ON THE HYPERSPACE OF A QUASI-UNIFORM SPACE

NORMAN LEVINE and WILLIAM J. STAGER, JR.

1. Introduction

1.1. In [4], E. Michael studied various topologies on the hyperspace including the uniform topology and the finite topology; J. R. Isbell also studied the uniform topology on hyperspaces in [1].

Given a quasi-uniform space (X, \mathcal{Q}) , we define a quasi-uniformity $2^{\mathcal{Q}}$ on the hyperspace 2^x in a natural way and investigate some of its stable properties.

If we are given a topological space (X, \mathcal{I}) and let $\mathcal{L}(\mathcal{I})$ be Pervin's quasi-uniformity, then the quasi-uniform topology $\mathcal{I}(2^{\mathcal{L}(\mathcal{I})})$ is shown to coincide with $2^{\mathcal{I}}$, the finite topology on 2^{x} .

In \S 3, we show that every quasi-uniform space has a compactification.

We shall use the definitions and properties of quasi-uniform spaces as developed by M. G. Murdeshwar and S. A. Naimpally in [5].

Finally, all spaces are presumed to be T_1 .

- 1.2. Let (X, \mathcal{Q}) be a topological space; 2^x denotes the set of all nonempty closed sets and is called the hyperspace of X. For each $A \subseteq X$, let $\langle A \rangle = \{E : E \in 2^x \text{ and } E \subseteq A\}$. $\overline{2}^g$ is the topology for 2^x with $\{\langle 0 \rangle : O \in \mathcal{Q}\}$ as base and is called the upper-semi-finite topology. For each $A \subseteq X$, let $\langle X, A \rangle = \{E : E \in 2^x \text{ and } A \cap E \neq \emptyset\}$; 2^g is the topology for 2^x with $\{\langle X, O \rangle : O \in \mathcal{Q}\}$ as subbase and is called the lower-semi-finite topology. Finally, we let $2^g = 2^g \sqrt{2}^g$; 2^g is called the finite topology for 2^x . We note that $\{x\} \in 2^x$ for each x in X since T_1 is presumed.
- 1.3. Let $(X; \mathcal{U})$ be a quasi-uniform space (all axioms for a uniform space hold except perhaps the symmetry axiom). For each $U \in \mathcal{U}$, we make the following definitions:
 - (i) $\overline{H}(U) = \{(A, B) : A, B \in 2^X \text{ and } B \subseteq U[A]\}$
 - (ii) $H(U) = \{(A, B) : A, B \in 2^x \text{ and } A \subseteq U^{-1}[B]\}$
 - (iii) $H(U) = \overline{H}(U) \cap H(U)$.

We note the asymmetry in the definitions of $\underline{H}(U)$ and $\overline{H}(U)$.

Theorem 1.3.1. Let (X, \mathcal{U}) be a quasi-uniform space. Then $\{\overline{H}(U): U \in \mathcal{U}\}$, $\{\underline{H}(U): U \in \mathcal{U}\}$ and $\{H(U): U \in \mathcal{U}\}$ are bases for quasi-uniformities for 2^x respectively denoted by $\overline{2}^y$, $\underline{2}^y$ and 2^y . These are called the upper-hyper-quasi-uniformity, the lower-hyper-quasi-uniformity and the hyper-quasi-uniformity respectively.

Proof. The fact that $\{\overline{H}(U): U \in U\}$ is a base for a uniformity for 2^x follows from the identities:

- (i) $\overline{H}(U) \circ \overline{H}(U) \subseteq \overline{H}(U \circ U)$ when $U \in U$
- (ii) $\triangle \subseteq \overline{H}(U) \subseteq \overline{H}(V)$ when $U \subseteq V$, U, $V \in \mathcal{U}$.

Similarly for $\{H(U): U \in \mathcal{U}\}\$ and $\{H(U): U \in \mathcal{U}\}\$.

We note that when (X, \mathcal{U}) is a separated uniform space, then $2^{\mathcal{U}}$ is the uniformity studied by Michael and Isbell.

