ON CYCLIC EXTENSIONS OF COMMUTATIVE RINGS

Dedicated to Professor Takeshi Inagaki on his 60th birthday

TAKASI NAGAHARA and ATSUSHI NAKAJIMA

In [3], K. Kishimoto presented a theory of abelian extensions of rings which contains a theory of cyclic extensions of commutative rings without proper idempotents. In this paper, we give a sharpening of Kishimoto's theory for commutative rings, and we also generalize some classical theorems in the theory of abelian extensions of fields to commutative rings. In §1, we shall give a theory of cyclic extensions of commutative rings. §2 is devoted to studying abelian extensions as an application of the theory of §1.

In all that follows B will mean a commutative algebra over the prime field GF(p) ($p \neq 0$), and all ring extensions of B will be assumed to be commutative and have identities coinciding with the identity of B. As to other terminologies used in this paper, we follow [1] and [2].

The following lemma is useful in our paper

Lemma 0. Let \mathfrak{B} be a finite cyclic group of automorphisms in an arbitrary ring A which is generated by σ . If there exist elements a and b in A such that $t_{\mathfrak{B}}(a) (= \sum_{z \in \mathfrak{B}} z(a)) = 1$ and $t_{\mathfrak{B}}(b) = 0$ then there exists an element c in A such that $\sigma(c) = c + b$.

In fact, if we correspond $\sigma \to b$, $\sigma^2 \to b + \sigma(b)$, ..., $\sigma^n \to b + \sigma(b) + \cdots + \sigma^{n-1}(b)$ where n is the order of \mathfrak{G} , then by [5, §10, p. 65], we have the requested result.

- 1. Cyclic extensions of commutative rings. A ring extension A of B will be called a cyclic p^m -extension of B (with a Galois group (σ)) if A is a Galois extension of B with a cyclic Galois group (σ) of order p^m .
- Lemma 1.1. Let $f(X) = X^{p} X b_{0} \in B[X]$. Then f(X) is separable. If there is a ring extension A of B which contains an element a such that f(a) = 0 then $f(X) = (X a)(X (a + 1)) \cdots (X (a + p 1))$; and if, in addition, there exists a B-algebra automorphism σ such that $\sigma(a) = a + 1$

then there exists an isomorphism

(i)
$$B\lceil X \rceil/(f(X)) \to B\lceil a \rceil$$

such that $g(X)+(f(X)) \rightarrow g(a)$.

Proof. The first assertion is the result of [4, Cor. 4]. The second assertion is proved by making use of the same method as in the proof of [4, Lemma].

Theorem 1.1. Let $f(X) = X^p - X - b_0 \in B[X]$. Then B[X]/(f(X)) is a cyclic p-extension of B with a Galois group generated by an automorphism

(ii)
$$B[X]/(f(X)) \to B[X]/(f(X))$$

such that $X+(f(X)) \to X+1+(f(X))$.

Proof. The map $\sum_i b_i X^i \to \sum_i b_i (X+1)^i$ defines an automorphism of B[X] sending f(X) into f(X+1)=f(X). Hence this induces an automorphism σ of B[X]/(f(X)). Clearly the cyclic group (σ) generated by σ is of order p. Set x=X+(f(X)) and let B' be the fixring of (σ) in B[x]. Then, for $c' \in B'$, we may write $c' = \sum_{i=0}^{p-1} c_i x^i$ where the c_i are elements of B. Hence we have $\sum_{i=1}^{p-1} c_i (\sigma^i(x))^i + (c_0 - c') (\sigma^i(x))^0 = 0$ $(0 \le j < p)$. The determinant of the matrix $||(\sigma^j(x))^i||$ $(0 \le i, j < p)$ is $\pm \prod_{j < k} (\sigma^j(x) - \sigma^k(x))$ which is inversible in B[x]. This implies $c_0 - c' = 0$, that is, $c_0 = c'$. Thus we obtain B' = B. Therefore, by [4, Lemma], B[x] is a Galois extension of B with a Galois group (σ) .

