ON CYCLIC EXTENSIONS OF COMMUTATIVE RINGS
Dedicated to Professor Takeshi Inagaki on his 60th birthday

TAKASI NAGAHARA and ATSUSHI NAKAJIMA

In [3], K. Kishimoto presented a theory of abelian extensions of rings
which contains a theory of cyclic extensions of commutative rings without
proper idempotents. In this paper, we give a sharpening of Kishimoto’s
theory for commutative rings, and we also generalize some classical
theorems in the theory of abelian extensions of fields to commutative
rings. In §1, we shall give a theory of cyclic extensions of commutative
rings. §2is devoted to studying abelian extensions as an application of
the theory of §1.

In all that follows B will mean a commutative algebra over the prime
field GF(p) (p5~0), and all ring extensions of B will be assumed to be
commutative and have identities coinciding with the identity of B. As to
other terminologies used in this paper, we follow [1] and [2].

The following lemma is useful in our paper

Lemma 0. Let G be a finite cyclic group of automorphisms in an
arbitrary ving A which is generated by o. If there exist elements a and b
in A such that te(a) (=2 .co <(@)=1 and tg(b)=0 then there exists an
element ¢ in A such that o(c)=c+b.

In fact, if we correspond ¢—b, *— b+o(b), ---, c"— b + o(b) + -
+a*"(b) where # is the order of ®, then by [5, §10, p. 65], we have the
requested result.

1. Cyclic extensions of commutative rings. A ring extension A of
B will be called a cyclic p"-extension of B (with a Galois group (¢))if A is
a Galois extension of B with a cyclic Galois group (o) of order p™.

Lemma 1.1. Let f(X)=X?"—-X—b,=B[X]. Then f(X) is separable.
If there is a ring extension A of B which contains an element a such
that f(a@)=0 then F(X)=(X—a) (X—(a+1))-(X—(a+p—1)); and if, in
addition, there exists a B-algebra automorphism o such that o{a)=a+1
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then there exists an isomorphism
i B[X1/(f(X)) — Bld]
such that g(X)-+(F(X)) — gla).

Proof. The first assertion is the result of [4, Cor.4]. The second

assertion is proved by making use of the same method as in the proof of
[4, Lemma].

Theorem 1.1. Let f(X)=X?—X—b,=B[X]. Then B[X]/(f(X))is
a cyclic p-extension of B with a Galois group generated by an auto-
morphism

(ii) B[X]/(f(X)) - BIX]1/(f(X))
such that X+ (F(X)) = X+1+(F(X)).

Proof. Themap >, b, X‘—>; b(X+1) defines an automorphism of
B[X] sending f(X) into f(X+1)=f(X). Hence this induces an auto-
morphism o of B[X]/(f(X)). Clearly the cyclic group (¢) generated by ¢
is of order p. Set x=X-+(f(X)) and let B’ be the fixring of (¢) in B[x].
Then, for ¢'EB', we may write ¢'=2,7"! c;x" where the ¢, are elements
of B. Hence we have > I c,(o/(x))'+(c,—¢") (6/(x))’=0 (0<j<<p). The
determinant of the matrix ||(¢/(x))'|| (04, j<<p) is = [1,(0’(x) —o*(x))
which is inversible in B[x]. This implies ¢,—c¢'=0, thatis, c,=c¢'. Thus
we obtain B'=B. Therefore, by [4, Lemma], B[«] is a Galois extension of
B with a Galois group (o).

The following corollary is a direct consequence of Lemma 1.1 and
Th. 1.1.

Corollary 1.1. Let A be a ring extension of B, and ¢ a B-algebra
automorphism of A. If there exists an element a of A such that a’—a
€B and o(a)=a+1. Then there exist isomorphisms

(i)
B[X1/(f(X)) — B[a]
(ii) j i o|B[a)

B[X]/(f(X)) — Bla]
where f(X)=X"—X—(a" —a) and o|B[a] is the restriction of o to B[a]l;
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hence Bl a] is a cyclic p-extension of B with a Galois group (¢]B[a]).

Theorem 1.2. Let A be a cyclic p-extension of B with a Galots group
(6). Then there exists an element a in A such that o(a)=a-+1. In this
case, there holds that «’—aSB and Blal=A; and there exists an
isomorphism

@) B[X1/(f(X)) = A
where fF(X)=X?—X—(a’—a).

