ON THE BIMODULE STRUCTURE OF GALOIS EXTENSIONS

SIGURD ELLIGER

Throughout the present note, A will represent an (Artinian) simple ring which is finite Galois over a simple subring B. Then, it is known that A is $B \cdot V_A(B)$ -A-irreducible. (See [4]. As to terminologies used without mention, we follow [4].) We use the following notations: $C = V_A(A)$, $Z = V_B(B)$, $V = V_A(B)$, $H = V_A(V)$, $C_0 = V_V(V) = V \cap H$, G = the Galois group of A/B, $\{\sigma_1 = 1, \sigma_2, \dots, \sigma_n\}$ is a (fixed) representative system of G modulo the normal subgroup I consisting of all inner automorphisms, and $\overline{G} = G/I$, which may and will be regarded as the Galois group of H/B. We set further $S = V_I \cdot V_T$ and $R = \text{Hom}(_B A_B, _B A_B)$, where V_I (resp. V_T) the left (resp. right) multiplication of V. To be easily seen, $R = GV_T = \bigoplus_{i=1}^n \sigma_i S$ and $S \cong V^\circ \otimes_C V$ is a Frobenius ring, where V° is the opposite of V. (See, for instance [3; Lemma 3].)

In this note, the main theme of our discussion will concern the bimodule structure of ${}_{B}A_{B}$. We shall prove first that ${}_{B}A_{B}$ is a direct sum of local submodules, where a module ${}_{B}M_{B}$ is said to be *local* if it contains one and only one maximal submodule (Theorem 1). Next, we shall explain when ${}_{B}A_{B}$ is completely reducible (Theorem 2) or local (Theorem 3).

The next lemma will play an essential role in our subsequent study.

Lemma 1. If T is a B-B-submodule of A then the restriction T|R of R to T contains a free V_r -basis that forms at the same time a free A_r -basis of $T|GA_r$, $[T|R:V_r] = [T|GA_r:A_r] = [T:B]_t$ and $T|R = \text{Hom}(_BT_{B_1},_BA_B)$.

Proof. As is well-known, T is left (resp. right) B-free. Hence, the lemma is contained in [4; Lemma 5.8].

Theorem 1. R is a Frobenius ring and ${}_{B}A_{B}$ is a direct sum of local modules.

Proof. To be easily seen, the map h defined by $\sum_{i=1}^{n} \sigma_{i} s_{i} \mapsto s_{1}$ is a Frobenius homomorphism of the ring extension R/S, namely, R/S is a free Frobenius extension. Since S is a Frobenius ring, so is R by [1];

Satz 10]. Next, we shall prove the latter part. To our end, it is enough to show that if e is a primitive idempotent of R then ${}_BAe_B$ is local. Let T_1 and T_2 be arbitray proper B-B-submodules of Ae. Noting that $[T_i|R:V_r]=[T_i:B]_i < [Ae:B]_i=[Ae|R:V_r]$ (Lemma 1), the kernel of the restriction map $h_i:Ae|R\rightarrow T_i|R$ is non-zero. Since R is a Frobenius ring, ker $h_1\cap\ker h_2$ contains a submodule isomorphic to the unique minimal right subideal of eR. Hence, the kernel of the restriction map $Ae|R\rightarrow T_1+T_2|R$ is non-zero, which implies $T_1+T_2\ne Ae$ and that ${}_BAe_B$ is local.

Theorem 2. The following conditions are equivalent:

- (1) $_{B}A_{B}$ is completely reducible.
- (2) R is semisimple.
- (3) a) C_0/C is separable;
 - b) $\sum_{i=1}^{n} c\sigma_i = 1$ for some $c \in C_0$.

Proof. (1) \Rightarrow (2): This is evident by Lemma 1.