The following corollary is a direct consequence of Lemma 1.1 and Th. 1.1.

Corollary 1.1. Let A be a ring extension of B, and σ a B-algebra automorphism of A. If there exists an element a of A such that a^p-a $\in B$ and $\sigma(a)=a+1$. Then there exist isomorphisms

$$B[X]/(f(X)) \xrightarrow{\text{(i)}} B[a]$$

$$\text{(ii)} \downarrow \qquad \qquad \downarrow \sigma \mid B[a]$$

$$B[X]/(f(X)) \xrightarrow{} B[a]$$

where $f(X)=X^{\rho}-X-(a^{\rho}-a)$ and $\sigma|B[a]$ is the restriction of σ to B[a];

hence B[a] is a cyclic p-extension of B with a Galois group $(\sigma|B[a])$.

Theorem 1.2. Let A be a cyclic p-extension of B with a Galois group (σ). Then there exists an element a in A such that $\sigma(a) = a+1$. In this case, there holds that $a^p - a \in B$ and B[a] = A; and there exists an isomorphism

(i)
$$B[X]/(f(X)) \rightarrow A$$

where $f(X) = X^p - X - (a^p - a)$.

Proof. By Lemma 0 and [1, Lemma 1.6], there exists an element a in A such that $\sigma(a)=a+1$. Then $a^p-a\in B$. Hence by Cor. 1.1, B[a] is a cyclic p-extension of B with a Galois group $(\sigma|B[a])$; whence there exist elements x_1, \dots, x_n ; y_1, \dots, y_n of B[a] such that $\sum_{i=1}^n x_i \, \sigma^{j-1}(y_i) = \delta_{1,j}$ for $1 \le j \le p$. Then for every $u \in A$, we have $u = \sum_{i=1}^n x_i \, t_{(\sigma)}(uy_i) \in B[a]$. This implies B[a] = A.

As a corollary to Th. 1.2, we have the following

Corollary 1.2. Let A and A' be cyclic p-extensions of B with Galois groups (σ) and (σ') respectively which contain elements a and a' respectively such that $\sigma(a) = a \div 1$, $\sigma'(a') = a' + 1$ and a'' - a = a''' - a'. Then $A = B[a] \cong A' = B[a'](a \longleftrightarrow a')$ as B-algebras.

Theorem 1.3. Let A be a cyclic p^e -extension of B with a Galois group (σ) . Then there exist elements a, a_0 in A such that

$$t_{(\sigma)}(a) = 1$$
, and $\sigma(a_0) - a_0 = a^p - a$.

In this case, $A[X]/(X^p-X-a_0)$ is a cyclic p^{r+1} -extension of B with a Galois group generated by an automorphism

(iii)
$$A[X]/(X^p-X-a_0) \rightarrow A[X]/(X^p-X-a_0)$$

such that $\sum_i c_i X^i + (X^p - X - a_0) \rightarrow \sum_i \sigma(c_i)(X + a)^i + (X^p - X - a_0)$, which is an extension of σ .

Proof. The first assertion is a direct consequence of [1, Lemma 1.6] and Lemma 0. It will be easily seen that the map $\sum_i c_i X^i \to \sum_i \sigma(c_i)(X+a)^i$ defines an automorphism of A[X] sending $X^p - X - a_0$ into $(X+a)^p - (X+a) - a_0 = X^p - X - a_0$. Hence this induces an automorphism

