th xn] — B[ab a2) Y an]

mapping %; into a; for i=1,2 - n.

Let B[, %, -, x,] be a free splitting ring of a monic polynomial
f(X) in B[X]. Then, for an arbitrary permutation = of the set {1, 2,
-+, 1}, there exists a B-ring endomorphism =* of B[, %, -+, #,] mapping
%; into %, for {=1,2 .-, n. Then we see that =* is an automorphirm.
Moreover, any two free splitting rings are B-ring isomorphic. If
deg f(X)<2 then B[X1/(f(X)) is a free splitting ring of f(X).

Now, let §: B—> C be a ring homomorphism, ¢, ¢,, ---, ¢, elements
of C, and X, X,, ---, X, indeterminates which are independent. For any
element 2(X,, X, =+, Xu)=Tbi s Xi ' X5 X, of B[X, X, -, X.],
we write #%(c, ¢, ++, )= 20(bi .- ._kn)c.k‘czk2---c,f". Then we have a ring
homomorphism B[X,, X, -, X,]—> C mapping A(X, X, -, X, into
K¢, ¢, -+, ¢,). We shall prove here our first lemma.

Lemma 1.1. Let f(X) be a monic polynomial in B[X]. Then f(X)
has a splitting ring Bla, a, +++, @,] such that if 0: B—>B, is a ring
homomorphism and Bo[c,, €y, *++, C.] is a splitting ring of fUX) then there
exists a ring homomorphism

B[aly a?y oty an] —_—> BO[CI, c}.” *t e Cn]
mapping hay, a., -, a,) into k%, ca -+, Cy).
Proof. This is clear for monic polynomials of degree 1. Hence we
assume it true for monic polynomials of degree »—1, and consider a monic
polynomial f(X) of B[X] of degree n. Set Bl[a,]=B[X]/(f(X)) where

@=X+(f(X)). Then f(X)=(X—a)g(X), g(X)EB[a][X], and
deg g(X)=n—1. Hence by the induction assumption, g(X) has a
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splitting ring B[a][a, @, -+, @,] such that if +»: Bla,J—> T is a ring
homomorphism and 7T(d,, d:, --+,d.} is a splitting ring of g%(X) then
there exists a ring homomorphism

B[“]] I:az‘y as, °*, an] -—> T[dg, d:b R du]

mapping u(a, @, -+, @) into u*(d,, ds, +++, d.). Clearly Bla, a, -, a.]
is a splitting ring of f(X). Now, let B.[c;, ¢, -+, ¢,] be a splitting ring
of f%X). Since f%c,)=0, we have a ring homomorphism ¢ : B[a,]—>
By[c] mapping #(a) into A%c). Then fU(X)=r(X)=(X—c)g"X).
Hence g?(X)=(X—c,) (X—¢5)-«(X—c,). Thus B,[cii¢y €5 -, €] is a
splitting ring of g?(X). Therefore we obtain a ring homomorphism

B[al] [Cl;-, 3, **°, a::] —> BU[CI:] [cb Cy * c'n]

mapping «(a., @, -+, @) into #*(c, ¢;, -, ¢,). Since ¢|B=0 and ¢(a)
=¢,, this proves the lemma.
In virtue of Lemma 1.1, we obtain the following

Theorem 1.1. Every monic polynomial in B[ X] has a free splitting
ring, which ts unique up to isomorphism.
For the later use, we note the following

Corollary 1.1. Let f(X) be a monic polynomial in B[X], and
B, %, -+-, %.] a free splitting ring of f(X). Then

(1) if 6: B —> B, is a ring homomorphism and B,[c,, c., >+, ¢.] s
a splitting ving of fUX) then there exists a ring homomorphism

B[xy, %, +++, .1 — Bolcy, €3 *++, €]

mapping h(x, %y -+, %) into K(c:, 3 -, c.).

(2) For m<n, f.(X)=X—2u) X—%..2) - X—2x)EB[x, 2, -,
xm:] [X]: a”d B[xly X 't xm] ixm-ih X v ) x"] is a free Splitting ring Of
Fn(XD).

(3) Blx.]1=B[X1/(f(X)) (h(zn)<——MX)+(f(X))), m=1,2,--, n.

(4) Blx, %, -, %.0 is a free B-module, which has a free B-bases
{xlklxzkz"'xnkn I Oski=n—i}.