Theorem 1. 3. 2. Let (X, U) be a quasi-uniform space and let $U^{-1} = \{U^{-1}: U \in U\}$. Then (i) (X, U^{-1}) is a T_1 -quasi-uniform space (ii) $\overline{Z}^{U^{-1}} = (\underline{Z}^U)^{-1}$ (iii) $\underline{Z}^{U^{-1}} = (\overline{Z}^U)^{-1}$ (iv) $2^U = \overline{Z}^U \vee \underline{Z}^U$, \vee denoting supremum (v) $2^{U^{-1}} = (2^U)^{-1}$.

- *Proof.* (i) is cited in [5]. (ii) follows from the fact that $\overline{H}(U^{-1}) = (H(U))^{-1}$ (iii) follows from the identity $\underline{H}(U^{-1}) = (\overline{H}(U))^{-1}$. (iv) $H(U) = \overline{H}(U) \cap \underline{H}(U)$ implies that $2^U = \overline{2}^U \vee 2^U$. (v) follows from (ii) and (iii) and the fact that $(U \vee V)^{-1} = U^{-1} \vee V^{-1}$ when U and V are quasi-uniformities (see [5]).
- 1.4. In [4], Michael shows that when (X, \mathcal{D}) is a T_1 -space, the function $i: X \to 2^x$ defined by $i(x) = \{x\}$ is a homeomorphism from (X, \mathcal{D}) into $(2^x, 2^{\mathcal{D}})$. For a separated uniform space the function $i: X \to 2^x$ is a unimorphism from (X, \mathcal{D}) into $(2^x, 2^{\mathcal{D}})$. In this sense, $2^{\mathcal{D}}$ is an admissible topology for 2^x and $2^{\mathcal{D}}$ is an admissible uniformity for 2^x .

We show next that in this sense, 2^U , $\bar{2}^U$ and 2^U are admissible quasi-uniformities for 2^v when (X, U) is a T_1 quasi-uniform space.

Theorem 1.4.1. Let (X, U) be a quasi-uniform space. Then each of the following are unimorphisms:

- (i) $i: (X, \mathcal{I}) \rightarrow (i[X], \bar{2}^{\mathcal{U}} \cap i[X] \times i[X])$
- (ii) $i: (X, U) \rightarrow (i[X], 2^U \cap i[X] \times i[X])$
- (iii) $i: (X, \mathcal{U}) \rightarrow (i[X], 2^{\mathcal{U}} \cap i[X] \times i[X]).$

Proof. (i) follows from the fact that $U=(i\times i)^{-1}[\overline{H}(U)]$ and

 $(i \times i)[U] = \overline{H}(U) \cap i[X] \times i[X]$ when $U \in U$. Similarly for (ii) and (iii). Note that the assumption of T_1 is vital here.

Theorem 1.4.2. Let (X, \mathcal{U}) be a quasi-uniform space and suppose that $\mathcal{B} \subseteq \mathcal{U}$. The following are equivalent:

- (i) B is a base for U
- (ii) $\{\overline{H}(B): B \in \mathcal{B}\}\$ is a base for $\overline{2}^{Q}$
- (iii) $\{H(B): B \in \mathcal{B}\}\$ is a base for 2^{U}
- (iv) $\{H(B): B \in \mathcal{B}\}\$ is a base for 2^{U} .

Proof. (i) is equivalent to (ii) since $B \subseteq U$ is equivalent to $\overline{H}(B) \subseteq \overline{H}(U)$. Similarly for the equivalence of (i) and (iii), and (i) and (iv).

The following example indicates that Theorem 1.4.2 cannot be generalized to subbase.