 σ_0 of $A[X]/(X^p-X-a_0)$. We set $A[x]=A[X]/(X^p-X-a_0)$ where $x=X+(X^p-X-a_0)$. Then $A(\subseteq A[x])$ is a cyclic p^e -extension of B with a Galois group $(\sigma_0|A)$. Since $\sigma_0^{p^e}|A$ is an identity and $\sigma_0^{p^e}(x)=x+t_{(\sigma)}(a)=x+1$, it follows from Cor. 1.1 that A[x] is a cyclic p-extension of A with a Galois group $(\sigma_0^{p^e})$. Hence there exist elements u_1, \dots, u_m ; v_1, \dots, v_m of A and elements x_1, \dots, x_n ; y_1, \dots, y_n of A[x] such that $\sum_i u_i \ \rho(v_i) = \delta_{1,p}$ for $\rho \in (\sigma_0|A)$ and $\sum_i x_j \ \gamma(y_j) = \delta_{1,n}$ for $\gamma \in (\sigma_0^{p^e})$. Then $\sum_{i,j} x_j u_i \ \pi(v_i \ y_j) = \delta_{1,n}$ for $\pi \in (\sigma_0)$. Therefore A[x] is a cyclic p^{e+1} -extension of B with a Galois group (σ_0) .

Theorem 1.4. Let A_* be a cyclic p^{r+1} -extension of B with a Galois group (σ_*) . Let A be the fixring of $(\sigma_*)^p$ in A_* . Then A is a cyclic p^e -extension of B with a Galois group (σ) generated by $\sigma = \sigma_* \mid A$ and there exist elements a, a_0 in A and an A-algebra isomorphism (i') such that

$$t_{(\sigma)}(a) = 1,$$
 $\sigma(a_0) - a_0 = a^{\nu} - a,$

and the following diagram

$$A[X]/(X^{p}-X-a_{0}) \xrightarrow{(i')} A_{*}$$

$$(iii) \downarrow \qquad \qquad (i') \downarrow^{\sigma_{*}}$$

$$A[X]/(X^{p}-X-a_{0}) \xrightarrow{} A_{*}$$

is commutative where (i') is defined as for B[X]/(f(X)) in Lemma 1.1, and (iii) is given by

$$\sum_{i} c_{i} X^{i} + (X^{p} - X - a_{0}) \rightarrow \sum_{i} \sigma_{*}(c_{i})(X + a)^{i} + (X^{p} - X - a_{0}).$$

Proof. It is obvious that A is a cyclic p-extension of B with a Galois group (σ) generated by $\sigma = \sigma_* \mid A$. Hence there exists an element a of A such that $t_{(\sigma)}(a) = 1$. Noting $t_{(\sigma *)}(a) = 0$, there exists an element x of A_* such that $\sigma_*(x) = x + a$. Then $\sigma_*^{p}(x) = x + t_{(\sigma)}(a) = x + 1$. We set $a_0 = x^p - x$. Then $a_0 \in A$ and $\sigma_*(a_0) - a_0 = (x + a)^p - (x + a) - a_0 = a^p - a$. Since $\sigma_*^{p}(x) = x + 1$, by Th. 1.2, we have an A-algebra isomorphism

(i')
$$A[X]/(X^{p}-X-a_{0}) \rightarrow A[x]=A_{*}$$

such that $X+(X^{\mu}-X-a_0)\rightarrow x$. Then the diagram as in the theorem is commutative.

Theorem 1.5. Let A be a cyclic p^c -extension of B with a Galois group (σ) . Then

- (1) if C is a B-algebra with an identity element then $C \otimes_B A$ is a cyclic p^e -extension of C (identifying $C \otimes 1$) with a Galois group $(1 \otimes \sigma)$.
- (2) If N is a proper ideal of B then $AN \cap B = N$ and $A/AN \cong B/N \otimes_{\mathbb{R}} A$ is a cyclic p^e -extension of B/N (with a Galois group $(1 \otimes \sigma)$).
- (3) If S is a multiplicatively closed subset of B containing 1 but not containing 0 then the quotient ring $A[S^{-1}] \cong B[S^{-1}] \otimes_B A$ is a cyclic p^e -extension of $B[S^{-1}]$ (with a Galois group $(1 \otimes \sigma)$).