Proof. Since (1) is immediate from Lemma 1.1, it remains to prove
(2)—(4). They are obvious for =1. Hence we consider the case #>1.
Now we set Bla,]=B[X]/(f(X)) where a;=X+(f(X)). Then f(X)=
(X—a)g(X), g(X)=B[a] X]. By Th.ll, g(X) has a free splitting
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ring Bla][a., &, *++, @.). Then, as is shown in the proof of Lemma 1.1,
there exists a B-ring homomorphism

¢: Bla, a, -, a,] —>B[x,, 22, **, .

mapping «; into x; for :=1,2 .-, n. Since B[x, %, ***, %.] is a free
splitting ring of f(X), ¢ is an isomorphism. Noting g¥(X)=/1(X), it
follows that A(X)EB[x,][X], Blx][%, % ***, x.] is a free splitting ring
of fi(X), Blx]=B[X]1/(f(X)) (h(x) <—— KX)=+(f(X))), and B[x]
has a free B-bases {#,1|0=<<k,<<n—1}. From these facts, one will easily
see (2)—(4).

Next, we shall prove the following corollary which gives a way of
characterizing free splitting rings of monic polynomials.

Corollary 1.2. Let f(X)=X"—b X" '+ -« +(—1)"b,=B[X]. Let
X, Xy, -+ X, be indeterminates which are independent, |s, s, -+, s.} the
set of elementary symmetric polynomials in the X where deg s;=1i
(1<i<n), and N an ideal of B[X, X, -, X,] generated by {s,—b,
s;—b;, ++, $,—b,}. Then BNN={0}, and B[X, X, ---, X.]/N=B[X*,

Xo*, -+, X.*] i5 a free splitting ring of f(X), where X,* =X+ N (1<i<n).

Proof. By Th.1.1, there exists a free splitting ring B, %, '+, %al
of f(X). Then we have a B-ring homomorphism

¢ B[Xb Xl; ) Xn] -»B[xh Xz, vty x"]

mapping X; into x; for {=1,2 .-, # It is obvious that ¢(s;)=b; for
every i. This implies ¢(N)= {0} and BNN={0}. Hence ¢ induces
the following B-ring homomorphsim

SG* : B':Xl*) XZ*p '“) XA*] ——)B[xly x:!, ) x":

mapping X.,* into x; for /=1, 2 --- n. Moreover, it is easily seen that
B[X* X,*, -+, X,*] is a splitting ring of f(X). Therefore, from the
notion of free splitting rings, it follows ¢* is an isomorphism. This
completes the proof.

For a square matrix [|ay|| with elements @y in a ring, det ||awl|
will denote the determinant of ||a.,|. Let f(X) be a monic polynomial
in B[X], ¢ the trace map of the free B-module B[X]/(f(X)), and z=
X+(f(X)). Then we shall call det [[t(«*2")]| (0k, I<<n) the discriminant
of f(X), and this will be denoted by ¢(F(X)).

We shall prove now the following
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Theorem 1.2. Let f(X) be a monic polynomial in B[X]. If
Bla, a, -, a,] is a splitting ring of f(X) then Ilicfa:i—a)'=0(f(X)).

Proof. By Th.l.1, there exists a free splitting ring Blx), %3, -+, £.]
of f(X). Then we have a B-ring homomorphism

Blx, %, -+, %a) >Bla, a, -, a.]

mapping #, into g, for i=1, 2, ---,n. Noting Il .« (z:—%,)’E B, we obtain
Micf2—%)"=c,(ai—a)’. By Coro.l.l, B[X1/(f(X)) and B[x] are
B-ring isomorphic under the mapping A(X)+(f(X)) —>h(x). Hence it
suffices to prove that det ||#(x) x)) "= 1< (x:—%;)* (0=k, [<<n). Let X, X,
X,, -+, X, be indeterminates which are independent, {s,, s, **-, 5.} the set
of elementary symmetric polynomials in X, X;, ---, X, where deg s;=¢, 1<
i<n, and B, a subring of B[ X,, X,, -+, X.] generated by BU {s), s;, ***, s.}.
Now we consider a B-ring homomorphism