Proof. By Lemma 0 and [1, Lemma 1.6], there exists an element
@ in A such that ¢(¢)=a-+1. Then ¢’"—a=B. Hence by Cor. 1.1, B[]
is a cyclic p-extension of B with a Galois group (¢|B[«]); whence there
exist elements %), +*, £, ¥, =+, ¥ of Bla] such that X1, x, 07 (v,)=0,,
for 1<j<p. Then for every uS A, we have u=2 "% tx(uy)E
Bla]. This implies B[a]=A.

As a corollary to Th. 1.2, we have the following

Corollary 1.2. Let A and A’ be cyclic p-extensions of B with Galois
groups (o) and (') respectively which contain elements a and a' respec-
tively such that c(a)=a-+1, o'(a')=a'+1 and a"—a=a'"—~a'. Then A=
Blal=A'=B[a'l(a<—a') as B-algebras.

Theorem 1.3. Let A be a cyclic p’-extension of B with a Galois
group (o). Then there exist elements a, a,in A such that

te(@)=1, and ¢(a))—a,=a"—a.

In this case, A[X]1](XP—X—ay) is a cyclic p't'-extension of B with a
Galois group generated by an automorphism

(iii) AX])(XT—X—a) — A[XI}(X*—X—ay)

such that 3.c. X +(X"—X—ay) — Yiwo(c)(X+a)—(X?—X—a,), which
is an extension of o.

Proof. The first assertion is a direct consequence of [1, Lemma
1.6] and Lemma 0. It will be easily seen that the map .. X' —
3.0{c;)(X+a)’ defines an automorphism of A[X] sending X*— X—g, into
(X+a)’—(X+a)—a,=X?—X—a, Hence this induces an automorphism
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mof A[X1/(X'—X—a,). We set A[x]=A[X]/(X*—X—a,) where x=
X+(X?—X—a,). Then A(CA[x]) is a cyclic p*-extension of B with a
Galois group (,] A). Since ¢/°| A is an identity and ;" (x) = x+ £, (a) =
x+1, it follows from Cor. 1.1 that A[x] is a cyclic p-extension of A
with a Galois group (7,”). Hence there exist elements u,, -, ttn; 2y, ***, ¥
of A and elements %), -, %, ; ¥, **+, ¥, of A[x] such that X, . p(v;))=4,,
for pE(a,| A) and X x;7(y,)=4,, for 7E(o”). Then X3 ; x;2;7(2:9;) =061
for =& (a,). Therefore A[x] is a cyclic p°*'-extension of B with a Galois
group (o).

Theorem 1.4. Let A, be a cvclic p't'-extension of B with a Galois

group (04). Let A be the fixring of (7)) in A.. Then A is a cyclic
p*-extension of B with a Galois group (o) generated by o=ao,| A and there
exist elements a, a,in A and an A-algebra isomorphism (i) such that

t(o’)(a) = 1y 0'((10) —Gy= a’— a,

and the following diagram

(i)
AX]/(X?—=X—a) —> A,
(iii) l @i l Ty

AX)/(X?—X—a) —> A,

is commutative where (') is defined as for B[X]1/(f(X)) in Lemma 1.1,
and (iii) is given by

e X A (XP—X—a,) — 2o(c)(X+a)+ (X' —X—ay).

Proof. 1Itis obvious that A is a cyclic p'-extension of B with a
Galois group () generated by o=¢,|A. Hence there exists an element «
of A such that ¢{,,(a@)=1. Noting #¢+«(2)=0, there exists an element x
of A, such that ¢,(x)=%x-+a« Then ," (x) =%+ te,(a)=x +1. Weset
a,=x"—x. Then aq,€A and s,(a) —a=(x+a)"—(x+a)—a,=a"—a. Since
e (x)=x+1, by Th. 1.2, we have an A-algebra isomorphism

in AX]/(XP—X—a)) — Alx]=A.

such that X+ (X"—X—g,)—%. Then the diagram as in the theorem is
commutative.
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Theorem 1.5. Let A be a cyclic p°-extension of B with a Galois
group (o). Then

(1) ifCis a B-algebra with an identity element then CQpA is a
cyclic pt-extension of C (identifying C @ 1) with a Galois group (1 Q o).

(2) IfNis a proper ideal of B then ANNB=N and A/AN (=
B/N ®:A) is a cyclic pt-extension of B/N (with a Galois group (1Q0)).