- $(2) \Rightarrow (1)$: It suffices to prove that if $eR(e^2 = e)$ is a minimal right ideal then ${}_BAe_B$ is irreducible. Let T' be an arbitrary non-zero B-B-submodule of Ae. Noting that $Ae \mid R$ is R-irreducible, we obtain $[T':B]_t = [T' \mid R:V_r] = [Ae \mid R:V_r] = [Ae:B]_t$ (Lemma 1), namely, T' = Ae.
- (2) \Rightarrow (3): Evidently, the semisimplicity of R implies the semisimplicity of S, equivalently, the separability of C_0/C . Since ${}_BA_B$ is then completely reducible, so is ${}_BH_B$. Accordingly, $\operatorname{Hom}\left({}_BH_B, {}_BH_B\right) = \overline{G}C_{or}$ is semisimple. Hence, C_0 is a direct summand of H as $\overline{G}C_{or}$ -module. Now, noting that H contains an element a with $1 = \sum_{\overline{\sigma} \in \overline{G}} a\overline{\sigma} = \sum_{i=1}^n a\sigma_i$, we readily obtain (iii) b).
- (3) \Rightarrow (2): Let $\sum_{i=1}^{n} c\sigma_{i} = 1$ for some $c \in C_{0}$. To be easily verified, $\sum_{i=1}^{n} \sigma_{i}^{-1} c_{i} \sigma_{i} = 1$ and $\sum_{i=1}^{n} x \sigma_{i}^{-1} c_{i} \otimes \sigma_{i} = \sum_{i=1}^{n} \sigma_{i}^{-1} c_{i} \otimes \sigma_{i} x$ (in $R \otimes_{S} R$) for every $x \in R$. This means that R is a separable extension of the semisimple ring S. Then, R is semisimple by [2; Lemma 2.10 (1)].

Corollary 1. If C_0 is separable over C and n is not divisible by char A, then ${}_BA_B$ is completely reducible.

Theorem 3. The following conditions are equivalent:

- (1) $_{B}A_{B}$ is local.
- (2) R is a local ring.
- (3) a) V = Z and is purely inseparable over C;

b) either A/B is inner Galois or \overline{G} is a p-group and char A=p.

Proof. (1) \Rightarrow (2): This is evident by Th. 1.

 $(2) \Rightarrow (3)$: Since R is local, so is the subring S which is isomorphic to $V^{\circ} \otimes_{c} V$. Accordingly, $C_{0} \otimes_{c} C_{0}$ is a local ring, namely, C_{0}/C is purely inseparable. If $[V:C_{0}]=m$ then $(C_{0})_{m}(\cong V^{\circ} \otimes_{c_{0}} V)$ is a homomorphic image of the local ring S. Hence, it follows $V=C_{0}$. Further, C_{0}/Z is Galois with $C_{0} \mid \overline{G}$ as Galois group, and so if $[C_{0}:Z]=t$ then $(Z)_{t}$ ($\cong C_{0} \mid \overline{G}C_{0}$) is homomorphic to R. It follows therefore $Z=C_{0}=V$ and $H \mid R$ is isomorphic to the group ring of \overline{G} over Z. Hence, if n>1 then \overline{G} is a p-group and $p=\operatorname{char} Z$ by [4]; Lemma 13.4].

(3) \Rightarrow (2): Let ϕ be the ring homomorphism of the local ring $S = Z_i \cdot Z_r$ onto Z given by $\sum z_{ii} \cdot z'_{ii} \mapsto \sum z_i z'_{ii}$. Then, the kernel of ϕ is the radical J of S. Now, one will easily see that the kernel of the restriction map $R \to H \mid R$ is $\bigoplus_{i=1}^n \sigma_i J$ and nilpotent. Since $H \mid R = \overline{G}Z_r$ is a local ring again by [4 ; Lemma 13.4], we can easily see that R is a local ring.

Acknowledgement. The author is indebted to Professor H. Tominaga for eliminating some errors and shortening the proofs.

REFERENCES

- [1] F. Kasch: Grundlagen einer Theorie der Frobeniuserweiterungen, Math. Ann. 127 (1954), 453—474.
- [2] Y. MIYASHITA: Locally finite outer Galois theory, J. Fac. Sci. Hokkaido Univ., Ser. 1, 20 (1967), 1—26.
- [3] T. NAKAYAMA: On Frobeniusean algebras II, Ann. Math. 42 (1941), 1-21.
- [4] H. TOMINAGA and T. NAGAHARA: Galois Theory of Simple Rings, Okayama Math. Lectures, Okayama Univ., 1970.

INSTITUTE FOR MATHEMATICS, RUHR-UNIVERSITY BOCHUM

(Received October 26, 1971)