¢ . B[XI; X'z, Yy Xn] [X] aB[xly Xy 0y xu] [X]

mapping Ekhk(le Xg, ‘s X")Xk il’ltO Ekh;.-(xl, x:, ctty xn)Xk. Then, nOting
Ne,(X—X)=X"—sX*"'+ --- +(—1)"s,, it is easily seen that B,[X,]=
2h0BXY, ¢(B)=B, and ¢(X)=2. For X,"(m>0), we write
(1) le'Xlk: .'\_:1;:0] kaXII, bMEBo, 0§k<n,
g(X)=det (XI— 16.:11)
where I is the identity matrix of degree n.  Applying ¢ to (1), we
have
(2 2" =20 (,f(bm)xn‘, g(b‘.,)EB,
¢(g(X))=det (XT—"¢(b:) ).
From (1), it follows that g(X;")=0, so that g(X,")=0 for every 7. For
i#j, X,"—X™ is not a zero divisor of B[X,, X,, ---, X,]. Hence we see
that IT7_,(X—X") is a factor of g(X). Since g(X) is a monic polynomial
of degree #, we obtain g(X)=M/,(X—X"), and so ¢(g(X))=
e, (X—=«™). From this and (2), it follows that #(x,")=2/..x/". Hence
det ”t(xlkxl’)H:det”Zixlkxil‘v] AZin, 0=k, I=n—1)
=det '|x*||*
=TT;<; (xi~xj)2-

This is our desired one, which completes the proof.
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Corollary 1.3. Let f(X) be a monic polynomial in B(X], 0:B —>
By a ring homomorphism. Then 0(6(f(X)))=34(fX)).

Proof. Let B[z, %, ***, £,] and Bo[y, ¥, ***, ¥.] be free splitting
rings of f(X) and f%X) respectively. Then we have a ring homo-
morphism

B[xl, xb T xh] _._‘Bo[yl’ Y2 % y’ll:l

mapping #i(x, %, ***, x,) into A°(y, ¥, -, y.). Hence it follows from
Th.1.2 that 0(0(f(X)))=0(I1 i{z:— %)) = ;s —y )’ = 0(Ff4X)).

Remark 1.1. Let f(X) be a monic polynomial in B[X], B[x, %,
-+, %] a free splitting ring of f(X), and &, the symmetric group of the set
{1,2, -, n}. Then for every =&, we have a B-ring automorphism =*
of BLx), %, +*+, x.] mapping x; into %, for i=1, 2, ---, n. Obviously,
the mapping (*):% —=* is a group homomorphism of &, into the group
of B-ring automorphisms of B[« %), -, #.]. In the remaining of this
paper, the image of (*) will be denoted by &, ...,. If #>2 then by
Cor.1.1, we have #x5~%, which shows that x.x; for {5j. Hence, in
case n+2, we see that (*) is a monomorphism, that is, 6,=6,, ..z,
We consider the case n=2. It is clear that (*) is a monomorphism if
and only if x,54x,. We write here f(X)=X*+0,X+b,. Then x,—x.=
f(x)=2%x,+b, where f'X) is the derivative of f(X). Since {x, 1} is
a free B-bases of B x,] (Cor.1.1), it follows that &,=8, ., if and only
if f'(X)s~0. Next, we shall determine J&,..,). Let cx,+d<= B[]
(=B[x, x.]) where ¢,dEB. If cx+d€](@, ) then O0=c(x,—x)=
(2¢)x,+¢cb,, and conversely. Hence it follows that cx,+d& ](@(,‘_12,) if
and only if ¢&N, the annihilator of {2-1,5,} in B. Thus we obtain
J®,..,)=Nx+B. For example, if we consider the ring B= GF(2)®P
GF(2) and F(X)=X"+(1,0)X then &=, and B[x]2J(©,.)2B.
However, if, in general, #>>2 then it does not seem to be an easy matter
to determine ](@(,,,...,,,n,).

We shall now proceed to show that if ¢(f(X)) is not a zero divisor
then J(&, ..., )=B. For this and a later application we require the
following

Lemma 1.2. Let A be a ring extension of B and b an element of
B.
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(1) Let A=BdEM where d is B-free and M is a B-submodule.
Then, b is inversible in B if and only if soisin A.

(2) Let A be free as B-module. Then, b is not a zero divisor in
B if and only if sois in A.

Proof. The assertion (2) is obvious. To see (1), we assume that b
is inversible in A, and write b"'d=bd-+m where B and mEM.
Then we have d=>5bb"'d="5b(b,d+m)= (bb,)d +bm. Hence we obtain bb,=1.
Thus & is inversible in B. The converse is obvious.

Theorem 1.3. Let f(X) be a monic polynomial in B[X], and
Bz, %, »»+, 2.] @ free splitting ring of f(X). Then the following
conditions are equivalent.