(3) If S is a multiplicatively closed subset of B containing 1 but not
containing O then the quotient ring A[S™'] (=B[S™"] Q:A) is a cyclic
pl-extension of B[S™] (with a Galois group (1Qe)).

Proof. (1) Since B is a direct summand of a B-module 4, we have
C=CRBcCR;A. Clearly 1&¢s is a CQ B-algebra automorphism of
C ®sA such that (1 ® o)” is an identity. Let B; be the fixring of (¢*") in
A. Then B=B,CB,C---CB,=A and for every i<e, B.., is a cyclic
p-extension of B; with a Galois group (o'”[]Bm) ; hence by Th. 1.2, there
exists an element # in B;., such that B,{u#]=B.,, «’—u=B, and api(u)=
#+1l. Then (CRB)[1Qul=CQR By, 1Qu)—1RusCQ B, and
1R 1Ru)=1Qu«+1® 1 Hence by Cor.1.1, C® By, is a cyclic
p-extension of C Q B, with a Galois group (1 ® zr)"i]C & B:.1). Therefore
C QA is a cyclic p*-extension of C @ B with a Galois group (1&s). Thus
we obtain (1). As corollaries to (1), we have (2) and (3).

Let B be an arbitrary ring with an identity. f(X)EB[X] will be
called irreducible in B[ X] if each proper factor of f(X) is contained in B.
For an irreducible polynomial, we have the following

Lemma 1.2. Let B be a ring without proper idempotents, and f(X)
=X?—X—b=B[X]. Then, f(X)is irreducible if and only if f(b)50
for each beB.

Proof. Let £(b)50 for each bEB. Set f(X)=g(X)h(X) where g(X)
is a monic polynomial in B[X] of positive degree. Then by Lemma 1.1,
F(X) is separable and so g(X) is separable. Hence by [2, Th. 2.2], there
is a Galois extension A of B without proper idempotents which contains an
element ¢ such that f(¢)=0. From f(a)=0, we have f(X)=X—a) (X—
(e+1))+(X—(a+p—1)). Since ae£B, there exists a B-algebra automor-
phism o of A such that ¢(a) 5~ ¢. Then, by [2, Lemma 2.1], we have
sla)=a-+m, 0<m<p. On the other hand, let C be a splitting ring of
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g{X) over A without proper idempotents. Then there exists an element
c=C with g(¢)=0. Since f{c)=0, we have c=a+i=0"(e) for some i (0=
i<<p) and k. Therefore we obtain deg g(X)=p; this implies g(X)= f(X).
Thus f(X) is irreducible. The converse is obvious.

Theorem 1.6. Lef B be a ring without proper idempolents, and
fF(X)=X"—X—b,=B[X]. Then, B{X]/(f(X)) has no proper idempotents
if and only if f(b)#0 for each bEB.

Proof. By Lemma 1.1, f(X) is separable. Hence, B[X]/(f(X))
has no proper idempotents if and only if f(X) is irreducible. By Lemma
1.2, this is equivalent to that f(b)5~0 for each b= B.

As a direct consequence of Th. 1.1 and Th. 1.6, we have the follow-
ing theorem which contains the result of 3, Th. 3.1].

Theorem 1.7. Let B be a ring without proper idempotents. Then,
there is a cyclic p-extension of B without proper idempotents if and only
if there is an element b, of B such that b*—b—>b,%~0 for each bE B.

Corollary 1.3. Let A be a cyclic p-extension of B without proper
idempotents. If ais an element of A such that @"—a<B and a&B then
A=B[a]l=BlX])(X?—X—Db,) where by=a’—a.

Proof. Let (o) be the Galois group of the cyclic p-extension A of B,
and ¢ an element of A such that e’>—e¢=0,=B and ¢&B. Then s(a)7a.
Since f(X)=X?—X—b, is separable and f(s(a))=0, it follows from [2,
Lemma 2.1] that e(@)E{e¢, «+1, -, a+p—1}; hence dla)=a+m,
0<m<<p. Hence ¢'(g)=a+1 for some i Then by Th. 1.2, we have
B[X]/(f(X))=B[a] = A.

From Cor. 1.3, we have the following

Corollary 1.4. Let A, A, be cyclic p-extensions of B without proper
idempotents. Then, A=A, as B-algebras if and only if there exist
elements a,€ A, and a,.€ A, such that a’—a,=a’—a,=B and a,&B.