Example 1.4.3. Let $(X, \mathcal{C}U)$ be the unit interval with the usual uniformity. Let $S = \{U \cup \{a\} \times X : U \in \mathcal{C}U, a = 0 \text{ or } a = 1\}$. Then both S and S^{-1} are subbases for $\mathcal{C}U$. But $\{\overline{H}(S) : S \in S\}$ is not a subbase for $\overline{Z}^{\mathcal{C}U}$, $\{\underline{H}(S^{-1}) : S^{-1} \in S^{-1}\}$ is not a subbase for $\underline{Z}^{\mathcal{C}U}$ and finally, $\{H(S) : S \in S\}$ is not a subbase for $\underline{Z}^{\mathcal{C}U}$. To see this, let $A = \{0, 1\}$ and B = X. Let $S \in S$. Then S[A] = X = S[B] and $S^{-1}[B] = X$ as the reader can easily see. Thus $(A, B) \in \overline{H}(S)$, $(B, A) \in \overline{H}(S^{-1})$ and $(A, B) \in \overline{H}(S)$. Let $V = \{(x, y) : |x - y| < 1/2\}$. Then $V \in \mathcal{C}U$, but $(A, B) \notin \overline{H}(V)$, $(A, B) \notin \overline{H}(V)$ and $(B, A) \notin \overline{H}(V)$.

Theorem 1. 4.4. Let (X, U) be a quasi-uniform space. The following are equivalent:

- (i) U is a uniformity
- (ii) $\overline{2}^{U} = (2^{U})^{-1}$
- (iii) 2^{U} is a uniformity.

Proof. (i) implies (ii). If U is a uniformity, then $U=U^{-1}$. Then $\overline{2}U=\overline{2}U^{-1}=(2^U)^{-1}$ by (ii) of Theorem 1. 3. 2.

- (ii) implies (iii). $2^U = \overline{2}^U \vee \underline{2}^U = (\underline{2}^U)^{-1} \vee (\overline{2}^U)^{-1} = (2^U)^{-1}$ by (iv) of Theorem 1. 3. 2
- (iii) implies (i). If 2^U is a uniformity, then $2^U \cap i[x] \times i[x]$ is a uniformity and by (iii) of Theorem 1.4.1, U is a uniformity.

2. The Hyperspace of Pervin's Quasi-Uniformity

2.1. For $A \subseteq X$, let $S(A) = A \times A \cup CA \times X$, C denoting the com-

plement operator. In [6], Pervin showed that for a given topological space (X, \mathcal{I}) , $\{S(O) : O \in \mathcal{I}\}$ is a subbase for a quasi-uniform space $(X, \mathcal{I}(\mathcal{I}))$ with the property that $\mathcal{I}(\mathcal{I}(\mathcal{I})) = \mathcal{I}$.

In this section, we will show that if (X, \mathcal{I}) is a topological space and $\mathcal{P}(\mathcal{I})$ is Pervin's quasi-uniformity, then $2^{\mathcal{I}} = \mathcal{I}(2^{\mathcal{P}(\mathcal{I})})$.

Several properties of Pervin's quasi-uniformity were developed by Levine in [3]. Applications were also made in [5].

It is worth noting that $S(A) = (S(CA))^{-1}$ for all sets $A \subseteq X$.

Theorem 2.1.1. Let (X, U) be a quasi-uniform space and $\mathcal{I} = \mathcal{I}(U)$. Then

- (i) $\mathfrak{I}(\overline{2}^{U}) \subseteq \overline{2}^{\mathfrak{I}}$ and (ii) $2^{\mathfrak{I}} \subseteq \mathfrak{I}(2^{U})$.
- *Proof.* (i). Let $E \in O \in \mathcal{I}(\bar{2}^U)$. There exists then a $U \in U$ such that $\overline{H}(U)[E] \subseteq O$. But $E \in \langle \operatorname{Int} U[E] \rangle \subseteq \overline{H}(U)[E]$ as the reader can easily show.
- (ii) It suffices to show that $\langle X,O\rangle \in \mathcal{I}(2^U)$ when $O \in \mathcal{I}$. Let $A \in \langle X,O\rangle$. Then $A \cap O \neq \emptyset$; let $a \in A \cap O$. There exists then a $U \in U$ such that $U[a] \subseteq O$. We show now that $A \in \underline{H}(U)[A] \subseteq \langle X,O\rangle$. Let $B \in \underline{H}(U)[A]$. Then $A \subseteq U^{-1}[B]$ and hence $\emptyset \neq \overline{U}[a] \cap B \subseteq B \cap O$. Thus $B \in \langle X,O\rangle$.