(@) x—=x. is not a zero divisor in B[%,, %, ***, %a].

(b) f(#) is not a zero divisor in B[x,] where f'(X) is the deriva-
tive of f(X).

(c) 8(f(X)) is not a zero divisor in B.

Moreover, if the conditions hold then for every subset E of {x, %,
o, %}, JSBLED NGyey,.r )=BLE], and in particular, J(S,,...))=B.

Proof. It is clear that f'(x)=1II,..(x,—2%,). For an arbitrary
j>1, there exists an element =* in &, ., ; such that 7*(x;— ) =5—25
Hence (a) implies (b). Assume (b). Then, by Cor.1.1 and Lemma 1.2,
f'(x) is not a zero divisor in B[y, #,, -**, 2.] and, so is f'(x) for i=2,
3, -+, n. Hence II,f'(x)=—0d(f(X)) is not a zero devisor in B[x,, %, *+,
%,] and, soisin B. Thus we obtain (c). (c)=>(a) follows from Cor.1.1
and Lemma 1.2. We have therefore proved (a)<=>(b)<=>(c). Next, we
shall prove the rest of our assertion. This is clear for polynomials of
degree 1. Hence we assume it for polynomials of degree n—1, and con-
sider a free splitting ring B[« %, -**, #.] of a monic polynomial f(X) of
degree »n with conditions (a)—(c). By Cor.1.1, Bix][x, % -, %.] is a
free splitting ring of I1,.,(X—=x)EB[«x,][X]. Since %,—=x, is not a zero
divisor in B[#,] %, %5, -, x.], we see J(&,,,....)) TB[x] by the induction
assumption. If J(@&, . .))Da= il xb (b.EB) then 3301 2b. +
x°(bo—a)=0 for all i. For the adjoint M of the matrix [/, || (0<<i<n,
0<k<n), we have M||z*||=et||x*||)]=(F 1ic;(x;—2x))] where I is
the identity matrix of degree #. Then it follows that (IT < (%, — %)) (by—a)=
0, and hence b,—a=0. This shows J(& . .. ,)=B. Now, let E be an
arbitrary proper subset of {«, #;, :**, 2.} and C the complement of E in
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{#, %3, *-, x,}. Then by Cor.1.1, B[E][C] is a free splitting ring of
,ec(X—2x)€B[E][X]. Since for distinct %, yEC, x—y is not a zero
divisor in B[E][C], it follows that J(J(BLE]) NS, =B [E]. This
completes the proof.

2. Separable polynomials. First we shall prove the following lemma
whose proof is similar to that of [3, Th.1.3 (1.4)].

Lemma 2.1. Let A be a ring extension of B and J(®)=B for a
group & of ring automorphisms in A. Let T be an intermediate ring
of A/B, and 9=NT)NG. Assume the index of © in & is finite
and there exist elements xy, %, =, 2. €T ; Y1, ¥2 +++, ¥.E J(D) such that
3 %0(¥)=ub 1 gr for all o in &. Then J(Q)uC T ; and if, in particular,
u is inversible in A then J(©)=T.

Proof. Let {0, 0, -, 6,} be a complete system of representatives
of right cosets relative to 9, so that &= U ,s:9 and the ¢, are disjoint.
For any <€ J(§), we set f(@)=2:0.(a). Then we have o(#(e))=#(a) for
all ¢ in @, which implies #(¢)=B. Hence we obtain T2 ; x#(ay)=
Sixlay)=aXl xy;=au. It follows from this that TOJ(D)u. If u is
inversible in A then sois in J(9), and hence T= J(9).

Now, the following lemma contains the result of [7, Lemma], and it
plays an important role in the subsequent consideration. We shall present
here a simple proof, whereas the proof of [7, Lemma] is somewhat
complicated.

Lemma 2.2. Let A be a ring extension of B and J(&)=B for a
group & of ring automorphisms in A. Let a an element of A such
that the set {0(a)|c=®} is finite and for o(a)#a (EG), a—d(a) is
inversible. Set {a,=a, a, -+, a.} = {o(a)|cEC} where aFa; for iFj,
and f(X)=X—a,) (X—a)-(X—a,). Then

1) fX)eB{X], and o(f(X)) is inversible in B.

@) Blay, a, -+, a.) is a Galois extension of B with a Galois
group ®|Bla, a, -, a,], and for every subset E of la, @, -, a.l,
JBIED) N®)=BLE].