Proof. (1) Since B is a direct summand of a B-module A, we have $C \cong C \otimes B \subset C \otimes_B A$. Clearly $1 \otimes \sigma$ is a $C \otimes B$ -algebra automorphism of $C \otimes_B A$ such that $(1 \otimes \sigma)^{p^e}$ is an identity. Let B_i be the fixring of (σ^{p^i}) in A. Then $B = B_0 \subset B_1 \subset \cdots \subset B_e = A$ and for every i < e, B_{i+1} is a cyclic p-extension of B_i with a Galois group $(\sigma^{p^i}|B_{i+1})$; hence by Th. 1.2, there exists an element u in B_{i+1} such that $B_i[u] = B_{i+1}$, $u^p - u \in B_i$, and $\sigma^{p^i}(u) = u+1$. Then $(C \otimes B_i)$ $[1 \otimes u] = C \otimes B_{i+1}$, $(1 \otimes u)^p - 1 \otimes u \in C \otimes B_i$, and $(1 \otimes \sigma)^{p^i}(1 \otimes u) = 1 \otimes u + 1 \otimes 1$. Hence by Cor. 1.1, $C \otimes B_{i+1}$ is a cyclic p-extension of $C \otimes B_i$ with a Galois group $((1 \otimes \sigma)^{p^i}|C \otimes B_{i+1})$. Therefore $C \otimes_B A$ is a cyclic p-extension of $C \otimes B$ with a Galois group $(1 \otimes \sigma)$. Thus we obtain (1). As corollaries to (1), we have (2) and (3).

Let B be an arbitrary ring with an identity. $f(X) \in B[X]$ will be called irreducible in B[X] if each proper factor of f(X) is contained in B. For an irreducible polynomial, we have the following

Lemma 1.2. Let B be a ring without proper idempotents, and $f(X) = X^p - X - b_0 \in B[X]$. Then, f(X) is irreducible if and only if $f(b) \neq 0$ for each $b \in B$.

Proof. Let $f(b) \neq 0$ for each $b \in B$. Set f(X) = g(X)h(X) where g(X) is a monic polynomial in B[X] of positive degree. Then by Lemma 1.1, f(X) is separable and so g(X) is separable. Hence by [2, Th. 2.2], there is a Galois extension A of B without proper idempotents which contains an element a such that f(a) = 0. From f(a) = 0, we have $f(X) = (X - a)(X - (a+1))\cdots(X - (a+p-1))$. Since $a \notin B$, there exists a B-algebra automorphism σ of A such that $\sigma(a) \neq a$. Then, by [2, Lemma 2.1], we have $\sigma(a) = a + m$, 0 < m < p. On the other hand, let C be a splitting ring of

g(X) over A without proper idempotents. Then there exists an element $c \in C$ with g(c) = 0. Since f(c) = 0, we have $c = a + i = \sigma^{k}(a)$ for some i $(0 \le i < p)$ and k. Therefore we obtain deg $g(X) \ge p$; this implies g(X) = f(X). Thus f(X) is irreducible. The converse is obvious.

Theorem 1.6. Let B be a ring without proper idempotents, and $f(X)=X^p-X-b_0 \in B[X]$. Then, B[X]/(f(X)) has no proper idempotents if and only if $f(b) \neq 0$ for each $b \in B$.

Proof. By Lemma 1.1, f(X) is separable. Hence, B[X]/(f(X)) has no proper idempotents if and only if f(X) is irreducible. By Lemma 1.2, this is equivalent to that $f(b)\neq 0$ for each $b\in B$.

As a direct consequence of Th. 1.1 and Th. 1.6, we have the following theorem which contains the result of [3, Th. 3.1].

Theorem 1.7. Let B be a ring without proper idempotents. Then, there is a cyclic p-extension of B without proper idempotents if and only if there is an element b_0 of B such that $b^p-b-b_0\neq 0$ for each $b\in B$.

Corollary 1.3. Let A be a cyclic p-extension of B without proper idempotents. If a is an element of A such that $a^n - a \in B$ and $a \notin B$ then $A = B[a] \cong B[X]/(X^p - X - b_0)$ where $b_0 = a^n - a$.