Theorem 2.1.2. Let (X, \mathcal{I}) be a topological space and suppose that $\mathcal{P}(\mathcal{I})$ is Pervin's quasi-uniformity. If $S = \{S(O) : O \in \mathcal{I}\}$, then (i) $\{\overline{H}(S) : S \in \mathcal{S}\}$ is a subbase for $\overline{2}\mathcal{P}(\mathcal{I})$, (ii) $\{\underline{H}(S) : S \in \mathcal{S}\}$ is a subbase for $2\mathcal{P}(\mathcal{I})$ and (iii) $\{H(S) : S \in \mathcal{S}\}$ is a subbase for $2\mathcal{P}(\mathcal{I})$.

Proof. (i) Let $O_i \in \mathcal{I}$ for $1 \leq i \leq n$ and for $\emptyset \neq \delta \subseteq \{1, \dots, n\}$, let $O_\delta = \bigcup \{O_i : i \in \delta\}$. It suffices to show that $\bigcap \{\overline{H}(S(O_\delta)) : \emptyset \neq \delta \subseteq \{1, \dots, n\}\}$ $\subseteq \overline{H}(S(O_1) \cap \dots \cap S(O_n))$. Let (A, B) be a member of the left side and take $b \in B$. It suffices to show that there exists an a in A such that $(a, b) \in S(O_i)$ for $1 \leq i \leq n$.

Case 1. $b \in O_i$ for each i. Then any a in A will do.

Case 2. $b \notin \bigcap \{O_i : 1 \leq i \leq n\}$. Let $\delta = \{i : b \notin O_i\}$.

Then $(A, B) \in \overline{H}(S(O_b))$ and hence there exists an $a \in A$ such that $(a, b) \in S(O_b)$. If $(a, b) \notin S(O_j)$, then $a \in O_j$ and $b \notin O_j$ and hence $a \in O_b$. It follows then that $b \in O_b$, a contradiction.

(ii) Let $O_i \in \mathcal{I}$ for $1 \leq i \leq n$. For each $\emptyset \neq \delta \subseteq \{1, \dots, n\}$, let $G_{\delta} = \bigcap \{O_i : i \in \delta\}$. It suffices to show that

 $\bigcap \{\underline{H}(S(G_{\delta})): \emptyset \neq \delta \subseteq \{1, 2, \dots, n\} \} \subseteq \underline{H}(S(O_{1}) \cap \dots \cap S(O_{n})). \text{ Since } \mathcal{C}G_{\delta} = \bigcup \{\mathcal{C}O_{i}: i \in \delta\}, \text{ it follows that } \bigcap \{\overline{H}(S(\mathcal{C}G_{\delta})): \emptyset \neq \delta \subseteq \{1, \dots, n\} \} \subseteq \overline{H}(S(\mathcal{C}O_{1}) \cap \dots \cap S(\mathcal{C}O_{n})) \text{ using the argument in (i) above. Recalling that } S(A) = (S(\mathcal{C}A))^{-1} \text{ (see § 2.1) and } \overline{H}(U^{-1}) = (\overline{H}(U))^{-1}, \text{ we have}$

$$\bigcap \{ \underline{H}(S(G_{\delta})) : \emptyset \neq \delta \subseteq \{1, \dots, n\} \} = \bigcap \{ \underline{H}((S(CG_{\delta}))^{-1}) : \emptyset \neq \delta \subseteq \{1, \dots, n\} \} \\
= \bigcap \{ (\overline{H}(S(CG_{\delta})))^{-1} : \emptyset \neq \delta \subseteq \{1, \dots, n\} \} \\
= (\bigcap \{ \overline{H}(S(CG_{\delta})) : \emptyset \neq \delta \subseteq \{1, \dots, n\} \})^{-1} \\
\subseteq (\overline{H}(S(CO_{1}) \cap \dots \cap S(CO_{n})))^{-1} \\
= H(S(O_{1}) \cap \dots \cap S(O_{n}))$$