3) B[X]1/(f(X)=B[a] (AX)+(f(X))e—>h(a)).

4) f(X) is a separable polynomial over B.

Proof. It is obvious that f(X)EB[X]. Set u=1Il,.(a:—a;) (=
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—0(f(X)) ). Then it is easily seen that #&B and » '€ J(@)=B. For
T=Bla, as, ***, a,), We have u 'l (a;—0(a))=0,qr (¢=®), which can
be written as #7'2; x,6(y ) for some elements x,, %3, ***, X3 Y1, Y2, In
of 7, and hence T is a &|T-Galois extension of B. Next, we set

g(X)=(X—a)(X—ay) - (X—a,)= 23523 X"b..

Then f(X)=(X—a)g(X) and this gives g(X)EB[a][X]. If ¢=@® and
o|B[a]s*1 then a=o(aq;) for some {>1 and then 0=II.,(a—e(a))=
3 d*o(b,). Thus we obtain X, a“s(b,)=g(a)8,,51n; for all ¢ in & where
a, b,=B[a] and g(a) is inversible in A. Therefore it follows from
Lemma 2.1 that J((Blel)N®)=B[a]. Hence, if E is a subset of
{a, @, *, @} then we can use induction on the cardinal number of E to
obtain J(J(B[E]J)N@®@)=B[E]. Now, since for i=£j, a,—a; is inversible
in A and {¢{a)|eE6)} = {a,, a., -+, a,}, it is easy to see that B[ X]/(F(X))
and B[a] are B-ring isomorphic under the mapping A(X)+ (F(X))—>
2(a). By [3, Th.2.2], J(I(B[a])N®)=B[a] is separable over B. This
shows that f(X) is separable over B.

Now, we shall prove the following theorem which contains some part
of the result of [8, Th, 2].

Theorem 2.1. Let f(X) be a monic polynomial in B[X], and
Bl%, %, =, %) @ free splitting ring of f(X). Then the following
conditions are equivalent.

(@) x—x. is inversible in Blx, % =+, %nl.

(b) f'(x) is inversible in B[x,) where f'(X) is the derivative of
f(X).

(c) O(f(X)) isinversible in B.

@) F(X) is separable over B.

Movreover, if the conditions hold then B[x), %, **-, %) iS5 a (T
Galois extension of B and for every subset E of {x, %, -, %.},

JSBIEDN®)=B[E].

Proof. we have flx)= Hj#l(xl—_xj)EB[xl] and II.f'(x)= '—a(f(X))
€B. By Cor.l.1, B[x, %, ***, x.] is a free B[x]-module as well as a
free B-module. Hence Lemma 1.2 enables us to see that (a)<=>(b)<=>(c).
Assume (d). Let M be a maximal ideal of B, ¢ a canonical homo-
morphism B —>B/M=K, and K the algebraic closure of K. Then
K[X1)(FX)N=KQsBLX]/(f(X)) and it is a separable K-algebra,
which is a semisimple ring. From this we see that f°(X) has no repeated
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roots in K, whence 8(f%(X))5~0. Since 0(3(f(X))=3(f*X)) (Cor.1.3), we
obtain #(f(X))eEM. This implies that #(f(X)) is inversible in B. Thus
we obtain (d)=>(c). (c)=>(d) and the other assertions follow from Th.1.3
and Lemma 2.2.

In virtue of Th.1.2 and Th.2.1, we obtain the following theorem
which is the result of [8, Cor. 1].

Theorem 2.2. Let f(X) be a monic polynomial in B[X], and
Bla, a, -+, a,) a splitting ring of f(X). Then, f(X) is separable over
B if and only if Tl.cj{a;—a;)? is inversible in B.

Now, for a monic polynomial f(X) in B[X] we shall consider the
following conditions (i)—(vii).

(i) f(X) is a separable polynomial.

(i) f(X+(F(X)) is an inversible element of B[X]/(f(X)) where
f(X) is the derivative of f(X).

(iii) A(f(X)) is an inversible element of B.

(iv) There is a ring extension of B which contains elements «,, a.,
e+, @, such that f(X)=X—a) X—a,) - (X—ea,) and I(a—a) is
inversible in B.

(v) There is a ®&-Galois extension of B which is generated
by elements by, b, --+, b, such that f(X) = (X—b)X—0b,) -+ (X—b,),
I fb:—b,)* is inversible in B, and {¢(b)|cEG} = {8, b, -+, b.}.