Proof. Let (σ) be the Galois group of the cyclic p-extension A of B, and a an element of A such that $a^p-a=b_0 \in B$ and $a \notin B$. Then $\sigma(a) \neq a$. Since $f(X)=X^p-X-b_0$ is separable and $f(\sigma(a))=0$, it follows from [2, Lemma 2.1] that $\sigma(a) \in \{a, a+1, \dots, a+p-1\}$; hence $\sigma(a)=a+m$, 0 < m < p. Hence $\sigma'(a)=a+1$ for some i. Then by Th. 1.2, we have $B[X]/(f(X)) \cong B[a] = A$.

From Cor. 1.3, we have the following

Corollary 1.4. Let A_1 , A_2 be cyclic p-extensions of B without proper idempotents. Then, $A_1 \cong A_2$ as B-algebras if and only if there exist elements $a_1 \in A_1$ and $a_2 \in A_2$ such that $a_1^p - a_1 = a_2^p - a_2 \in B$ and $a_1 \notin B$.

Lemma 1.3. Let A be a cyclic p^e -extension of B with a Galois group (σ) which has no proper idempotents. If a, a_0 are elements in A such that $\sigma(a_0)-a_0=a^p-a$ and $t_{(\sigma)}(a)=1$ then $A[X]/(X^p-X-a_0)$ has no proper idempotents.

Proof. Suppose that $t^p-t-a_0=0$ for some $t\in A$. Then $a^p-a=\sigma(a_0)-a_0=(\sigma(t)-t)^p-(\sigma(t)-t)$. Hence $(\sigma(t)-t-a)^p-(\sigma(t)-t-a)=0$. Since the polynomial X^p-X is separable, it follows that $\sigma(t)-t-a$ is an element of GF(p); then $t_{(\sigma)}(\sigma(t)-t-a)=0$. On the other hand, we have $t_{(\sigma)}(\sigma(t)-t-a)=t_{(\sigma)}(-a)=-1$. This is a contradiction. Hence by Th. 1.6, we obtain our assertion.

The result of the following lemma is well known.

Lemma 1.4. Let A be a Galois extension of B. Let M be a maximal ideal of B. Then

- (1) there exist maximal ideals M_1, \dots, M_n of A such that $M_1 \cap \dots \cap M_n = AM$.
- (2) If A is a local ring with a maximal ideal M_* then B is a local ring with a maximal ideal $B \cap M_*$ and $M_* = A(B \cap M_*)$.
- (3) When B is a local ring with a maximal ideal M, A is a local ring if and only if AM is a maximal ideal of A.
 - (4) B is a semi-local ring if and only if so is A.

Theorem 1.8. Let A be a cyclic p^e -extension of B with a Galois group (σ) , and B_1 the fixring of (σ^p) in A. Then

- (1) A has no proper idempotents if and only if B_1 has no proper idempotents.
 - (2) A is a field if and only if B_1 is a field.
 - (3) A is a domain if and only if B_1 is a domain.
 - (4) A is a local ring if and only if B_1 is a local ring.

Proof. For $0 \le i \le e$, let B_i be the fixring of (σ^{p^i}) in A. Then $B \subset B_1 \subset B_2 \cdots \subset B_e = A$, and for j > i, B_j is a cyclic p^{j-i} -extension of B_i with a Galois group $(\sigma^{p^i}|B_j)$. Hence (1) is a direct consequence of Th. 1.4 and Lemma 1.3. (2) follows from (1). (3) Let B_1 be a domain. Let Q_1 be the quotient field of B_1 and Q the quotient field of B in Q_1 . Then $Q[B_1]$ is a finitely generated Q-module. This implies $Q_1 = Q[B_1] \cong Q \otimes_B B_1$. By Th.1.5, $Q \otimes_B A$ is a cyclic p^e -extension of $Q \otimes B$. Since the canonical homomorphism $Q \otimes_B B_1 \rightarrow Q \otimes_B A$ is injective, it follows from (2) that $Q \otimes_B A$ is a field. Noting $A \cong 1 \otimes A \subset Q \otimes_B A$, A is a domain. (4) If A is a local ring then, by Lemma 1.4, B_1 is a local ring. To see the converse, let B_1 be a local ring with a maximal ideal M_1 , and set $M = B \cap M_1$. Then by Lemma 1.4, we have $M_1 = B_1 M$. By Th. 1.5, A/AM is a cyclic p^e -extension of

