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If M is a connected space and p is a point of M such that M—p is not
connected, then p will be called a cut point of M [1]. If p is a cut point,
M—p is the sum of two mutually separated sets M;(p) and M.(p), then
M\(p) and M,(p) will be called sects of M from p[2]. A point g is said to
be separated from a point 7 by p if there exists a separation

M—p=M(p)\JM.(p), where M\(p)Dq, M(p)>r.

If 7 is a point of M, then S(r, M) denotes the set of all points which are
separated from » by at least one cut point of M, and T(r, M) the set of all
cut points of M except the point ». The boundary of a point set A will be
denoted by Bd A. In this note, all spaces are connected locally connected
Hausdorff spaces with at least one cut point. The purpose of this note is
to study the conditions under which the set S(r, M) is connected.

The author is grateful to Prof. K. Koseki for his kind advice.

Lemma 1. Ifp is a point of @ space M, then Bd S(p, M)C T(p, M).

Proof. Let us assume the contrary and let x=Bd S(p, M)— T(p, M).
Then, since M is locally connected, there exist neighbourhoods U(x), V(x)
of a point x such that

2=V (x)cCc U(x) and U)NT(p, M)=(,
where C is a connected set.

On the other hand, there is a point yEV(2)MS(p, M). Therefore,
we can take a point ¢=T(p, M) and have a separation

M—q=M;(q)UM(q), where Mi(q)2p, Mia)=y.

Since C2y and C3q, x=M,(q)CS(p, M). This contradiction completes
the proof.
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Lemma 2. Let p be @ point of a space M. If S(p, M) is connected
and Bd S(p, MYNT(p, M)5=D, then Bd S(p, M) is a single point.

Proof. Let ¢ be a point of the set Bd S(p, M)NT(p, M).
Then we have a separation

M—g=M(q)\UMyg), where pEM,(q), My(q)C S(p, M).

Since g=Bd S(p, M), S(p, M)C M—gq. Therefore, we have M,(q)=S(p, M),
because My(g) is open and closed in M—g¢g. This means that Bd S(p, M) is
a single point.

Theorem 3. For a point p of a space M, the following four condi-
tions are equivalent :

(@) If S(p, M) is non-vacuous, it is a connected set.

(b) If Miq), M(q') are two sects of M from q, q' not containing p,
where q, ¢'T(p, M), then there exists a connected sect of M, not con-
taining p, which contains My(q)\JUM.(q").

() If MJq), M.q") are two connected sects of M from q, q' not
containing p, where q, ¢'ET(p, M) then there exists a connected sect of
M, not containing p, which contains My(g)\JM.(g").

(d) Bd S(p, M) is a single point such that if Bd S(p, M)5%=p, M is
uniquely separated by Bd S(p, M), and if Bd S(p, M)=p, there exists
a component K of S(p, M) with T(p, M)—K H Bd S(p, M).

Proof. (a) implies (b): Let Myg), Mi(¢') be sects satisfying the
assumption of (b) and put

A={N.OIM@DNE), 2= U NE

X, DEY(

where N.(f) is any sect of M from ¢ not containing p for each point t&
T(p, M). Let us assume that xES(p, M)—N*. Then, there exists a cut
point # with a separation

M—u=H,(#)\UH,(x), where H,(u)>p, H,(u)>x.
Then Hiu)N\A*=@. For, if H(u) N\W*5~Q, there exists K,(f)EA and
K,ONH(u) % @. If u=t¢, then H()\UK,(#)=%. This implies w5t
Since H,(u)N\K.()>p,

Hy(x) C K.(t) or Hy(1) D K,(2).
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Hence x=M*. This implies Hy(x) \A*=¢. By the connectedness of
S(p, M), S(p, M)=U*, because * is open and closed in S(p, M). Therefore,
there exists a sect N,(f)E 3 such that N.(¢)N\M.(¢")~ . Then
(1) N\ UM.(q") D Mg\ IMu(q") if t=4¢',
(2) M.(q") DM(g)\UM.(g") or N.(t) DMAq)\IM.(q") if t=~q'.
(1) and (2) imply that there exists a sect L.(s)E2 with L,(s) DM,y(g)\J
M.(q"). If there exists a sect H,(r) = with H,(r)>s, we consider a compo-
nent C of H,(») containing s. Then
COLs) D Miq)\UM:(g").
If there exists no such sect, then s&£S(p, M). Therefore, by the connect-
edness of S(p, M),
L(s)=S(p, M) D Mg\ UM:(q").
It is clear that (b) implies (¢) and (c) implies (a).
(a) implies (d): Suppose that Bd S(p, M) contains distinct points #,
and #,.. By Lemma 2,
(3) Bd S(p, M)NT(p, M)= Q.

As M is a Hausdorff space, there exist neighbourhoods U3¢ (i=1, 2)
with UNU,=@. By the locally connectedness of M, there exist neighb-
ourhocds V; and connected sets C; satisfying U,DC,DV 3¢, (=1, 2). By
Lemma 1, there exist ¢.€V. N\ T(p, M) ({=1,2). Then ¢.=S(p, M) (i=
1, 2) by T(p, M)CS(p, M) and (3). Let H,(u;) be connected sects of M from
#; not containing p with %, =7 (p, M) and ¢,€ Hy(u:) ({=1, 2). Since (a)
and (c) are equivalent, there exists a connected sect H,(u,) of M from u,&
T(p, M) not containing p such that H,(u)\UH.(«.)C H.(u;). Hence

Hy(1)NC 7 @ F Ho(us)NC.