(iii) Let $O_i \in \mathcal{I}$ for $1 \leq i \leq n$. Let O_i and G_i be defined as in (i) and (ii) above. Then

Theorem 2.1.3. Let (X, \mathcal{I}) be a topological space and suppose that $O \in \mathcal{I}$. Then

- (i) $\overline{H}(S(O)) = S(\langle O \rangle)$
- (ii) $H(S(O)) = S(\langle X, O \rangle)$
- (iii) $H(S(O)) = S(\langle O \rangle) \cap S(\langle X, O \rangle)$.

Proof. (i) It suffices to show that $\overline{H}(S(O)) = \langle O \rangle \times \langle O \rangle \cup \langle X, CO \rangle \times 2^x$. Let A, B be in 2^x .

Case 1. $A \subseteq O$. Then $(A, B) \in \overline{H}(S(O))$ iff $B \subseteq S(O)$ [A] iff $B \subseteq O$ iff $(A, B) \in \langle O \rangle \times \langle O \rangle$ iff $(A, B) \in \langle O \rangle \times \langle O \rangle \cup \langle X, CO \rangle \times 2^x$.

Case 2. $A \nsubseteq O$. Then $(A, B) \in \overline{H}(S(O))$ iff $B \subseteq S(O)[A]$ iff $B \subseteq X$ iff $(A, B) \in \langle X, CO \rangle \times 2^x$ iff $(A, B) \in \langle O \rangle \times \langle O \rangle \cup \langle X, CO \rangle \times 2^x$.

(ii)
$$\underline{H}(S(O)) = (\overline{H}(S(\mathcal{C}O)))^{-1} = (S(\langle \mathcal{C}O \rangle))^{-1}$$
 (by (i))
$$= S(\mathcal{C}\langle \mathcal{C}O \rangle) = S(\langle X, O \rangle).$$

(iii)
$$H(S(O)) = \underline{H}(S(O)) \cap \overline{H}(S(O))$$

= $S(\langle X, O \rangle) \cap S(\langle O \rangle)$

Corollary 2.1.4. Let (X, \mathcal{I}) be a topological space.

Then (i) $\overline{2}^{\mathcal{P}(\mathfrak{I})} \subseteq \mathcal{P}(\overline{2}^{\mathfrak{I}})$ (ii) $\underline{2}^{\mathcal{P}(\mathfrak{I})} \subseteq \mathcal{P}(\underline{2}^{\mathfrak{I}})$ and (iii) $2^{\mathcal{P}(\mathfrak{I})} \subseteq \mathcal{P}(2^{\mathfrak{I}})$.

Proof. (i) Let $O \in \mathcal{I}$. By (i) of Theorem 2.1.2., $\overline{H}(S(O))$ is subbasic in $\overline{2}^{\mathcal{P}(\mathcal{I})}$. But $\overline{H}(S(O)) = S(\langle O \rangle)$ by (i) of Theorem