B/M. Since $B_1/(AM \cap B_1) = B_1/M_1$ is a field, it follows from (2) that A/AM is a field, that is, AM is a maximal ideal of A. Therefore by Lemma 1.4, A is a local ring.

The following corollary is a direct consequence of Th. 1.5 and Th. 1.8.

Corollary 1.5. Let A be a cyclic p'-extension of B with a Galois group (σ) , and B_1 the fixring of (σ^p) in A. Let C be a B-algebra with an identity element, N a proper ideal of B, and S a multiplicatively closed subset of B not containing 0. Then

- (1) $C \bigotimes_B A$ (resp. A/AN (resp. $A[S^{-1}]$)) has no proper idempotents if and only if $C \bigotimes_B B_1$ (resp. B_1/B_1N (resp. $B_1[S^{-1}]$)) contains no proper idempotents.
- (2) $C \bigotimes_{B} A$ (resp. A/AN (resp. $A[S^{-1}]$)) is a field if and only if $C \bigotimes_{B} B_{1}$ (resp. $B_{1}/B_{1}N$ (resp. $B_{1}[S^{-1}]$)) is a field.
- (3) $C \bigotimes_{B} A$ (resp. A/AN (resp. $A[S^{-1}]$)) is a domain if and only if $C \bigotimes_{B} B_{1}$ (resp. $B_{1}/B_{1}N$ (resp. $B_{1}[S^{-1}]$)) is a domain.
- (4) $C \otimes_B A$ (resp. A/AN (resp. $A[S^{-1}]$)) is a local ring if and only if $C \otimes_B B_1$ (resp. B_1/B_1N (resp. $B_1[S^{-1}]$)) is a local ring.

The following theorem contains the results of [3, Th. 3.2, Th. 5.2]. K. Kishimoto proved (2) and (3) directly. However, the corollary is a direct consequence of Th. 1.3 and Th. 1.8.

Corollary 1.6. Let e be a positive integer. Then

- (1) there is a cyclic p^e -extension of B which has no proper idempotents if and only if there is a cyclic p-extension of B which has no proper idempotents.
- (2) (K. Kishimoto). There is a cyclic p'extension of B which is a domain if and only if there is a cyclic p-extension of B which is a domain.
- (3) (K. Kishimoto). There is a cyclic p'extension of B which is a local ring if and only if there is a cyclic p-extension which is a local ring.
- 2. Abelian extensions of commutative rings. If A is an abelian extension of B with a Galois group $(\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_n)$ where for i, (σ_i) is of order p^{r_i} then, it is called to be an abelian $(p^{r_i}, \dots, p^{r_n})$ -extension of B (with a Galois group $(\sigma_1) \times (\sigma_2) \times \cdots \times (\sigma_n)$).

The following theorem will be proved easily.

Theorem 2.1. Let A_i $(1 \le i \le n)$ be cyclic p^{e_i} -extension of B with Galois groups (σ_i) . Then $A_1 \otimes_B A_2 \otimes \cdots \otimes_B A_n$ is an abelian $(p^{e_i}, \dots, p^{e_n})$ -extension of B with a Galois group $(\sigma_i) \times \cdots \times (\sigma_n)$.

The following theorem follows from [1, Th. 2.3] and the fact that every cyclic p^e -extension of B is a free B-module.