Lemma 1.3. Let A be a cyclic p*-extension of B with a Galois group
(o) which has no proper idempotents. If a, a, ave elements in A such that
o(ag) —ay=a"—a and t,(e)=1 then A[X]/(X"—X—ay) has no proper
tdempotents.
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Proof. Suppose that #’—f—a,=0 for some tEA. Then a’'—a=
a(ay) — av=(o(t) —t)*—(o()—t). Hence (¢(¢)—t—a)’— (o(t) —t—a)=0.
Since the polynomial X?—X is separable, it follows that ¢(#)—f—a is an
element of GF(p); then #.,(¢(f)—¢t—a)=0. On the other hand, we have
t(o@)—t—a)=t.,,(—a)=—1. This is a contradiction. Hence by Th. 1.6,
we obtain our assertion.

The result of the following lemma is well known.

Lemma 1.4. Let A be a Galois extension of B. Let M be a maximal
ideal of B. Then

(1) there exist maximal ideals M, -+, M, of A such that MMM
M,=AM.

() If Ais a local ring with a maximal ideal M., then B is a local
ring with a maximal ideal BN\M. and M.= A(BNM.).

(3) When B is a local ring with a wmaximal ideal M, A is a local
ring if and only if AM is a maximal ideal of A.

(4) B is a semi-local ring if and only if sois A.

Theorem 1.8. Let A be a cyclic ps-extension of B with a Galois
group (o), and B, the fixring of (¢?) in A. Then

(1) A has no proper idempotents if and only if B, has no proper
idempotents.

() A is a field if and only if B, is a field.

(3) Ais adomainif and only if B, is a domain.

(4) Ais alocal ring if and only if B, is a local ving.

Proof. For 0=ii<le, let B; be the fixring of (¢*)in A. Then BC
B,CB,--CB,=A, and for j>1i, B;isa cyclic p’~’-extension of B; with a
Galois group (o"’f]B_,-). Hence (1) is a direct consequence of Th. 1.4 and
Lemma 1.3, (2) follows from (1). (3) Let B, be a domain. Let @, be the
quotient field of B, and @ the quotient field of B in @,. Then Q[B,]is a
finitely generated @-module. This implies @,=Q[B,] = Q@Q:B. By
Th.1.5, Q ® A is a cyclic p*-extension of @ ) B. Since the canonical homo-
morphism @ Q) ;B,—Q X A is injective, it follows from (2) that Q X ;A is
a field. Noting A=1QRAC QR A4, Aisadomain. (4) If A is a local ring
then, by Lemma 1.4, B, is a local ring. To see the converse, let B, be a
local ring with a maximal ideal M,, and set M=B/\M,. Then by Lemma
14, we have Mi=B,M. By Th. 15 A/AM is a cyclic p’-extension of
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B/M. Since B,/(AMNB)=B,/M, is a field, it follows from (2) that
A/AM is a field, that is, AM is a maximal ideal of A. Therefore by
Lemma 1.4, A is a local ring.

The following corollary is a direct consequence of Th. 1.5 and Th. 1.8.

Corollary 1.5. Let A be a cyclic p-extension of B with e¢ Galois
group (v), and B, the fixring of (6*) in A. Let C be a B-algebra with an
identity element, N a proper ideal of B, end S a multiplicatively closed
subset of B not containing 0. Then

(1) CQsA (resp. A/AN (resp. A(S™'])) has no proper idempotents
if and only if CQ B, (resp. B./B,N (resp. B,[S™'])) contains no proper
idempotents.

(2) CRzA (resp. A/AN (resp. A(S7Y])) is a field if and only if
CQR B, (resp. B,/B\N (resp. B,[S™'])) is a field.

(3) CQ®sA (resp. A/AN (resp. A[S™'])) is a domain if and only if
CQ B, (resp. B,/B\N (resp. B,[S™'])) is a domain.

(4) CQRuA (resp. A/ AN (resp. A[S™'])) is a local ring if and only
if CQxB, (resp. B,/B\N (resp. B,[S'])) is a local ring.

The following theorem contains the results of [3, Th. 3.2, Th. 5.2].
K. Kishimoto proved (2) and (3) directly. However, the corollary is a
direct consequence of Th. 1.3 and Th. 1.8.