Then C,NC.Du, because C, and C, are connected and H.(us) is open and
closed in M—u, This implies that Bd S(p, M) is a single point. Now, let
t=Bd S(p, M). If {5~ p, there exists a separation such that

M~t={M—S(p, M)}\US(p, M), where M—S(p, M)>p.
This separation is uniquely determined. On the other hand, if #=p, then
T(p, M)—S(p, M)= @ irom T(p, M)CS(p, M).
(d) implies (a) : Let t=Bd S(p, M). Then t=T(p, M) by Lemma 1.
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If t5%~p, by assertion of (d), there exists a unique separation
M—t={M—S(p, M)}\US(p, M), where M—S(p, M)>p.

Hence, S(p, M) is a connected set. Therefore, we can assume ?=p. Then,
there exists a component K of S(p, M) such that

(4) T(p, M)— K Dt.
Since T(p, M)CS(p, M) and &£ T(p, M),
(5) T(p, M)—K=T(p, M)N{S(p, M)—K}.

Let us assume that S(p, M) is not connected. Then, there exists a compo-
nent L of S(p, M) different from K. It follows from (5) that

(6) T(p, M)—KDLNT(p, M).

By (4) and (6), there exist neighbourhoods U, V of # and a connected set
C satisfying UDCDOV =¢ and
(7 UNLNT(p, M)= Q.

There exists a point zEV/N\L by Bd L=¢ Let H,(q) be a connected sect
of M not containing p with H.(g)>z, where ¢=T(p, M). Tosee gL, let
geEL. Then H,(q)=L, because L is a component of S(p, M). Hence t=
BdL=Bd H{q)=gq. This contradiction implies g&L. By (7) and ¢&LN
T(p, M), C>Dq. Since CNH)(gq)>z Hy,(¢)DC>¢t. This contradiction
completes the proof.

Theorem 4. Let M be a space. In order that all non-empty S(p, M)
(pEM) be connected, it is necessary and sufficient that M have one and
only one cut point by which M is uniquelv separated.

Proof. Sufficiency: Let ¢ be the unique cut point of the space M,
and M—t=M,()\UM.(¢) the separation by #. We have p ¢ for non-empty
S(p, M) (p=M). Hence, if p is such a point belonging to M(¢), then

S(p, M)=M,¢) is a connected set.
Necessity : Suppose that M contains two distinct cut points ¢, ¢..

Let M, be a component of M—g, containing ¢., M,=M—(M,\Ug)), N, a
component of M—gq, containing ¢,, and N,=M—(N,Ug¢,). Then there exist

two separations such that
(8 M—q=M\UM, M—g.=N,UN,

where ¢.€M,, ¢.EN,. Then
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Mlleﬁég and M2mN2: @.

To see that M; N\ N; has a cut point of M, let us assume that M, N\ N, has
no cut point of M. Let y be a p-int of M;/N\N,; and let x be a point of
S(p, M)—(MAJN,). Then there exist a cut point £ of M and a separation

M—t=H,\JH.(f), where yEH\(#), x= H.(¢).
If ¢,=¢, then
Hl(t)UH:z(l‘) = M]UM?-

Hence x& H,(#)C M. by the definition of M,. This implies ¢,5~¢. Then, we
have t=M, by ¢, € H(¢)\UH,(#). Analogously, t=N, Therefore, we obtain
that S(y, M)=M.\JN, because My/\N, has no cut point. This contradicts
the connectedness of S(y, M).

Now, for an arbitrary separation

M—u=M{(u)\UM,(%),
where # is any cut point of M in M\/\N, we have
(9) M,C My(z) or M,CM(u)
and
(10) N.C M) or N,CMu).

On the other hand, by the connectedness of S(p, M) for each point pE M,
for a cut point # of M in My/N\N, there exists no separation

M—u= M,(u)\UM(u)
which satisfies
(11) M()DM, and My(u)>DON,
or
(12) My(x)DN, and MJu)DM,
In fact, if for any cut point = M;/M\N, there exists a separation
M—u=M.()\UMy(2)

satisfying (11) or (12), then M(x) DM. and M.(x) DN, This is contrary to
the connectedness of S(x, M)C M—u.

Now, let z be a cut point of M in MM\ N, with the following separa-
tion
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M—z= M(z2)\UMy(2).
Here, from (9)~(12) we may assume that M;(z2) DMAUN,. Then
(13) My(z)c S(g,, M).
We shall see ¢.6 S(g,, M). If not, there exist a cut point # and a separation
M—t=K,()\UK.(t), where K,(t)3¢q, K.(¥)Dq.

It follows that K,(f) DM, and Kg(z‘)DZ\—I'3 by M\NN,>¢. This contradicts
(11) or (12). By (8) and the connectedness of S(g;, M), we have then

(14) N.=S(q,, M).

However, since N,C M,(z), (14) contradicts (13). This implies that M has
a single cut point # of M. Hence, we have Bd S(p, M)=t¢ for each p in
M—t (Lemma 1) and M is uniquely separated by ¢ (Theorem 3). This
completes the proof.
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