Theorem 2.2. Let A be an abelian $(p^{r_1}, \dots, p^{r_n})$ -extension with a Galois group $(\sigma_1) \times \dots \times (\sigma_n)$. For each i, let A_i be the fixring of $(\sigma_1) \times \dots \times (\sigma_{i-1}) \times (\sigma_{i+1}) \times \dots \times (\sigma_n)$ in A. Then $A \cong A_1 \bigotimes_n A_2 \bigotimes_n \dots \bigotimes_n A_n$, and the A_i are cyclic p^{r_i} -extensions with Galois groups $(\sigma_i \mid A_i)$.

Now, we shall prove the following

Theorem 2.3. Let A be an abelian $(p^{c_1}, \dots, p^{c_n})$ -extension with a Galois group $(\sigma_1) \times \dots \times (\sigma_n)$. Let B_1 be the fixring of $(\sigma_1^p) \times \dots \times (\sigma_n^p)$ in A. Then

- (1) A has no proper idempotents if and only if B_1 has no proper idempotents.
 - (2) A is a field if and only if B_1 is a field.
 - (3) A is a domain if and only if B_1 is a domain.
 - (4) A is a local ring if and only if B_1 is a local ring.

Proof. For $1 \leq i \leq n$ and for $1 \leq j \leq e_i$, let B_{ij} be the fixring of $(\sigma_1) \times \cdots \times (\sigma_{i-1}) \times (\sigma_i^{p^i}) \times (\sigma_{i+1}) \times \cdots \times (\sigma_n)$ in A. Then by Th. 2.2, we have $A \cong B_{1^{i_1}} \otimes \cdots \otimes_B B_{n^{i_n}}$, $B_1 \cong B_{11} \otimes \cdots \otimes B_{n1}$, B_{ie_i} is a cyclic p^{e_i} -extension of B with a Galois group $(\sigma_i | B_{ie_i})$, and B_{i1} is the fixring of $(\sigma_i^{p_i} | B_{ie_i})$ in B_{ie_i} . Clearly $B_{1e_1} \otimes B_{21} \otimes \cdots \otimes B_{n1}$ is a cyclic p^{e_1} -extension of $B \otimes B_{21} \otimes \cdots \otimes B_{n1}$. Assume that $B_{11} \otimes B_{21} \otimes \cdots \otimes B_{n1}$ has no proper idempotents. Then by Th. 1.8, $B_{1e_1} \otimes B_{21} \otimes \cdots \otimes B_{n1}$ has no proper idempotents. By a similar method, we see that $B_{1e_1} \otimes B_{2e_1} \otimes B_{31} \otimes \cdots \otimes B_{n1}$ has no proper idempotents. Continuing this way, it follows that A has no proper idempotents. The converse is obvious. By similar methods, we have the other assertions.

By theorems 1.3, 2.1, 2.2, and 2.3, we have the following

Theorem 2.4. Let e_i $(1 \le i \le n)$ be positive integers. Then

(1) there is an abelian $(p^{r_1}, \dots, p^{r_n})$ -extension of B which has no proper idempotents if and only if there is an abelian $(\underline{p}, \dots, \underline{p})$ -extension of B which has no proper idempotents.

- (2) There is an abelian $(p^{e_1}, \dots, p^{e_n})$ -extension of B which is a domain if and only if there is an abelian $(\underline{p}, \dots, \underline{p})$ -extension which is a domain.
- (3) There is an abelian $(p^{e_1}, \dots, p^{e_n})$ -extension of B which is a local ring if and only if there is an abelian $(\underbrace{p, \dots, p}_{n})$ -extension which is a local ring.

REFERENCES

- [1] S. U. Chase, D. K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965).
- [2] G. J. Janusz: Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461—479.
- [3] K. Kishimoto: On abelian extensions of rings I, Math. J. of Okayama Univ., 14 (1970), 159—174.
- [4] T. NAGAHARA: On separable polynomials over a commutative ring, Math. J. of Okayama Univ., 14 (4970), 175—191.
- [5] H. TOMINAGA and T. NAGAHARA: Galois theory of simple rings, Okayama Math. Lecture, Dept. of Math., Okayama Univ., (1970).

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received April 1, 1971)