Corollary 1.6. Let ¢ be a positive integer. Then

(1) there is a cyclic p'-extension of B which has no proper idempo-
tents if and only if there is a cyclic p-extension of B which has no proper
idempotents.

(2) (K. Kishimoto). There is a cyclic p'-extension of B which is a
domain if and only if there is a cyclic p-extension of B whichis a domain.

(3) (K Kishimoto). There is a cyclic pt-extension of B which is a
local ring if and only if there is a cyclic p-extension which is a local
ring.

2. Abelian extensions of commutative rings. If A is an abelian
extension of B with a Galois group (a;) X (¢;) X --- X (=,) where for i, (s;)
is of order p* then, it is called to be an abelian (p", ---, p'»)-extension
of B (with a Galois group (o)) X (7,) X +=« X (7.,,)).

The following theorem will be proved easily.
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Theorem 2.1. Let A, (1=<i<wn) be cyclic p-extension of B with
Galois groups (7). Then A\QrA.Q-Q A, is an abelian (p", ++, p'n)-
extension of B with a Galois group (a,) X -+ X (7.).

The following theorem follows from [1, Th. 2.3] and the fact that
every cyclic p*-extension of B is a free B-module.

Theorem 2.2. Let A be an abelian (p's, -+, p'r)-extension with a Galois
group (m) X =X (0,). For each i, let A; be the fixring of (#) X -+ X (6,_,) X
(G:41) X =+ X (a,) in A. Then A=A,QA.Q---Q 4A., and the A; are cyclic
pr-extensions with Galois groups (o;| A)).

Now, we shall prove the following

Theorem 2.3. Let A be an abelian (p*, -+, p'»)-extension with a Galois
group (o) X+ X (0,). Let B, be the fixring of (o)X -+ X (0,?) in A. Then

(1) A has no proper idempotents if and only if B, has no proper
idempotents.

(2) Ais a field if and only if B, is a field.

(3) A is adomain if and onlv if B, is a domain.

(4) Ais alocal ring if and only if B, is a local ring.

Proof. For 1=<</<n and for 1<j<e, let B; be the fixring of
(6) X+ X (7,-)) X (67) X (7.4,) X -+ X (7,) in A. Then by Th. 2.2, we have
A%’B,,.l®-u®nB,,,.”, B/=B,Q--QB., B, isa cyclic p'i-extension of B
with a Galois group (4:|B; ), and B, is the fixring of (s"|B.) in B,
Clearly B, @ B2 &++& Bn is a cyclic p-i-extension of B B, ®--Q B...
Assume that B, Q B., &--& B,, has no proper idempotents. Then by
Th. 1.8, B,,.l® B.;®---Q B,, has no proper idempotents. By a similar method,
we see that B, @ Bx, ® By @ -~ &® B. has no proper idempotents.
Continuing this way, it follows that A has no proper idempotents. The

converse is obvious. By similar methods, we have the other assertions.
By theorems 1.3, 2.1, 2.2, and 2.3, we have the following

Theorem 2.4. Let e, (1<i<n) be positive integers. Then

(1) thereis an abelian (p", +--, p'«)-extension of B which has no proper
idempotents if and only if there is an abalian (p, oy p)-extension of B
which has no proper idempotents. n
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(2) There is an abelian (p°, ---, p*»)-extension of B whichis a domain
if and only if there is an abelian (11,_\r__ D)-extension which is a domain.

(3) There is an abelian (p", -+, p*s)-extension of B which is a local
ring if and only if there is an abelian (p,_-\-:i_p)-extension which is a local
ring. "

REFERENCES

(1] S.U.Cuase, D.K.HarrisoN and A.ROSENBERG : Galois theory and Galois cohomology
of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965).

[2] G.J.JaNusz: Separable algebras over commutative rings, Trans. Amer. Math. Soc.
122 (1966), 461—479.

[3] K.KisHiMoTO: On abelian extensions of rings I, Math. J. of Okayama Univ., 14 (1970),
159—174.

[4] T.Nacanara: On separable polynomials over a commutative ring, Math. J. of Okayama
Univ., 14 (4970), 175—191.

[5] H.TowmiNaGa and T.NAGAHARA : Galois theory of simple rings, Okayama Math.
Lecture, Dept. of Math.,, Okayama Univ., (1970).

DEPARTMENT OF MATHEMATICS
OKAYAMA UNIVERSITY

(Received April 1, 1971)



