ANOTHER PROOF OF THE INVARIANCE OF ULM'S FUNCTIONS IN COMMUTATIVE MODULAR GROUP RINGS

PAUL F. DUBOIS and SUDARSHAN K. SEHGAL

In this note we give a short and natural proof of the following theorem due to Berman and Mollov [1] and May [2].

Theorem. Let Z_pG be the group ring of a p-primary group G over Z_p , the field of p elements. Suppose $\theta: Z_pG \cong Z_pH$. Then G and H have the same Ulm's functions.

The proof is a direct consequence of a lemma of Jennings [3] which we give below. First, we need some notation. We write all groups multiplicatively and define $G^p = \{g \in G | g = x^p \text{ for some } x \in G\}$. Inductively, for ordinals β we have

$$G^{p^{\beta+1}} = \left(G^{p^{\beta}}\right)^p$$
 and $G^{p^{\beta}} = \bigcap_{n < \beta} G^{p^n}$

for β a limit ordinal.

If K is a subgroup of G, by $\triangle(G; K)$ we mean the ideal of Z_pG generated by elements of the form 1-k, $k \in K$. Sometimes we write $\triangle(K)$ if the context is clear. We denote $\{x \in K \mid x^p = 1\}$ by K[p].

Lemma. Let G be a p-primary abelian group and N a subgroup. Then

- (1) $G/G^p \cong \Delta(G)/\Delta^2(G)$, and
- (2) $N/N^p \simeq \triangle(G; N)/\triangle(G) \cdot \triangle(G; N)$.

Proof. Define $\lambda: G \to \triangle(G)/\triangle^2(G)$ by $\lambda(g) = g - 1 + \triangle^2(G)$. Since

- (*) $g_1g_2-1=(g_1-1)+(g_2-1)+(g_1-1)(g_2-1),$
- λ is an epimorphism with kernel = $\{g \in G | g 1 \in \Delta^2(G)\} = G^p$ by Jennings [3], proving (1). Actually, Jennings proved this equality for finite groups but since in an equation $g-1=\delta \in \Delta^2(G)$, only a finite number of elements of G occur, his result is applicable to our case.

For the second part, define

$$\mu: N \to \triangle(G; N)/\triangle(G) \cdot \triangle(G; N)$$
 by $\mu(n) = \overline{n-1}$.

It follows from (*) and

$$g(n-1)=n-1+(g-1)(n-1)$$

that μ is an epimorphism with kernel = $\{n \mid n-1 \in \triangle(G) \cdot \triangle(G; N)\}$. It remains to prove:

$$(**) n-1 \in \triangle(G) \cdot \triangle(G;N) \Rightarrow n \in N^{p}.$$

Choose a transversal $\{g_i\}$ of N in G with $g_1=1$. Define for $g_i n \in G$, $\sigma(g_i n) = n$ and extend this linearly to $\sigma: Z_n G \rightarrow Z_n N$. Now,

$$n-1=\sum_{i}\gamma_{i}(n_{i}-1), \ \gamma_{i}\in\triangle(G), \ n_{i}\in\mathbb{N}.$$

Therefore

$$n-1=(n-1)^{\sigma}=\sum_{i} \gamma_{i}^{\sigma}(n_{i}-1)$$
 and $n-1 \in \Delta^{2}(N; N)$.

Hence, $n \in \mathbb{N}^p$. This proves (**) and therefore (2).

Remark. The above lemma is a special case of a similar result that holds for arbitrary (not necessarily abelian or finite) groups. Also, there is a corresponding result for integral group rings (see, Sehgal [4]). For the purpose of this paper the above will suffice.

Proof of Theorem. Now, suppose $\theta: Z_pG \cong Z_pH$. We may assume here that θ is normalized; if $\theta(g) = \sum_{h \in H} \alpha_h h$ then $\sum_{h \in H} \alpha_h = 1$. By noting that $\theta(g^p) = (\sum_{h \in H} \alpha_h h)^p = \sum_{h \in H} \alpha_h^p h^p$, we have that θ maps Z_pG^p isomorphically onto Z_pH^p . By a simple induction

$$\theta: Z_p G^{p^{\beta}} \cong Z_p H^{p^{\beta}}$$
 for all ordinals β .

We show first that the finite Ulm invariants are equal. The *i*th Ulm invariant, $i < \omega$ (the first limit ordinal), is the dimension of $(G^{p^i})[p]/(G^{p^{i+1}})[p]$. For convenience let us denote $(G^{p^i})[p]$ by L_i .

By the lemma we have an isomorphism

$$L_i \cong \triangle(G; L_i)/\triangle(G) \cdot \triangle(G; L_i).$$

Under θ , $\triangle(L_i)$ is isomorphic to $\triangle(M_i)$ where $M_i = (H^{p^i})[p]$. Thus we obtain for each i the commutative diagram below:

$$L_{i} \simeq \triangle(L_{i})/\triangle(G)\triangle(L_{i}) \simeq \triangle(M_{i})/\triangle(H)\triangle(M_{i}) \simeq M_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$L_{i+1} \simeq \triangle(L_{i+1})/\triangle(G)\triangle(L_{i+1}) \simeq \triangle(M_{i+1})/\triangle(H)\triangle(M_{i+1}) \simeq M_{i+1}$$
and thus $L_{i}/L_{i+1} \simeq M_{i}/M_{i+1}$.

The observation that $Z_pG^{p^{\beta}} \cong Z_pH^{p^{\beta}}$ allows us to conclude that even the transfinite Ulm invariants are equal.

REFERENCES

- [1] S. D. Berman and T. Zh. Mollov: On group rings of abelian p-groups of any cardinality, Mat. Zam 6 (1969), 381—392 (Translation Math. Notes 6 (1969), 686—692).
- [2] W. MAY: Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969), 139—149.
- [3] S. A. Jennings: The structure of the group rings of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
- [4] S.K. Sehgal: On the isomorphism of integral group rings II, Can. J. Math. 21 (1969), 1182—1188.

UNIVERSITY OF ALBERTA

(Received February 19, 1972)