- 2. 1. 3., and $S(\langle O \rangle) \in \mathcal{Q}(\overline{2}^{g})$.
- (ii) Let $O \in \mathcal{G}$. By (ii) of Theorem 2. 1. 2, $\underline{H}(S(O))$ is subbasic in $2^{\mathcal{P}(\mathcal{G})}$. By (ii) of Theorem 2. 1. 3, $H(S(O)) = S(\langle X, O \rangle) \in \mathcal{P}(2^{\mathcal{G}})$
- (iii) Let $O \in \mathcal{G}$. By (iii) of Theorem 2.1.2, H(S(O)) is subbasic in $2^{\mathcal{P}(\mathcal{I})}$. By (iii) of Theorem 2. 1. 3, $H(S(O)) = S(\langle O \rangle) \cap S(\langle X, O \rangle) \in \mathcal{P}(2^{\mathcal{I}})$.
- **Theorem 2.1.5.** Let (X, \mathcal{I}) be a topological space. Then (i) $\mathfrak{I}(2^{\mathfrak{P}(\mathfrak{I})}) = 2^{\mathfrak{I}}$ (ii) $\mathfrak{I}(2^{\mathfrak{P}(\mathfrak{I})}) = 2^{\mathfrak{I}}$ and (iii) $\mathfrak{I}(2^{\mathfrak{P}(\mathfrak{I})}) = 2^{\mathfrak{I}}$.
- (i) By (i) of Corollary 2. 1. 4, $\Im(\overline{2}^{\mathcal{P}(\mathfrak{D})})\subseteq\overline{2}^{\mathcal{D}}$. suffices to show that $\bar{2}^{g} \subseteq \mathcal{I}(\bar{2}^{g(g)})$ or that $\langle O \rangle \in \mathcal{I}(\bar{2}^{g(g)})$ when $O \in \mathcal{I}$. Let $A \in \langle O \rangle$; by (i) of Theorem 2. 1. 3, $\overline{H}(S(O)) \lceil A \rceil = S(\langle O \rangle) \lceil A \rceil \subseteq \langle O \rangle$.
- (ii) By (ii) of Corollary 2. 1. 4, $\Im(2^{\mathfrak{D}(\mathfrak{I})})\subseteq 2^{\mathfrak{I}}$ and from (ii) of Theorem 2. 1. 1, $2^{\mathcal{G}} \subseteq \mathcal{G}(2^{\mathcal{G}(\mathcal{G})})$.
- (iii) Since $2^{\mathcal{P}(\mathcal{I})} = \overline{2}^{\mathcal{P}(\mathcal{I})} \setminus 2^{\mathcal{P}(\mathcal{I})}$, it follows that $\mathcal{I}(2^{\mathcal{P}(\mathcal{I})}) = \mathcal{I}(\overline{2}^{\mathcal{P}(\mathcal{I})})$ $\bigvee g(2^{g(g)}) = \overline{2}^{g} \bigvee 2^{g} = 2^{g}$.

3. A Compactification of a Quasi-Uniform Space

Let (X, \mathcal{I}) be a topological space. Then $(2^x, 2^{\mathcal{I}})$ is Lemma 3.1. compact.

This fact is well known and the easy proof is omitted.

Theorem 3.2. Let (X, \mathcal{U}) be a T_1 -quasi-uniform space. Then (X, \mathcal{U}) U) has a compactification.

By (i) of Theorem 1. 4. 1, $i: (X, \mathcal{U}) \rightarrow (i[X], \overline{2}\mathcal{U}) \cap i[X] \times$ i[X]) is a quasi-unimorphism and by (i) of Theorem 2.1.1, $\mathcal{G}(\bar{2}^{U})\subseteq$ $\bar{2}^{\mathfrak{A}(U)}$. Thus $\mathfrak{I}(\bar{2}^U)$ is a compact topology by Lemma 3.1 and hence (i, i)c(i[X]) is a compactification of (X, \mathcal{U}) .

REFERENCES

- [1] ISBELL, J. R.: Uniform Spaces, American Mathematical Society, 1964.
 [2] KURATOWSKI, K.: Topological Spaces, Vols. I and II, Academic Press, 1968.
 [3] LEVINE, N.: On Pervin's Quasi-Uniformity, Math. J. Okayama Univ. 14 (1970), 97—102.
- [4] MICHAEL, E.: Topologies on Spaces of Subsets, Trans. Amer. Math. Soc. 71 (1951), 152-183,
- [5] MURDESHWAR, M.G. and NAIMPALLY, S. A.: Quasi-Uniform Topological Spaces, Nordhoff, 1966.
- [6] Pervin, W. J.: Quasi-Uniformization of Topological Spaces, Math. Ann. 150 (1963), 316-317.

THE OHIO STATE UNIVERSITY

(Received March 9, 1971)