(vi) For each maximal ideal M of B, the polynomial obtained from
f(X) by reducing the coeffidients modulo M has no repeated roots in a
algebraic closure of B/M.

(vii) For each maximal ideal M of B, f(X) is separable when
viewed as a polynomial over the local ring B,.

Recently, in [4], B.L.Elkins proved that (i) implies (ii). In [7],
the present author proved that (iv) implies (i), and moreover, in [8],
proved that (i), (ii), (iv) and (v) are equivalent. In [6], Y.Miyashita
proved that (i) and (ii) are equivalent for some non-monic polynomials as
well as for monic polynomials. Several years ago, G. J. Janusz [5] proved
that when B has no proper idempotents, (i), (iii), (vi) and (vii) are equi-
valent, and (i) implies (iv). (Cf. [8, Remark]).

We shall now prove the following

Theorem 2.3. For a monic polynomial f(X) in B[X], the condi-
tions ()—(vii) are equivalent.
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Proof. By Th.l.l, f(X) has a free splitting ring B[, %, ***, Z.J-
Then by Cor.1.1, B[X]/(f(X)) is isomorphic to B[%,] under the map-
ping A(X)+ (f(X))—>h(x,). Hence by Th.2.1 and Th.2.2, the condi-
tions (i)—(v) are equivalent. Now, we shall prove (iii)<=>(vi). Let M,
be a maximal ideal of B, ¢ a canonical homomorphism B—>B/M,.
Then by Th.1.2, (vi) holds if and only if 6(f%X))s40 for every maximal
ideal M, of B. Since (fUX))=¢@(f(X))) (Cor.1.3), (vi) is equivalent
to that 0(f(X)) is not contained in every maximal ideal M, of B, and
it is equivalent to (iii). Thus we obtain (iii)<=>(vi). By a similar method,
we have (iii)<=>(vii).

3. Roots of separable polynomials. Throughout this section, A
will mean a ring extension of B, and & a group of B-ring automorphisms
in A. A subring 7 of A iscalled G-strong if, for any ¢|TH41=G®|T
and e¢’=e40= A, there is an element ¢ in T such that (a—a(a))es%0.
This notion is equivalent to that of ®-strong subrings of &-Gaiois exten-
sions (cf. [3, Def.2.1]).

We show first the following

Lemma 3.1. Let {T.|i€ I} be a set of ®-strong subrings of A, and
T the subring generated by U e, T.. Then T is S-strong, and moreover,
a(T) is O-strong for every c=®.

Proof. Let ¢|T#1=@|T. Then o|T:s~1 for some i, This enables
us to see that 7 is ®-strong. Now, let ¢€@®, <|a(T)5=1€G|a(T), and
e’=e40= A. Then o¢7'te|T5£1. Since T is @-strong there is an element
a in T such that (ga—o 'vo(a))o™'(e)5£0, and so (¢(a) —ro(a))e=~0. Hence
o(T) is G-strong.

Corollary 3.1. Let E be a subset of A such that for every aSE
and o(@)*a (6€®), a—o(a) is not a zero divisor in A. Then B[E] is
S-strong.

If T, T, are subrings of A containing B which are separable over
B then T,[7.] is separable over B (see, [l, Propositions 1.4, 1.5]).
Combining this fact with Lemma 3.1, we obtain

Corollary 3.2. Let J(®&)=B, T a subring of A containing B such
that O|T is finite, T is separable over B, and &-strong. Let N denote
the subring generated by U,ewo(T). Then N is a @|N-Galois extension
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of B.
We shall now prove the following

Theorem 3.1. Let J(®)=B, E a finite subset of A such that for
every a€E, {o(a)|cE®} is finite, and elements a—o(a)70 are inver-
sible.  Then B[E] is separable over B, and @-strong. Moreover,
JXBIEN)N®)=B[E], and seiting F={o(a)|cE®, a=E}, B[F] is a
®|B[F]-Galois extension of B.

Proof. By Lemma 2.2 (3,4) and Cor.3.1, B[E] is separable over
B, and G-strong. Hence by Cor.3.2, B[F] is a ®]B[F]-Galois exten-
sion of B. Moreover, by Lemma 2.2 (2), we have J(J(B[e]) N®)=B[a]
for every ¢=E. Hence we can use induction on the cardinal number of
E toobtain J(XB[E]) N®)=B[E].

We prove next

Theorem 3.2. Let J(&)=B, F a finite subset of A such that
o(F)CF foralloin ®, and set f(X)=1l,er(X—a). Then fF(X)=B[X]
and the following conditions are equivalent.

(@) For a¥a' in F, a—a' isinversible in A.

(b) f(X) is a separable polynomial over B.

Proof. Since o(F)=F for all ¢ in @, it follows that f(X)=B[X].
If there holds (a) then II...ex(@—a') is inversible in B, and conversely.
Hence by Th.2.2, we obtain (a)<=>(b).

Remark 3.1, Let &, F, f(X) be as in Th.3.2, and assume the
conditions (a), (b) of Th.3.2. For g=F, set F,= {6(a)|cE®}, and
fo=TNwer(X—a'). Then by Lemma 2.2, £, is a separable polynomial
of B[X], and B[X]/(f.)=B[al] (A(X)+(f,) — h(a)). Now, noting
e(F)=F for all ¢ in ®, we have a decomposition of F into non-overlap-
ping transitivity sets relative to &: F=F, UF,U-+UF.. Then we have
a factorization f(X)= SeSe, f.» L A has no proper idempotents then

the f. are irreducible polynomials of B[X] (cf. [5, Cor.2.10]).
As to case F is a transitivity set relative to ©, we have the following

Theorem 3.3. Let J(&)=DB, a an element of A such that F=
{e(a)|e=®) is finite, and set f(X)=Tye{X—a'). Then the following
conditions are equivalent,
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(@) For as=a' in F, a—a' is inversible in A.
(b) f(X) is a separable polynomial over B.
(¢) Bla] is separable over B, and O-strong.

Proof. Since (a)<=(b)=>(c) follows from Th.3.1 and Th.3.2, we
need only show that (c)=>(a). By Cor.3.2, we may assume that A is a
®-Galois extension of B, B[a] is separable over B, and ®-strong.
Then for $=J(B[e])NG, we have J(®)=B[e] by [3,Th.2.2], and
hence tb(x)=2,eg, o(x)=B[a] for all ¥ in A. We suppose that there
exists an element v in & such that ¢—<(¢)540 and is not inversible in
A. Then N=(a—7(a))A is a prover ideal of A. For g(X)EB[X], we
have g(a)—(g(a))=g(a)—g((a))=(a—=(a))cEN for some cEB[a, t(a)].
This implies x—7(x)EN for all ¥ in B[g4]. Since A/B is &-Galois,
there exist elements u,, u,, ***, #n} V1, ¥, ***, U, such that 2, u,eo(w)=7,,
forall ¢ in ®. Then, noting $N=HD=¢, we obtain X, u,t&)(vf):l and
> u,'?(tﬁ(vl-))=0. Hence it follows that 1=, u‘(t.@(v[)—r(t_%(v;)))EN, a
contradiction. This proves (c)=>(a).

We shall present now a theorem on imbedding of a ring extension
Bla]/B in a Galois extension of B.

Theorem 3.4. For a ring extension Blal of B, the following
conditions are equivalent.

(@ Blal=B[X]1/(f(X)) (h(a)<—=hX)+(f(X))) for some
separable polynomial f(X) in B[X].

(b) B[a] is separable over B and can be imbedded in a 9-Galois
extension of B in which Bl[a) is 9-strong.

Proof. The implication (b)=>(a) is a direct consequence of Th.3.3
and Lemma 2.2. Assume (a). Then B[a] is separable over B. By
Th.1.1 and Cor.1.1, there is a free splitting ring B[x,, %,, ***, £.] of fF(X)
with ;=a. Then, by Th.2.1 and Th.3.1 we know that B[x,, ., *-*, x.]/B is
&is,...z)-Galois and B[x,] (=B[a]) is &,..., -strong. Thus we obtain
(b).

An application of the preceding theorem is the following

Corollary 3.3. Let B be a ring without proper idempotents, and
Blal] a ring extension of B which is projective and separable over B.
Then Bl[a] can be imbedded in a O-Galois extension of B in which Bla]
is O-strong.
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Proof. By [5, Th.2.9], there exists a separable polynomial f(X)
in B[X] such that B[X]/(f(X)) is isomorphic to B[«] under the map-
ping A(X)+(f(X)) —> #(a). Hence the assertion is immediate from
Th.3.4.
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